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What are localized patterns?

• Regions of sharp gradients in the solution to PDEs

• Basic building block: either a spike or an interface
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Examples from nature

seashells * fish * crime hotspots in LA * stressed bacterial colony
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Classical Gierer-Meinhardt model

At = ε2∆A− A +
A2

H
; τHt = D∆H −H + A2

• Introduced in 1970’s to model cell differentation in hydra

• Mostly of mathematical interest: one of the simplest RD systems

• Has been intensively studied since 1990’s [by mathematicians!]

• Key assumption: separation of scales

ε≪ 1 and ε2 ≪ D.
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• Roughly speaking, H is constant on the scale ofA so the steady state looks ”roughly”

like A(x) ∼ Cw
(x− x0

ε

)

where

∆w − w + w2 = 0.

• Questions: What about stability? What about location of the spike x0?
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“Classical” Results in 1D:

• Wei 97, 99, Iron+Wei+Ward 2000: Stability of K spikes in the GM model in one
dimension

• Two types of possible instabilitities: structural instabilities or translational instabilities

• Structural instabilities (large eigenvalues) lead to spike collapse in O(1) time

• Translational instabilities can lead to ”slow death”: spikes drift over large time scales

• Main result 1 : There exists a sequence of thresholds DK such that K spikes are
stable iff D < DK.

• Main result 2: Slow dynamics of K spikes is described by an ODE with 2K
variables (spike heights and centers) subject to K algebraic constraints between
these variables.
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Large eigenvalues

• Careful derivation leads to a nonlocal eigenvalue problem (NLEP) of the form

λφ = ∆φ+(−1 + 2w)φ−χw2

∫

wφ
∫

w2
; χ :=

4 sinh2
(

1√
D

)

2 sinh2
(

1√
D

)

+ 1− cos [π(1− 1/K)]

• Key theorem (Wei, 99): Re(λ) < 0 iff χ < 1

• Corrollary : On a domain [−1, 1], large eigenvalues are stable iffD < DK,large where

DK,large =
1

arcsinh2(sin 2π/K)

• When unstable, this can lead to competition instability.

• Movies: stable; unstable
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Small eigenvalues

• Causes a very slow drift

• Iron-Ward-Wei 2000: The slow dynamics of the system can be reduced to a coupled
algbraic-differential system of ODEs

• Movie: slow drift
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Two dimensions

• Structural stability is similar

• Dynamics [Ward et.al, 2000, K-Ward, 2004, K-Ward 2005]:

dx0
dt

∼ − 4πε2

ln ε−1 + 2πR0
∇R0

where

R0 = lim
x→x0

[

G(x, x0) +
1

2π
ln(|x− x0|)

]

;

∇R0 = lim
x→x0

∇x

[

G(x, x0) +
1

2π
ln(|x− x0|)

]

;

∆G− 1

D
G = −δ (x− x0) on Ω; ∂nG = 0 on ∂Ω

• Equilibrium location x0 satisfies ∇R0 = 0, occurs at the extremum of the regular part
of the Neumann’s Green’s function
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Dumbbell-shaped domain

• QUESTION: Suppose that a domain has a dumb-bell shape. Where will the spike
drift??

• What are the possible equilibrium locations for a single spike?
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Small D limit

• If D is very small, R0(x0) ∼ C(x0) exp
(

− 1√
D
|x0 − xm|

)

where xm is the point on

the boundary closest to x0

• This means that R0 is minimized at the point furthest away from the boundary
when D ≪ 1

- In the limit ε2 ≪ D ≪ 1, the spike drifts towards the point furthest away from the
boundary.

- For a dumbell-shaped domain above, the three possible equilibria are at the
”centers” of the dumbbells (stable) and at the center of the neck (unstable saddle
point)

- For multiple spikes, their locations solve ”ball-packing problem”.

• Movie: D = 0.03, ε = 0.04
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Large D limit
• We get the modified Green’s function:

∆Gm − 1

|Ω| = −δ(x− x0) inside Ω, ∂nG = 0 on ∂Ω;

Rm0 = lim
x→x0

[

Gm(x, x0) +
1

2π
ln(|x− x0|)

]

.

• [K, Ward, 2003]: For a domain which is an analytic mapping of a unit disk, Ω = f(B),
we derive an exact formula for ∇Rm0 in terms of the residues of f(z) outside the
unit disk.

• Take f(z) =
(1− a2)z

z2 + a2
; x0 = f(z0) :

1

1

50

3

2

1.5

1.05
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Then

∇Rm0(x0) =
∇s(z0)
f ′(z0)

where

∇s(z0) =
1

2π





z0
1−|z0|2 −

(z̄20+3a2)z̄0
z̄4
0
−a4 + a2z̄0

z̄2
0
a2−1

+ z̄0
z̄2
0
−a2

−(a4−1)2(|z0|2−1)(z0+a
2z̄0)(z̄

2
0
+a2)

(a4+1)(z̄2
0
a2−1)(z2

0
−a2)(z̄2

0
−a2)2





• Corrollary: for above Ω,∇Rm0 has a unique root at the origin!

