Numerical computation of boundary value problems with very sharp layers

Theodore Kolokolnikov
Dalhousie University

Introduction

- Singular perturbation problems depend on a small parameter ε which typically premultiplies the highest derivative.
- As $\varepsilon \rightarrow 0$, the problems exhibit localized structures such as boundary layers, corner layers, spikes, interfaces.
- Typically, the localized structure has the size $O(\varepsilon)$; the solution is relatively smooth outside the localized region.
- Standard codes to solve BVP have difficulty resolving localized structures: typically, meshsize scales with $1 / \varepsilon$.
- Example: a standard code requires 10,000 meshpoints when $\varepsilon=10^{-5}$? .

Problem 1

Consider the problem

$$
\varepsilon^{2} u^{\prime \prime}-u+\left(1+x^{2}\right) u^{2}=0 ; \quad u^{\prime}(0)=0 ; \quad \varepsilon u^{\prime}(1)=-u(1)
$$

Asymptotic solution:

$$
u(x) \sim w\left(\frac{x}{\varepsilon}\right)
$$

where

$$
\begin{array}{r}
w(y)=\frac{3}{2} \operatorname{sech}^{2}(y / 2) \\
w_{y y}-w+w^{2}=0 .
\end{array}
$$

- Note that w decays for large y,

$$
w(y) \sim 6 e^{-y} \text { for large } y .
$$

- This exponential decay causes trouble for BVP solvers.
- The solution exhibits two different spatial scales.
- Standard BVP solver: meshsize scales like $1 / \varepsilon$.

Split-domain method

- Choose $l \in[0,1]$,

$$
\varepsilon \ll l \ll 1
$$

- On $[0, l]$, (inner problem) transform:

$$
x=l y, \quad u(t)=\hat{u}(y)
$$

- On $[l, 1]$, (outer problem) transform:

$$
x=l+(1-l) y, u(t)=\exp \left(\frac{\tilde{u}(y)}{\varepsilon}\right)
$$

- We get a 4-dimensional $B V P$ for \hat{u}, \tilde{u} on $y \in[0,1]$. Two addional constraints impose continuity of u and u^{\prime} at l :

$$
\begin{aligned}
\hat{u}^{\prime}(0) & =0, \quad \tilde{u}^{\prime}(1)=-1 \\
\hat{u}(1) & =\exp \left(\frac{\tilde{u}(0)}{\varepsilon}\right) \quad(\text { continuity of } u) \\
\frac{\hat{u}^{\prime}(1)}{l} & =\frac{1}{\varepsilon(1-l)} \exp \left(\frac{\tilde{u}(0)}{\varepsilon}\right) \tilde{u}^{\prime}(0) \quad\left(\text { continuity of } u^{\prime}\right)
\end{aligned}
$$

- The parameter l is chosen by trial and error. Global tolerance is set to 10^{-6}; Maple's dsolve/numeric collocation code is used with adaptive gridding.

Meshsize scaling laws

ε	standard	$l=9 \varepsilon$	$l=4 \varepsilon \ln \frac{1}{\varepsilon}$	
0.1	51	21	21	
0.05	87	21	24	
0.025	106	21	21	
	$2^{-3} \times 0.1$	178	21	26
	$2^{-4} \times 0.1$	376	21	29
	$2^{-5} \times 0.1$	792	30	30
	$2^{-6} \times 0.1$	error	58	32
	$2^{-7} \times 0.1$		119	31
	$2^{-8} \times 0.1$		226	32
$2^{-9} \times 0.1$		472	33	
	$2^{-10} \times 0.1$		946	34
	$2^{-11} \times 0.1$		error	35
	\ldots		\ldots	
	$2^{-16} \times 0.1$		41	
$2^{-17} \times 0.1$		42		

Problem 1b

Same as Problem 1, but it has another solution of the form $u \sim w\left(\frac{x-x_{0}}{\varepsilon}\right)$ where y_{0} satisfies:

$$
x_{0}=\varepsilon \frac{1}{2} \ln \left(\frac{30}{\varepsilon x_{0}}\right)
$$

Challenge: Compute Probelm 1b with $\varepsilon=10^{-4}$.

Two different scales

- To leading order, $x_{0}=\varepsilon \frac{1}{2} \ln \left(\frac{30}{\varepsilon}\right)$ has order $O(\varepsilon \ln \varepsilon)$
- On the other hand, spike extend is of $O(\varepsilon)$.
- The ratio of two scales is $O(1 / \ln \varepsilon)$.
- This means that to compare asymptotics of Problem 2, we must take ε exponentially small!

