Boundary value problems with very sharp structures: numerical challenges

Theodore Kolokolnikov, Dalhousie University

Introduction

- Singular perturbation problems depend on a small parameter ε which typically premultiplies the highest derivative.
- As $\varepsilon \rightarrow 0$, the problems exhibit localized structures such as boundary layers, corner layers, spikes, interfaces.
- Typically, the localized structure has the size $O(\varepsilon)$; the solution is relatively smooth outside the localized region.
- Standard codes to solve BVP may have difficulty resolving localized structures: typically, meshsize scales with $1 / \varepsilon$.
- Example: a standard code requires 10,000 meshpoints when $\varepsilon=10^{-5}$?

Problem 1

Solve the problem

$$
\varepsilon^{2} u^{\prime \prime}-u+\left(1+x^{2}\right) u^{2}=0 ; \quad u^{\prime}(0)=0 ; \quad \varepsilon u^{\prime}(1)=-u(1) .
$$

Asymptotic solution: Transform

$$
\begin{gathered}
x=\varepsilon y \\
u_{y y}-u+\left(1+\varepsilon^{2} y^{2}\right) u^{2}
\end{gathered}
$$

so that

$$
u(x) \sim w\left(\frac{x}{\varepsilon}\right)
$$

where
$w=\frac{3}{2} \operatorname{sech}^{2}(y / 2)$ solves $w_{y y}-w+w^{2}=0.0$.

- Note that

$$
w \sim O(1) \text { for } y=O(1)
$$

but it decays,

$$
w \sim 6 e^{-y} \text { for large } y
$$

- This exponential decay can cause trouble for BVP solvers.
- The solution exhibits two different spatial scales.
- Maple BVP solver: meshsize scales like $1 / \varepsilon$.
- Matlab does much better [see below]

Split-range method

Split-range method

- Choose $l \in[0,1]$,

$$
\varepsilon \ll l \ll 1
$$

- On $[0, l]$, (inner problem) transform:

$$
x=l y, u(t)=\hat{u}(y)
$$

- On $[l, 1]$, (outer problem) transform:

$$
x=l+(1-l) y, u(t)=\exp \left(\frac{\tilde{u}(y)}{\varepsilon}\right)
$$

- We get a 4-dimensional $B V P$ for \hat{u}, \tilde{u} on $y \in[0,1]$. The boundary conditions become:

$$
\begin{aligned}
\hat{u}^{\prime}(0) & =0, \quad \tilde{u}^{\prime}(1)=-1 \\
\hat{u}(1) & \left.=\exp \left(\frac{\tilde{u}(0)}{\varepsilon}\right) \quad \text { (continuity of } u\right) \\
\frac{\hat{u}^{\prime}(1)}{l} & \left.=\frac{1}{\varepsilon(1-l)} \exp \left(\frac{\tilde{u}(0)}{\varepsilon}\right) \tilde{u}^{\prime}(0) \text { (continuity of } u^{\prime}\right)
\end{aligned}
$$

- The parameter l is chosen by trial and error. Global tolerance is set to 10^{-6}; Maple's dsolve/bvp is used with adaptive gridding.

Meshsize scaling laws

ε	split range $(l=9 \varepsilon)$	split range $\left(l=4 \varepsilon \ln \frac{1}{\varepsilon}\right)$	Standard Maple (adaptive mesh)	Standard Matlab (adaptive mesh)
0.1	21	21	51	50
0.05	21	24	87	37
0.025	21	21	106	41
$2^{-3} \times 0.1$	21	26	178	38
$2^{-4} \times 0.1$	21	29	376	41
$2^{-5} \times 0.1$	30	30	792	42
$2^{-6} \times 0.1$	58	32	error	50
$2^{-7} \times 0.1$	119	31		39
$2^{-8} \times 0.1$	226	32		35
$2^{-9} \times 0.1$	472	33		35
$2^{-10} \times 0.1$	946	34		93
$2^{-11} \times 0.1$	error	35		61
\ldots		\ldots		\ldots
$2^{-16} \times 0.1$		41		36
$2^{-17} \times 0.1$		42		38

- The "good" l scales like $l=O(\varepsilon \ln \varepsilon)$!