- In the limit D ≫ 1, all spikes will drift towards the neck.

• Complex bifurcation diagram as D is increased.

• Movie: ε = 0.05, D = 0.1; D = 1.
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”Huge” D

• In the limit D → ∞, (Shadow limit), an interior spike is unstable and moves towards
the boundary [Iron Ward 2000; Ni, Polácik, Yanagida, 2001].

• For exponentially large but finite D = O(exp(−C/ε)), boundary effects will
compete with the Green’s function.

• [K, Ward, 2004]: Define

σ :=
ε

2
ln

(

C0

|Ω|Dε
−1/2

)

; C0 ≈ 334.80;

Then the spike will move towards the boundary whenever its distance from the closest
point of the boundary is at most σ; otherwise it will move away from the boundary.

• Movies: ε = 0.05, D = 10;D = 100
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Related problem: Mean first passage time

• Question: Suppose you want to catch a fish in a lake covered by ice. Where do you
drill a hole to maximize your chances?

• Related questions: cell signalling; oxygen transport in muscle tissues; cooling rods in
a nuclear reactor...

• Consider N non-overlapping small ”holes” each of small radius ε. A particle is
performing a random walk inside the domain Ω. If it hits a hole, it gets destroyed;
if it hits a boundary, it gets reflected. Question: what is the expected lifetime of the
wondering particle? How do we place the holes to minimize this lifetime [i.e. catch the
fish, cool the nuclear reactor...]?
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• The expected lifetime is proportional to 1/λ where λ is the smallest eigenvalue of the
problem:

∆u + λu = 0 inside Ω\Ωp; u = 0 on ∂Ωp; ∂nu = 0 on ∂Ω

where Ωp =
⋃N
i=1Ωε.

• [K-Ward-Titcombe, 2005]: The smallest eigenvalue is given by

λ ∼ 2πN

ln 1
ε

(

1− 2π

ln 1
ε

p(x1, . . . xN) +O

(

1
(

ln 1
ε

)2

))

where
p(x1, . . . xN) :=

∑∑

Gij;

Gij =

{

Gm (xi, xj) if i 6= j
Rm(xi, xj) if i = j

∆Gm(x, x
′)− 1

|Ω| = −δ(x− x′) inside Ω, ∂nG = 0 on ∂Ω;

Rm(x, x
′) = Gm(x, x

′) +
1

2π
ln(|x− x′|).

• The optimum trap placement is at the minimum of p(x1, . . . xN)

• The answer is the same as for spike locations for GM model with D ≫ 1!!
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Disk domain, N holes

We need to minimize

p(x1 . . . xN) = −
∑

j 6=k
ln |xj − xk| −

∑

j,k

ln |1− xjx̄k| +N
∑

j

|xj|2

Particles on a ring: xk = reik2π/N . The min occurs when

r2N

1− r2N
=
N − 1

2N
− r2

Note that r → 1/
√
2 as N → ∞; the optimal ring divides the unit disk into two equal

areas.

Particles on 2,3,. . . m rings: Similar results are derived with complicated but numerically
useful formulas.
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Constrained optimization on up to 3 rings

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25
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Full optimization of K traps

6 (−1.526) 7 (−1.8871) 8 (−2.2538) 9 (−2.6104) 10 (−2.976)

11 (−3.3562) 12 (−3.7593) 13 (−4.1552) 14 (−4.5683) 15 (−4.975)

16 (−5.3914) 17 (−5.8051) 18 (−6.2245) 19 (−6.6731) 20 (−7.1071)

21 (−7.5489) 22 (−7.985) 23 (−8.4207) 24 (−8.8693) 25 (−9.3178)
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Comparison
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Fishing on a dumbbel-shaped lake

• Question: can Rm(x0, x0) have multiple minima?

- Consider a domain consisting of two blobs of areas A,B connected at a single
“bottleneck” point.

- When A = B, optimal place to catch fish is at the neck of the domain; only one
minimum using complex variables method.

- If
1

3
≤ A

B
≤ 3 then there is a minimum at the neck. If A≫ B then the minimum

is inside A. But when A
B

is just above 3, there is a complex bifurcation structure
and multiple minima can exist!
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Entire solutions to GM in higher dimensions

0 = ε2∆A−A +
A2

H
; 0 = ∆H −H + A2

• Open question: Does a spike solution exist in all of R3??

- In 1D or 2D, there is separation of scales so YES. The inner problem is the ground
state

∆w − w + w2 = 0

.

