A new PDE model of bacterial aggregation

Theodore Kolokolnikov
Joint work with Paul-Christopher Chavy-Waddy

Dalhousie University

Galante-Wisen-Bhaya-Levy model (agent-based):

- Each bacteria has position x_{j} and a direction d_{j}. Bacteria move at some fixed speed.
- Bacteria switches its direction at a certain switching rate.
- When choosing new direction, the bacteria picks at random another bacteria within its sensing radius, and then orients itself to move towards it.

(b)

- Aggregations form as switching rate is increased.
- Pseudocode:

```
for t=0:dt:1000
    for j=1:n % cycle through each bacteria
        if rand < switching_rate*dt
                Pick a random bacteria }\mp@subsup{x}{k}{}\mathrm{ within sensing_radius of }\mp@subsup{x}{j}{
                Update orientation: }\mp@subsup{d}{j}{}=(\mp@subsup{x}{k}{}-\mp@subsup{x}{j}{})/|\mp@subsup{x}{k}{}-\mp@subsup{x}{j}{}
        end
    end
    x=x +d* speed * * t
end
```


- Movie: switching rate $=3$
- Movie: switching rate $=2$
- Movie: switching rate $=0.5$

One-dimensional ODE lattice model (Galante-Levy)

- Each bacteria is oriented either left or right. Denote average densities by L_{j}, R_{j} for lattice points $j=1 \ldots n$.
- At each time-step:
- Bacteria either moves to an adjacent cell according to its current orientation with rate a
- Or it switches orientation with rate c
- ODE lattice model on n bins:

$$
\begin{align*}
\frac{d R_{j}}{d t} & =a R_{j-1}-(a+c) R_{j}+c U_{j-1} \eta_{j-1}^{+} \tag{1a}\\
\frac{d L_{j}}{d t} & =a L_{j+1}-(a+c) L_{j}+c U_{j+1} \eta_{j+1}^{-} \tag{1b}\\
U_{j} & =L_{j}+R_{j} \tag{1c}\\
\eta_{j}^{ \pm} & =\frac{\sum_{k=1}^{d} U_{j \pm k}}{\sum_{k=1}^{d}\left(U_{j+k}+U_{j-k}\right)} . \tag{1d}
\end{align*}
$$

- Simulation of ODE model
- Uniform state: movie: $a=1, c=1.9$
- Aggregations form: movie: $a=1, c=2.2$

Symmetrization

- Let

$$
\begin{equation*}
V_{j}=R_{j+1}+L_{j-1} ; \quad U_{j}=R_{j}+L_{j} \tag{2}
\end{equation*}
$$

- The model becomes:

$$
\begin{align*}
\frac{d U_{j}}{d t} & =a\left(U_{j-1}+U_{j+1}-V_{j}\right)-(a+c) U_{j}+c\left(U_{j-1} \eta_{j-1}^{+}+U_{j+1} \eta_{j+1}^{-}\right) \\
\frac{d V_{j}}{d t} & =(a+c)\left(U_{j}-V_{j}\right) \tag{3}\\
\eta_{j}^{ \pm} & =\frac{\sum_{k=1}^{d} U_{j \pm k}}{\sum_{k=1}^{d}\left(U_{j+k}+U_{j-k}\right)}
\end{align*}
$$

- $U_{j}=R_{j}+L_{j}$ is the total bacteria in bin j;
- $V_{j}=R_{j+1}+L_{j-1}$ represents the density of bacteria near bin j that is diffusing away from bin j.
- At the steady state, the total density is the same as the diffusing density.
- Simplified model: suppose that $V_{j} \sim U_{j}$, then

$$
\begin{equation*}
\frac{d U_{j}}{d t}=a\left(U_{j-1}+U_{j+1}\right)-(2 a+c) U_{j}+c\left(U_{j-1} \eta_{j-1}^{+}+U_{j+1} \eta_{j+1}^{-}\right) \tag{4}
\end{equation*}
$$

Stability of the homogeneous state

The model

$$
\frac{d U_{j}}{d t}=a\left(U_{j-1}+U_{j+1}\right)-(2 a+c) U_{j}+c\left(U_{j-1} \eta_{j-1}^{+}+U_{j+1} \eta_{j+1}^{-}\right)
$$

has admits a homogeneous state $U_{j}=U$. Linearize around it:

$$
U_{j}(t)=U+\phi_{j} e^{\lambda t}
$$

Then

$$
\begin{aligned}
\lambda \phi_{j} & =\left(a+\frac{c}{2}+\frac{c}{4 d}\right)\left(\phi_{j-1}+\phi_{j+1}\right)-\left(2 a+c-\frac{c}{2 d}\right) \phi_{j} \\
& -\frac{c}{4 d}\left(\phi_{j+d}+\phi_{j-d}+\phi_{j+d+1}+\phi_{j-d-1}\right)
\end{aligned}
$$

Anzatz:

$$
\begin{gathered}
\phi_{j}=\phi e^{\lambda t} e^{\frac{2 \pi m j i}{n}} ; \quad m=0 \ldots n-1 \\
\lambda=f\left(\frac{2 \pi m}{n}\right), m=0 \ldots n-1, \\
f(\theta)=(2 a+c)(\cos (\theta)-1)+\frac{c}{2 d}(1+\cos (\theta)-\cos (d \theta)-\cos ((d+1) \theta))
\end{gathered}
$$

$$
f(\theta)=(2 a+c)(\cos (\theta)-1)+\frac{c}{2 d}(1+\cos (\theta)-\cos (d \theta)-\cos ((d+1) \theta))
$$