Understanding $l=O(\varepsilon \ln \varepsilon)$

- Consider a simple problem

$$
\begin{equation*}
\varepsilon u_{x x}+u_{x}=1, \quad u(0)=0=u(1) \tag{1}
\end{equation*}
$$

- Asymptotic composite solution is:

$$
\begin{equation*}
u \sim \exp (-x / \varepsilon)+x-1 \tag{2}
\end{equation*}
$$

- There is a boundary layer at 0 as $\varepsilon \rightarrow 0$:

Error analysis, uniform mesh

- Discretize: let $h=1 / N$ and approximate $\varepsilon u_{x x}+u_{x}=1$ by

$$
\varepsilon \frac{\hat{u}_{i-1}+\hat{u}_{i+1}-2 u_{i}}{h^{2}}+\frac{\hat{u}_{i+1}-\hat{u}_{i-1}}{2 h}=1 ; \quad \hat{u}_{0}=0=\hat{u}_{N} .
$$

- Interpolate \hat{u} so it is defined on the whole interval $[0,1]$ with $\hat{u}(i h)=\hat{u}_{i}$.
- Next, note that

$$
\begin{aligned}
\frac{\hat{u}_{i+1}+\hat{u}_{i-1}-2 \hat{u}_{i}}{h^{2}} & =\hat{u}^{\prime \prime}+h^{2} \frac{\hat{u}^{\prime \prime \prime \prime}}{12}+O\left(h^{4}\right) ; \\
\frac{\hat{u}_{i+1}-\hat{u}_{i-1}}{2 h} & =\hat{u}^{\prime}+h^{2} \frac{\hat{u}^{\prime \prime \prime}}{6}+O\left(h^{4}\right)
\end{aligned}
$$

- So consider the error

$$
w=u-\hat{u}
$$

Then

$$
\begin{aligned}
\varepsilon w_{x x}+w_{x} & \sim h^{2}\left(\varepsilon \frac{\hat{u}^{\prime \prime \prime \prime}}{12}+\frac{\hat{u}^{\prime \prime \prime}}{6}\right) \\
& \sim h^{2}\left(\varepsilon \frac{u^{\prime \prime \prime \prime}}{12}+\frac{u^{\prime \prime \prime}}{6}\right) \\
& \sim-\frac{1}{12} \frac{h^{2}}{\varepsilon^{3}} \exp (-x / \varepsilon)
\end{aligned}
$$

- The error $w=u-\hat{u}$ satisfies

$$
\varepsilon w_{x x}+w_{x} \sim-\frac{1}{12} \frac{h^{2}}{\varepsilon^{3}} \exp (-x / \varepsilon) ; \quad w(0)=0=w(1)
$$

Note the resonance! The solution is

$$
w \sim \frac{1}{12} \frac{h^{2}}{\varepsilon^{3}} x \exp (-x / \varepsilon)
$$

Maximum occurs at $x=\varepsilon$; max error is

$$
\max w=\left(\frac{h}{\varepsilon}\right)^{2} \frac{e^{-1}}{12}
$$

Conclusion: $N=O(1 / \varepsilon)$ for uniform mesh!!!

A two-sized mesh:

Take $l \in(0,1)$ and discretize using uniform mesh of N_{1} points inside $[0, l]$ and another uniform mesh of $N_{2}=N-N_{1}$ points inside $[l, 1]$.