- In 3D, the inner problem is fully coupled , the core problem becomes

0 = ∆A−A +
A2

H
; 0 = ∆H + A2

- No separation of scales in 3D. Open question: Does a spike in 3D exist???
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Solutions concentrating on spheres in R3

• Consider a general GM model:

0 = ε2∆A−A +
Ap

Hq
; 0 = ∆H −H +

Am

Hs
.

• [Ni-Wei 2006, K-Wei, 2006] Shell-solutions: Seek solutions where A concentrates on
a surface of a sphere of radius r0.

A(x) ∼ Cw

(

|x| − r0
ε

)

where w is the 1D ground state: wyy − w + w2 = 0; w = 3
2 sech

2(y/2).
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• In 3D, the radius of the sphere satisfies

p− 1

q
∼ e2r0 − 1− r0

e2r0 − 1
as ε→ 0

• Note that p−1
q

→ 1 as r0 → ∞.

• The ”standard GM”

ε2∆A−A + A2/H = 0 = ∆H −H + A2 (1)

has (p, q,m, s) = (2, 1, 2, 0) is a degenerate case (p + 1 = q, r0 → ∞)

• [K-Wei, 2012] For (1) we have

ε ∼ exp (−2r0) (1 + 2r0)
70

103
(2)

• The computation to get (2) is about 10 pages.

• Roughly, r0 ∼ −1
2
ln ε→ ∞ as ε→ 0.
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Smoke-ring solutions

Axi-symmetric anzatz:

A(x, y, z) = u(r, z), H(x, y, z) = v(r, z) where r =
√

x2 + y2

The GM model becomes:

0 = ε2
(

∆(r,z)u +
1

r
ur

)

− u +
up

vq
; 0 =

(

∆(r,z)v +
1

r
vr

)

− v +
um

vs
(3)

Theorem Suppose that q = p− 1. Then the (3) admits a solution of the form

u ∼ Cw (R) ; R =

√

(r − r0)
2 + z2

ε
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where w is a 2D ground state:

wRR +
1

R
wR − w + wp = 0; w′(0) = 0; w > 0

and the radius r0 given implicitly by

1− 2r0

∫ 1

0

e−2r0t

√
1− t2

dt =
1

2
(m− s− 1)

∫∞
0
wm
(

∫ R

0
wp+1tdt

)

RdR
(∫∞

0
wmRd

) (∫∞
0
wp+1RdR

). (4)

The solution to (4) is always unique It exists if m− s− 1 ≤ 2.
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Some key steps in derivation

• Need to compute the axi-symmetric Green’s function:

∆G +
1

r
Gr −G = −δ(x, x0).

• Descent from 3D: G is a convolution of the 3D Green’s function Γ(x, x′) = e−|x−x
′|

4π|x−x′|
along a ring of radius r0 :

G(r, z, r0, z0) =
r0
4π

∫ 2π

0

exp[−(r2 + r20 − 2rr0 cosω + (z − z0)
2)1/2]

4π(r2 + r20 − 2rr0 cosω + (z − z0)2)1/2
dω

• Asymptotically expand the singular integral as r → r0

• Expand the steady state in two scales: ε and ln ε.

• Higher-order solvability condition at O(ε ln ε).
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Perturbed Allen-Cahn model

ut = ε2∆u− 2(u− εa)(u− 1)(u + 1), x ∈ Ω ⊂ R
2; ∂nu = 0 on ∂Ω

• When a = 0, solution consists of an interface whose evolution tries to minimize its
diameter. Equlibrium solution has zero curvature.

• When a 6= 0, the evolution of the equilibrium solution has a curvature R̂−1 where
R̂ = 1

2a
.

- Sometimes the interface gets stuck in a narrow channel, other times it passes
through.

- In [K-Iron-Rumsey-Wei, 2008] we classify the stability of such an interface.

- Movie: stuck Movie: unstuck

- Main result: Eigenvalues satisfy the geometric eigenvalue problem,






wzz − R̂−2w = −λ0w;
w′(−l/2) + κ−w(−l/2) = 0;
w′(l/2) + κ−w(l/2) = 0;

where l is the interface length; κ−, κ+ are the two curvatures of the boundary at
the points where the interface intersects it.
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Layer oscillations

• FitzHuhg-Nagumo type model:

ut = ε2uxx + 2(u− u3) + w, τwt = Dwxx − u + β

Neumann BC on [0, 1]

ε≪ 1, D ≫ 1

• Stationary steady state is an interface computed from the shadow limit D → ∞

w ∼ 0; u ∼ tanh

(

l0 − x

ε

)

; l0 := (1 + β)/2

• [McKay-K]: As τ is increased, the interface is destabilized via a Hopf Bifurcation
(movie1, movie2). The critical scaling is:

τ =
D

ε
τ0, where τ0 = O(1).
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• The interface position is given by

l(t) ∼ l0 + A(t) cos(
√

3/τ0εD
−1/2t + φ0)

where A is the oscillation envelope that satisfies

D

ε

dA

dt
=

(

1

4
(1− 3β2)− 1

8τ0

)

A− 3

4
A3.

• Hopf bifurcation occurs when

τ0h =

{

1
2(1−3β2)

if |β| < 3−1/2;

∞ otherwise
.
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Self-replication

• In 1993, Pearson reported self-replicating spots in the Gray-Scott model [J.E. Pearson,
Science, 261, 189 (1993)].