- $f(0)=0, f^{\prime}(0)=0$,
- Can be shown that $f(\theta) \leq 0$ for all θ iff $f^{\prime \prime}(0)=-2 a+d c<0$,
- Homogeneous state is stable if $c<c_{0}$; unstable if $c>c_{0}$, where

$$
c_{0}=2 a / d
$$

Continuum limit

$$
\frac{d U_{j}}{d t}=a\left(U_{j-1}+U_{j+1}\right)-(2 a+c) U_{j}+c\left(U_{j-1} \eta_{j-1}^{+}+U_{j+1} \eta_{j+1}^{-}\right)
$$

- Let $U_{j}(t)=u(x, t)$ so that $U_{j+k}(t)=u(x+k h, t)$
- Expanding up to $O\left(h^{2}\right)$, we get:

$$
u_{t}=-h^{2}\left(c \frac{d}{2}-a\right) u_{x x}
$$

- This recovers the linear stability threshold $c \frac{d}{2}-a=0$.
- Expanding to $O\left(h^{4}\right)$ we get:

$$
\begin{aligned}
u_{t} & =-A u_{x x}-B u_{x x x x}+C\left(\frac{u_{x} u_{x x}}{u}\right)_{x}, \quad v_{t}=(a+c)(u-v) \\
A & =h^{2}\left(c \frac{d}{2}-a\right) ; \quad B=\frac{h^{4}}{12}\left(\frac{c}{2}\left[1+d\left(d^{2}+2 d+3\right)\right]-a\right) \\
C & =\frac{h^{4}}{24} c(2 d+1)(d+1)^{2}
\end{aligned}
$$

$$
n=50, a=1, c=2.2, d=1
$$

$$
n=50, a=1, c=1.8, d=1
$$

- Suppose that $c \frac{d}{2}-a>0$ (i.e. homogeneous state unstable). Scale $x=$ $\hat{x}(B / A)^{1 / 2} ; \quad t=\hat{t} B A^{-2}$. After dropping the hats we then obtain

$$
\begin{equation*}
u_{t}=-u_{x x}-u_{x x x x}+\alpha\left(\frac{u_{x} u_{x x}}{u}\right)_{x} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha:=\frac{c(2 d+1)(d+1)^{2}}{\left(c\left[1+d\left(d^{2}+2 d+3\right)\right]-2 a\right)} . \tag{6}
\end{equation*}
$$

Inhomogeneous steady state

$$
u_{t}=-u_{x x}-u_{x x x x}+\alpha\left(\frac{u_{x} u_{x x}}{u}\right)_{x}
$$

Set $u_{t}=0$ and assume u decays at ∞ :

$$
\begin{equation*}
0=-u_{x}-u_{x x x}+\alpha \frac{u_{x} u_{x x}}{u} . \tag{7a}
\end{equation*}
$$

Because of scaling symmetry $u \rightarrow \lambda u$, we get a reduction of order:

$$
\begin{gathered}
u=\exp (v) ; \quad v_{x}=z \\
z^{\prime \prime}+z+(3-\alpha) z z^{\prime}+(1-\alpha) z^{3}, \quad z=u_{x} / u
\end{gathered}
$$

Write it as:

$$
\begin{align*}
\frac{d z}{d x} & =w \tag{8}\\
\frac{d w}{d x} & =-z+(\alpha-3) z w+(1-\alpha) z^{3} \tag{9}
\end{align*}
$$

Get 1st order Abel ODE:

$$
\begin{equation*}
\frac{d w}{d z}=\frac{-z}{w}-(3-\alpha) z-(1-\alpha) \frac{z^{3}}{w} \tag{10}
\end{equation*}
$$

Phase portarat:

The two saddles are connected by heteroclinic orbits of the form of a parabola. So try Anzatz:

$$
w=A z^{2}+B .
$$

There are two solutions:

$$
w_{1}=\frac{(\alpha-1) z^{2}-1}{2} ; w_{2}=-z^{2}+\frac{1}{\alpha-1} .
$$

Substitute $w=w_{1}$ into (9) yields

$$
\begin{equation*}
\frac{d z}{d x}=\frac{(\alpha-1) z^{2}-1}{2} \tag{11}
\end{equation*}
$$

Solve it and unwind the transformations to get

$$
\begin{equation*}
u(x)=C\left[\operatorname{sech}\left(\frac{\sqrt{\alpha-1}}{2} x\right)\right]^{\frac{2}{\alpha-1}} \tag{12}
\end{equation*}
$$

Conclusions

- We derived a novel PDE model of bacterial aggregation: $u_{t}=-u_{x x}-u_{x x x x}+\alpha\left(\frac{u_{x} u_{x x}}{u}\right)_{x}$

$$
u(x)=C\left[\operatorname{sech}\left(\frac{\sqrt{\alpha-1}}{2} x\right)\right]^{\frac{2}{\alpha-1}}
$$

- Open questions:
- Structural stability?
- Metastability?
- Preprint is available for download from my website: http://www.mathstat.dal.ca/~tkolokol/bacteria.pdf

Thank you! Any questions?