The error function $w=u-\hat{u}$ then satisfies:

$$
\varepsilon w^{\prime \prime}+w^{\prime} \sim-\frac{1}{12}\left\{\begin{array}{cl}
\frac{l^{2}}{N_{1}^{2} \varepsilon^{3}} e^{-x / \varepsilon}, & x \in(0, l) \\
\frac{(1-l)^{2}}{N_{2}^{2} \varepsilon^{3}} e^{-x / \varepsilon}, & x \in(l, 1)
\end{array}\right.
$$

Define

$$
r:=N_{2} / N_{1} ;
$$

and write

$$
N_{1}=N \frac{1}{1+r} ; \quad N_{2}=N \frac{r}{1+r}
$$

Assuming $l, \varepsilon \ll 1$, solving for w we obtain:

$$
\begin{aligned}
w & \sim \frac{1}{12} \frac{(1+r)^{2}}{N^{2}}\left\{e^{-x / \varepsilon} \frac{x l^{2}}{\varepsilon^{3}}+e^{-l / \varepsilon} \frac{l^{2}}{\varepsilon^{2}}\left(\frac{1}{r^{2}} \frac{1}{l^{2}}-1\right)\left(1-e^{-x / \varepsilon}\right)\right\}, x \in[0, l] \\
& \sim \frac{1}{12} \frac{(1+r)^{2}}{N^{2}}\left\{\frac{e^{-x / \varepsilon}}{r^{2}} \frac{x}{\varepsilon^{3}}+\left(1-\frac{1}{r^{2} l^{2}}\right) \frac{l^{2} e^{-x / \varepsilon}}{\varepsilon^{2}}\left(e^{-l / \varepsilon}-1+\frac{l}{\varepsilon}\right)\right\}, x \in[l, 1]
\end{aligned}
$$

Given ε, N, we want to determine l, r which minimizes the maximum of w.

The proper scaling is

$$
l=\varepsilon \ln \frac{1}{\varepsilon} p
$$

The maximum of w is attained at $x^{\star} \sim \varepsilon \ll l$; given by

$$
w\left(x^{\star}\right) \sim \frac{1}{12} \frac{(1+r)^{2}}{N^{2}}\left\{\exp (-1)\left(\ln \frac{1}{\varepsilon}\right)^{2} p^{2}+\varepsilon^{p-2} \frac{1}{r^{2}}(1-\exp (-1))\right\}
$$

Minimizing with respect to p and r, we get:

$$
\begin{gathered}
p=2 ; r=\left(\frac{e-1}{4}\right)^{1 / 3}\left(\frac{1}{\ln (1 / \varepsilon)}\right)^{2 / 3} ; \\
\min _{l, r} \max _{x} w \sim \frac{1}{3 e}\left(\frac{\ln \frac{1}{\varepsilon}}{N}\right)^{2}
\end{gathered}
$$

Conclusion: $N=O(\ln (1 / \varepsilon))$ for two-sized mesh!!! [this is exponentially better than $N=O(1 / \varepsilon)$ scaling of the uniform mesh!!ç

Example 1: $\varepsilon:=10^{-8} ; N=200$.

- The optimal two-sized mesh is:

$$
\begin{aligned}
l & =3.6 \times 10^{-6} \\
r & =0.108 \Longrightarrow N_{1}=180, N_{2}=20
\end{aligned}
$$

- Numerical error $=0.0013$. Predicted error $=0.0014$. Uniform mesh: Would need $N=10^{9}$ meshpoints to get same accuracy!

Example 2: Direct comparison of uniform vs. split-range:

ε	N	error (unif. mesh)	error (optimal two-sided mesh)
0.02	100	0.0080	0.00053
0.01	100	0.035	0.00072
0.005	100	0.14	0.00092
0.0025	100	FAIL	0.0011
10^{-3}	100		0.0012
10^{-4}	100		0.0028
10^{-6}	100		0.0031
10^{-6}	200		0.00082