• Experiments using Ferrocyanide-iodate-sulphite reaction (which GS models)
confirmed numerical observation [Lee et.al, Nature, 1994].

• Self-replication was found in many other models, including chemial reactions, material
science and nonlinear optics.
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Gray-scott model

• Models a chemical reaction

• Large literature starting from 1990’s: Doelman, Kaper, Muratov, Nishiura....
{

ut = Dv∆u− (F + k)u + vu2

vt = Du∆v + F (1− v) + vu2

• Self-replication reduces to study a fully-coupled 4-th order ODE:






∆U − U + U2V = 0
∆V − U2V = 0

V ′(0) = 0 = U ′(0), V ′(∞) = B

• Replication has been observed in 1D and 2D (two different types):
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Criteria for self-replication

• Four criteria, proposed by Nishiura and Ueyema (1999):

1. The disappearance of the ground-state solution due to a fold point.

2. The existence of a dimple eigenfunction at the fold point, responsible for the
initiation of the self-replication process.

3. Stability of the steady-state solution on one side of the fold point.

4. The alignment (or cascade) of the fold points for K spots.

• Verification of these conditions is usually done numerically

• Analytic verificationis an open problem for the GS model; order too high.
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Simpler self-replication model in RN

ut = ∆u− u +
(1 + a|x|q)up

∫

RN (1 + a |x|q) up+1
; ∇u(0, t) = 0 (5)

• Steady state satisfies (after rescaling):

0 = urr +
N − 1

r
ur − u + (1 + arq) up; u′ (0) = 0, u > 0 (ss)

• Existence of ground state depends on a, q, p

• Main result: Self-replication occurs if a is gradually increased from 0, provided that

p > 1 and q >
(p− 1)N

2
if N = 1 or 2

1 < p <
N + 2

N − 2
and q >

(p− 1) (N − 1)

2
if N ≥ 3.
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Example: Bifurcation structure in 1-D

0 = urr − u +
(

1 + ar2
)

u2; u′ (0) = 0, u > 0

• Two-bump solution connects to one-bump solution in a fold-point bifurcation. This is
the first condition for self replication.

s := u(0; a)
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Bifurcation structure in 3D

0 = urr +
2

r
ur − u + (1 + arq)u2; u′ (0) = 0, u > 0

• If q > 1, there is a solution with a≪ 1, u(0) ≪ 1 given by

u(r) ∼ Cw (r − r0) where r0 =

(

1

a

)1/q(
1

q − 1

)1/q

where w′′ − w + wp = 0 is a 1-D ground state, C some constant.

• If q < 1, there is a solution for a≫ 1 (no fold point)

• If q = 1, there is a solution with a≫ 1, u(0) ≪ 1 given by

u(r) ∼ Cw (r − r0) where r0 = O (ln a)

0.75
1

1.251.5

2

3

0
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2

3
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p = 2, q as indicated
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• Theorem : There is a fold point when q > 1; no fold point if q = 1.

• Theorem : The eigenfunction at the fold point has a dimple shape. This verifies
Nishiura-Ueyema condition 2

–1

0

1

–10 –5 5 10

–1

0

1

–10 –5 5 10

Dimple eigenvalue for simplified model (left) and for GS model (right)
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Comparison with GS model
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Left: GS model (movie). Right: Simplified model (movie).

• GS model: a cascade of self-replication events, resulting in multiple interior spikes.

• Simplified model: only one self-replication event; the spike moves to and merges with
the boundary.

• Initial stages of self-replication mechanism are similar for the two models.
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Nonradial stability (N = 3)

• Using spherical coordinates we decompose

Z(x, y, z) = Φ(r)Y m
l (θ, φ); l = 0, 1, . . . ; m = 0,±1 . . .± l

where Y m
l are the spherical harmonics.

• For l ≥ 2, The nonlocal term in (NLEP) disappears since
∫

hZup−1 = 0, l ≥ 2 and
we get

λlΦ = Φrr +
2

r
Φr −

γ

r2
Φ− Φ + phup−1Φ; γ = l(l + 1), l ≥ 2. (NREP)

• In the threshold case q = p− 1 and a≫ 1,

u(r) ∼ Cw (r − r0) where r0 = O (ln a)

so that (NREP) becomes (LEP):

λlΦ ∼ Φrr − Φ + phup−1Φ

which is unstable!

• Non-radial instability leads to peanut-splitting. Click for movie
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UCLA Model of hot-spots in crime

• Recently proposed by Short Brantingham, Bertozzi et.al [2008].

• Very ”sexy” math: e.g. The New York Times , Dec 2010, Times top 50 ideas , 2011

• Crime is ubiquious but not uniformly distributed

- some neigbourhoods are worse than others, leading to crime ”hot spots”

- Crime hotspots can persist for long time.

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.
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• Crime is temporaly correlated:

- Criminals often return to the spot of previous crime

- If a home was broken into in the past, the likelyhood of subsequent breakin
increases

- Example: graffitti ”tagging”

• Two-component model

At = ε2Axx −A + ρA + α

τρt = D
(

ρx − 2
ρ

A
Ax

)

x
− ρA + γ − α.

- ρ(x, t) ≡ density of criminals;

- A(x, t) ≡ ”attractiveness” of area to crime

- α = O(1) ≡ ”baseline attractiveness”

- D(−2 ρ
A
Ax)x models the motion of criminals towards higher attractiveness areas

- γ − α > 0 is the baseline criminal “feed rate”

- We assume here:
ε2 ≪ 1
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Numerical results: hot-spots forming

Taken from paper by Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi and Chayes,
M3AS 2008
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Hot-spot steady state

0 = ε2Axx − A + ρA + α; 0 = D
(

ρx − 2
ρ

A
Ax

)

x
− ρA + γ − α

• Key trick: ρx − 2 ρAAx = A2
(

ρA−2
)

x
.

• This suggests the change of variables:

v =
ρ

A2
;

so that

0 = ε2Axx −A + vA3 + α; 0 = D
(

A2vx
)

x
− vA3 + γ − α. (6)
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• “Shadow limit” Large D : v(x) ∼ v0;

ε2Axx −A + vA3 + α = 0; v0

∫ l

0

A3dx = (γ − α) l.

• A ∼ v
−1/2
0 w(y), y = x/ε where w is the ground state,

wyy − w + w3 = 0, w′(0) = 0, w → 0 as |y| → ∞;

i.e.
w(y) =

√
2 sech(y)

then

v0 ∼
(∫∞

−∞w3dy
)2

4l2 (γ − α)2
ε2;

A(x) ∼







2l(γ − α)

ε
∫

w3
w(x/ε), x = O (ε)

α, x≫ O(ε).
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Figure 1: Steady state in one dimension. Parameter values are D0 = 1, ε = 0.05, α =
1, γ = 2, x ∈ [0, 1]. (a) The solid line is the steady state solution A(x) of (6) computed by
solving the associated boundary value problem numerically. The dashed line corresponds
to the first-order composite approximation. (b) The solid line is the steady state solution for
v(x). Note the “flat knee” region within the spot center. The dashed line is the asymptotics
result.
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Stability of hot-spots (1D)

• Localized states [preprint]: Consider a periodic pattern consisting of localized
hotspots of radius l. It is stable iff l > lc where

lc :=
ε1/2D1/4π1/2α1/2

(γ − α)3/4
.

• Turing instability in the limit ε→ 0:

- Equilibrium steady state A = γ, ρ = (γ − α)/γ is Turing-unstable provided that

γ >
3

2
α, ε→ 0

- Preferred Turing characteristic length:

lturing ∼ ε1/2
D1/42π

√
γ

(γ − A0)1/4(3γ2 + 4γ − 6α)1/4

• Note that both O (lc) = O(lturing) = O(ε1/2)!
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Example: α = 1, γ = 2, D = 1, ε = 0.03.

Then lturing = 0.60; lc = 0.13 < lturing

t=0.0

t=1.8

t=14.5

t=17.1

t=19.9

0 1 2 3 4 5

t=34505.5
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Small and large eigenvalues
• Near-translational invariance leads to “small eigenvalues (perturbation from zero)”

corresponding eigenfunction is φ ∼ w′.

• Large eigenvalues are responsible for “competition instability”.

• Small eigenvalues become unstable before the large eigenvalues.

• Example: Take l = 1, γ = 2, α = 1, K = 2, ε = 0.07. Then Dc,small =
20.67, Dc,large = 41.33.

- if D = 15 =⇒ two spikes are stable

- if D = 30 =⇒ two spikes have very slow developing instability

- if D = 50 =⇒ two spikes have very fast developing instability
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Stability: large eigenvalues

• Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):

λφ = φ′′ − φ + 3w2φ− χ

(∫

w2φ

)

w3 where w′′ − w + w3 = 0. (7)

with

χ ∼ 3
∫∞
−∞w3dy

(

1 + ε2D(1− cos
πk

K
)

α2π2

4l4 (γ − α)3

)−1

• Step 2: Key identity : L0w
2 = 3w2, where L0φ := φ′′ − φ + 3w2φ. Multiply (7) by

w2 and integrate to get

λ = 3− χ

∫

w5 = 3− χ
3

2

∫

w3

Conclusion: (7) is stable iff χ > 2
∫

w3
⇐⇒ D > Dc,large.