Problem 2

Same ODE as problem 1:

$$
\varepsilon^{2} u^{\prime \prime}-u+\left(1+x^{2}\right) u^{2}=0 ; \quad u^{\prime}(0)=0 ; \quad \varepsilon u^{\prime}(1)=-u(1) .
$$

but it has another solution of the form $u=w\left(\frac{x-x_{0}}{\varepsilon}\right)$ where x_{0} is approximately scales like

$$
x_{0} \sim \varepsilon \frac{1}{2} \ln \left(\frac{30}{\varepsilon x_{0}}\right)+O(1 / \ln (\varepsilon))
$$

Three different scales

- To leading order, $x_{0} \sim \frac{1}{2} \varepsilon \ln (30 / \varepsilon)$ has $O(\varepsilon \ln 1 / \varepsilon)$
- The extent of the spike has $O(\varepsilon)$
- The outer problem has extend $O(1)$
- The relative error in the asymptotics of x_{0} is $O\left(1 / \ln \varepsilon^{-1}\right)$;
- This means that to asymptotics with numerics, we must take $1 / \ln \varepsilon^{-1} \sim 0.1 \Longrightarrow$ $\varepsilon \sim 10^{-5!!!!}$
- Challenge: can you compute with $\varepsilon \sim 10^{-4}$?
- Maple, matlab all fail for this problem when $\varepsilon \sim 10^{-3}$.

Problem 3

$$
\begin{equation*}
0=u_{r r}+\frac{2}{r} u_{r}-u+u^{2}(\varepsilon+r), \quad u^{\prime}(0)=0, u^{\prime}(\infty)=0 \tag{3}
\end{equation*}
$$

- THEOREM: In the limit $\varepsilon \ll 1$, Let $r_{0} \gg 1$ be the large solution to the equation

$$
\varepsilon \sim 30 r_{0}^{2} \exp \left(-2 r_{0}\right)
$$

Then there exists solutions of (3) of the form

$$
u(r) \sim \frac{1}{r_{0}} w\left(r-r_{0}\right)
$$

- Error is expected to be of $O(1 / \ln (1 / \varepsilon))$. To validate results, must take extemely small ε; for example if $\varepsilon=10^{-3}$ then $r_{0} \sim 5$, is not so small
- Standard codes [matlab, maple] all fail even for $\varepsilon=10^{-2}\left[r_{0} \sim 5.5\right]$.

Solve for ε instead

- Instead of fixing ε and solving for r_{0}, fix r_{0} then solve numerically the problem (3) first on $\left[0, r_{0}\right]$ with $u^{\prime}\left(r_{0}^{+}\right)=0$ and on $\left[r_{0}, \infty\right]$; with $u^{\prime}\left(r_{0}^{-}\right)=0$.
- Additional constraint $u\left(r_{0}^{-}\right)=u\left(r_{0}^{+}\right)$determines ε.
- Can get an accurate answer up to $r_{0} \sim 9.5$. The method fails for bigger values of r_{0} since the difference between $u\left(r_{0}^{-}\right)-u\left(r_{0}^{+}\right)$becomes smaller than the machine tolerance.

r_{0}	ε	Solution r_{0} to $\varepsilon=30 r_{0}^{2} e^{-2 r_{0}}$	\%err
4	0.05544	4.603	15.09%
4.5	0.02965	5.018	11.52%
5	0.015065	5.451	9.02%
5.5	0.007326	5.898	7.24%
6	0.003441	6.357	5.95%
6.5	0.001569	6.825	5.00%
7	0.0007028	7.297	4.25%
7.5	0.0003080	7.776	3.68%
8	0.0001336	8.256	3.20%
8.5	$5.704 \mathrm{e}-5$	8.74	2.83%
9	$2.41 \mathrm{e}-5$	9.227	2.52%

Discussion

- When splitting the integration range, take the splitting point to have order $l=O(\varepsilon \ln \varepsilon)$
- Problems with sharp interior boundary layers whose location depends on ε are difficult for standard solvers
- Matlab bvp solver is currently better than maple's [as of Aug 2010]
- The asymptotics of the problem should be reflected in the numerics; the analytical insight is invaluable when looking for numerical solution, especially for nonlinear problems.