• This NLEP in 1D can be fully solved!!
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Stability: small eigenvalues

• Compute asymmetric spikes

• They bifurcate from symmetric branch

• The bifurcation point is precisely when D = Dc,small.

• This is “cheating”... but it gets the correct threshold!!
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Stability of K spikes

• Possible boundary conditions:

Config type Boundary conditions for φ

Single interior spike on [−l, l]
even eigenvalue

φ′(0) = 0 = φ′(l)

Single interior spike on [−l, l]
odd eigenvalue

φ(0) = 0 = φ′(l)

Two half-spikes at [0, l] φ′(0) = 0 = φ(l)
K spikes on [−l, (2K − 1)l],

Periodic BC
φ(l) = zφ(−l), φ′(l) = zφ′(−l),
z = exp (2πik/K) , k = 0 . . . K − 1

K spikes on [−l, (2K − 1)l],
Neumann BC

φ(l) = zφ(−l), φ′(l) = zφ′(−l),
z = exp (πik/K) , k = 0 . . . K − 1

(same BC for ψ)
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Two dimensions

Given domain of size S, let

Kc := 0.07037ε−3/4D−1/3

(

ln
1

ε

)1/3

(γ − α)α−2/3S. (8)

Then K spikes are stable if K < Kc. Example: α = 1, γ = 2, ε = 0.08, D = 1.

We get S = 16, Kc ≈ 10.19. Starting with random initial conditions, the end state
constits of K = 7.5 < Kc hot-spots [counting boundary spots with weight 1/2 and corner
spots with weight 1/4], in agreement with the theory.
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Biological aggregation

• Animals often aggregate in groups

• Biologically, it can provide protection from predators; conserve heat, act without an
apparent leader, enable collective behaviour

• Examples include bacteria, ants, fish, birds, bees....
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Aggregation model

We consider a simple model of particle interaction,

dxj
dt

=
1

N

∑

k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N (9)

• Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

• Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

• Note that acceleration effects are ignored as a first-order approximation.

• Mathematically F (r) is positive for small r, but negative for large r.

• Alternative formulation: (9) is a gradient flow of the minimization problem

minE (x1, . . . xN) where E =
∑∑

P (|xi − xj|) with F (r) = −P ′(r).
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Confining vs. spreading
• Consider a Morse interaction force :

F (r) = exp(−r)−G exp(−r/L); G < 1, L > 1 0

0.1
0.2
0.3
0.4

F(r)

1 2 3 4 5 6r

• If GL3 > 1, the morse potential is confining (or catastrophic): doubling N doubles
the density but cloud volume is unchanged:

G = 0.5, L = 2

• IfGL3 < 1, the system is non-confining (or h-stable): doublingN doubles the cloud
volume but density is unchanged:

G = 0.5, L = 1.2
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Continuum limit

• For confining potentials, we can take the continuum limit as the number of particles
N → ∞.

• We define the density ρ as
∫

D

ρ(x)dx ≈ #particles inside domain D

N

• The flow is then characterized by density ρ and velocity field v:

ρt +∇ · (ρv) = 0; v(x) =

∫

Rn

F (|x− y|) x− y

|x− y|ρ(y)dy. (10)

• Variational formulation: Let

E [ρ] :=

∫

Rn

∫

Rn

ρ(x)ρ(y)P (|x− y|)dxdy; P ′(r) = −F (r) (11)

Then (10) is the gradient flow of E; minima of E are stable equilibria of (10).

• Questions

1. Describe the equilibrium cloud shape in the limit t→ ∞
2. What about dynamics?
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Linear force: F (r) = min(ar + b, 1− r)

61



Ring-type steady states

• Seek steady state of the form xj = r (cos (2πj/N) , sin (2πj/N)) , j = 1 . . . N.

• In the limit N → ∞ the radius of the ring must be the root of

I(r) :=

∫ π

2

0

F (2r sin θ) sin θdθ = 0. (12)

• For Morse force F (r) = exp(−r)−G exp(−r/L), such root exists wheneverGL2 >
1 [coincides with 1D catastrophic regime]

• For general repulsive-attractive force F (r), a ring steady state exists ifF (r) ≤ C < 0
for all large r.

• Even if the ring steady-state exists, the time-dependent problem can be ill-posed!
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Local stability of a ring
• Linearize: xk = r0 exp (2πik/N) (1 + exp(tλ)φk) where φk ≪ 1.

• Ring is stable of Re (λ) ≤ 0 for all pair (λ, φ). There are three zero eigenvalues
corresponding to rotation and translation invariance; all other eigenvalues come in
pairs due to rotational invariance.

• [K-Hui-Uminsky-Bertozzi] λ is the eigenvalue of

M(m) :=

[

I1(m) I2(m)
I2(m) I1(−m)

]

; m = 2, 3, . . . (13)

I1(m) =
2

π

∫ π

2

0

[

F (2r sin θ)

2r sin θ
+ F ′(2r sin θ)

]

sin2 ((m + 1)θ) dθ; (14a)

I2(m) =
2

π

∫ π

2

0

[

F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

]

[

sin2 (mθ)− sin2(θ)
]

dθ. (14b)

• Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
the circle.

m=3, N=50, lambda=0.05 m=25, N=50, lambda=–1.17
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Triangular shapes: weakly nonlinear analysis
• Near the instability threshold, higher-order analysis shows a supercritical pitchfork

bifurcation, whereby a ring solution bifurcates into an m−symmetry breaking
solution

• This shows existence of nonlocal solutions.

• Example: F (r) = r1.5 − rq; bifurcation m = 3 occurs at q = qc ≈ 4.9696; nonlinear
analysis predicts

max
i

|xi| −min
i

|xi| =
√

max (0, τ (q − qc)); τ ≈ 0.109.
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Point-concentration (hole) solutions

F (r) = min(ar, r − r2)

Solutions consist ofK “clusters”, where each cluster hasN/K points inside. The number
K depends on a :
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Spots: “degenerate” holes

F (r) = min(ar + δ, 1− r); δ ≪ 1

• Points degenerate into spots of size O(δ). eg. a = 0.3, δ = 0.05 :

• Inside each of the cluster, the reduced problem is:

φ′l =
n
∑

j 6=l

φl − φj
|φl − φj|

− n

[

α 0
0 β

]

φl

• α, β depend only on F (r) not on N.
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Annulus: continuum limit N ≫ Nc :

• F (r) = r − r2 + δ, 0 < δ ≪ 1

• Main result: In the limit δ → 0, the annulus inner and outer radii R1, R2 are given by

R ∼ 3π

16
+

2

π
δ; R1 ∼ R− β, R2 ∼ R + β

where

β ∼ 3πe−5 exp

(

−3π2

64

1

δ

)

≪ δ ≪ 1.

The radial density profile inside the annulus is

ρ(x) ∼











c
√

β2 − (R− |x|)2
, |R− x| < β ≪ 1

0, otherwise

• Annulus is exponentially thin in δ... note the 1/sqrt singularity near the edges!

67



Key steps for computing annulus profile

• For radially symmetric density, the velocity field reduces to a 1D problem:

v(r) =

∫ ∞

0

K(s, r)ρ(s)sds

where

K(s, r) :=

∫ 2π

0

(r − s cos θ) f
(

√

r2 + s2 − 2rs cos θ
)

dθ; f(r) = 1− r +
δ

r

• Assume thin annulus; expand all integrals. It boils down to integral equation
(Carleman’s equation)

∫ β

−β
ln |η − ξ| ̺(η)dη = 1 for all ξ ∈ (α, β)

• Explicit solution is a special case of Formula 3.4.2 from “Handbook of integral
equations” A.Polyanin and A.Manzhirov:

̺ (ξ) =
C

√

β2 − ξ2
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3D sphere instabilities

• Radius satisfies:
∫ π

0
F (2r0 sin θ) sin θ sin 2θ = 0

• [Von Brecht, Uminsky, K, Bertozzi] Instability is fully characterized using spherical
harmonics and hypergeometric functions
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Stability of a spherical shell

Define

g(s) :=
F (

√
2s)√
2s

;

The spherical shell has a radius given implicitly by

0 =

∫ 1

−1

g(R2(1− s))(1− s)ds.

Its stability is given by a sequence of 2x2 eigenvalue problems

λ

(

c1
c2

)

=

(

α + λl(g1) l(l + 1)λl(g2)

λl(g2)
l(l+1)
R2 λl(g3)

)(

c1
c2

)

, l = 2, 3, 4, . . .

where

λl(f) := 2π

∫ 1

−1

f(s)Pl(s) ds;

with Pl(s) the Legendre polynomial and

α := 8πg(2R2) + λ0(g(R
2(1− s2))

g1(s) := R2g′(R2(1− s))(1− s)2 − g(R2(1− s))s

g2(s) := g(R2(1− s))(1− s); g3(s) :=

∫ R2(1−s)

0

g(z)dz.
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Generalized Lennard-Jones interaction

g(s) = s−p − s−q; 0 < p, q < 1; p > q

• MAIN RESULT: Well posed if q < 2p−1
2p−2

; ill-posed if q > 2p−1
2p−2

.

Example: steady state with N = 1000 particles. (a) (p, q) = (1/3, 1/6). Particles
concentrate uniformly on a surface of the sphere, with no particles in the interior. (b)
(p, q) = (1/2, 1/4). Particles fill the interior of a ball. The particles are color-coded
according to their distance from the center of mass.
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Custom-designed kernels

• In 3D, we can design force F (r) which is stable for all modes except specified mode.

• EXAMPLE: Suppose we want only mode m = 5 to be unstable. Using our algorithm,
we get

F (r) =

{

3

(

1− r2

2

)2

+ 4

(

1− r2

2

)3

−
(

1− r2

2

)4
}

r + ε; ε = 0.1.
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Part II: Constant-density swarms

• Biological swarms have sharp boundaries, relatively constant internal population.

• Question: What interaction force leads to such swarms?

• More generally, can we deduce an interaction force from the swarm density?
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Bounded states of constant density

Claim. Suppose that

F (r) =
1

rn−1
− r, where n ≡ dimension

Then the aggregation model

ρt +∇ · (ρv) = 0; v(x) =

∫

Rn

F (|x− y|) x− y

|x− y|ρ(y)dy.

admits a steady state of the form

ρ(x) =

{

1, |x| < R
0, |x| > R

; v(x) =

{

0, |x| < 1
−ax, |x| > 1

.

where R = 1 for n = 1, 2 and a = 2 in one dimension and a = 2π in two dimensions.
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Method of characteristics in 1D

Suppose that F (r) = 1− r. Then

X =
2w0(x0)

M
− 1 + e−Mt

(

x0 + 1− 2w0(x0)

M

)

w0(x0) =

∫ x0

−∞
ρ0(z)dz; M =

∫ ∞

−∞
ρ0(z)dz

ρ(X, t) =
M

2 + e−tM (M/ρ0(x0)− 2)

Example: ρ0(x) = exp
(

−x2
)

/
√
π; M = 1 :

rho for t=0..5, dt=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

–3 –2 –1 1 2 3
x

X vs. t

0

1

2

3

4

t

–3 –2 –1 1 2 3
x
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Inverse problem: Custom-designer kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

ρ(x) =

{

b0 + b2x
2 + b4x

4 + . . . + b2nx
2n, |x| < R

0, |x| ≥ R
(15)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (16)

Then ρ(r) is the steady state corresponding to the kernel

F (r) = 1− a0r −
a2
3
r3 − a4

5
r5 − . . .− a2n

2n + 1
r2n+1 (17)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n
∑

j=k

a2j

(

2j
2k

)

m2(j−k), k = 0 . . . n. (18)
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Example: custom kernels 1D

Example 1 : ρ = 1− x2, R = 1, then F (r) = 1− 9/5r + 1/2r3.

Example 2 : ρ = x2, R = 1, then F (r) = 1 + 9/5r − r3.

Example 3: ρ = 1/2 + x2 − x4, R = 1; then F (r) = 1 + 209425
336091

r − 4150
2527

r3 + 6
19
r5.

−1 0 1
0

0.2

0.4

0.6

0.8

1
ρ(x)= 1−x2

−1 0 1
0

0.2

0.4

0.6

0.8

1
ρ(x)= x2

(b) −1 0 1
0

0.2

0.4

0.6

0.8

1
ρ(x)= 4/3 (0.5+x2−x4)

Ex.1 Ex.2 Ex.3
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Inverse problem: Custom-designer kernels: 2D

Theorem. In two dimensions , conisder a radially symmetric density ρ(x) = ρ (|x|) of
the form

ρ(r) =

{

b0 + b2r
2 + b4r

4 + . . . + b2nr
2n, r < R

0, r ≥ R
(19)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (20)

Then ρ(r) is the steady state corresponding to the kernel

F (r) =
1

r
− a0

2
r − a2

4
r3 − . . .− a2n

2n + 2
r2n+1 (21)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n
∑

j=k

a2j

(

j
k

)2

m2(j−k)+1; k = 0 . . . n. (22)

This system always has a unique solution for provided that m0 6= 0.
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Numerical simulations, 2D

• Solve for xi using ODE particle model as before [2N variables]

• Use xi to compute Voronoi diagram ;

• Estimate ρ(xj) = 1/aj where aj is the area of the voronoi cell around xj.

• Use Delanay triangulation to generate smooth mesh.

• Example: Take

ρ(r) =

{

1 + r2, r < 1
0, r > 0

Then by Custom-designed kernel in 2D is:

F (r) =
1

r
− 8

27
r − r3

3
.

Running the particle method yeids...
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Conclusions

• Analysis of localized patterns requires many different tools: asymptotic methods,
complex variables, dynamical systems, special functions, numerical methods, ....

• Has many relevant applications in science, but also leads to beautiful mathematics

• Many good problems suitable for students at all levels

• This talk and related papers are downloadable from my website
http://www.mathstat.dal.ca/˜tkolokol/papers

Thank you!
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