Problem 2

Find the principlal eigenvalue of:

$$
\begin{aligned}
\Delta \phi+\lambda \phi & =0 \text { inside } B_{1} \backslash B_{\varepsilon} \\
\phi & =0 \text { on } \partial B_{\varepsilon} \\
\partial_{n} \phi & =0 \text { on } \partial B_{1}
\end{aligned}
$$

in the limit $\varepsilon \rightarrow 0$.
This is equivalent to an ODE BVP:

$$
\begin{equation*}
\left(r \phi_{r}\right)_{r}+\lambda r \phi=0 ; \quad \phi(\varepsilon)=0 ; \quad \phi^{\prime}(1)=0 \tag{1}
\end{equation*}
$$

0.1 Asymptotic solution

Define

$$
\eta=\frac{1}{\ln \frac{1}{\varepsilon}}
$$

Note that

$$
\varepsilon \ll \eta \ll 1
$$

Two-term asymptotic form of the eigenvalue:

$$
\begin{align*}
& \lambda_{\text {asymptotic }} \sim 2 \eta+\frac{3}{2} \eta^{2} \tag{2}\\
& \phi \sim \lambda\left(\frac{1}{2} \ln (r / \varepsilon)-\frac{r^{2}}{4}\right) \tag{3}
\end{align*}
$$

Derivation of asymptotic solution: Assume $\lambda \ll 1$ and

 expand in λ :$$
\phi=1+\lambda \phi_{1}+\ldots
$$

so that

$$
\begin{aligned}
\left(r \phi_{1 r}\right)_{r}+r & =0 ; \\
1+\lambda \phi_{1}(\varepsilon) & =0 ; \\
\phi_{1}^{\prime}(1) & =0 .
\end{aligned}
$$

Then

$$
\phi_{1} \sim-\frac{1}{\lambda}+\frac{1}{2} \ln \left(\frac{r}{\varepsilon}\right)-\frac{r^{2}}{4}
$$

Solvability condition:

$$
\begin{gathered}
\lambda \int_{\varepsilon}^{1} \phi r d r \sim \varepsilon \phi^{\prime}(\varepsilon) \sim+\frac{1}{2} \lambda \\
\int_{\varepsilon}^{1} \phi_{1} r d r \sim-\frac{1}{2 \lambda}+\frac{1}{4} \ln \frac{1}{\varepsilon}-\frac{3}{16} \\
\lambda \sim \frac{2}{\ln \frac{1}{\varepsilon}-\frac{3}{4}}
\end{gathered}
$$

Exact solution given implicitly by:

$$
\begin{aligned}
& \phi=J_{0}(\sqrt{\lambda} r)-\frac{J_{0}^{\prime}(\sqrt{\lambda})}{Y_{0}^{\prime}(\sqrt{\lambda})} Y_{0}(\sqrt{\lambda} r) ; \\
& J_{0}(\sqrt{\lambda} \varepsilon) Y_{0}^{\prime}(\sqrt{\lambda})-J_{0}^{\prime}(\sqrt{\lambda}) Y_{0}(\sqrt{\lambda} \varepsilon)=0 .
\end{aligned}
$$

Numerical solution, standard formulation

- Solve the "augmented system",

$$
\begin{aligned}
& \left(r \phi_{r}\right)_{r}+\lambda r \phi=0 ; \quad \phi(\varepsilon)=0 ; \quad \phi^{\prime}(1)=0 ; \\
& \lambda_{r}=0 ; \quad \phi(1)=1 .
\end{aligned}
$$

Use $\lambda_{i}=0, \phi_{i}=\ln (r / \varepsilon)$ as initial guess; solve stating with $\varepsilon=0.1$ and use continuation.

- Mesh size grows like $O\left(\frac{1}{\varepsilon}\right)$; the eigenvalue is of $O(1 / \ln \varepsilon)$. Reason: the solution has a log singularity near $x \sim \varepsilon$ (looks like $\ln \frac{r}{\varepsilon}$).
- Adaptive mesh doesnt seem to help (at least not using Maple's dsolve)

Numerical solution, transformed formulation

- Change variables

$$
\begin{gather*}
t=\ln r ; \quad \phi(r)=\Phi(t) ; \\
e^{-2 t} \Phi^{\prime \prime}(t)+\lambda \Phi=0 ; \quad \Phi(\ln \varepsilon)=0 ; \quad \Phi^{\prime}(0)=0 \tag{4}
\end{gather*}
$$

- The resulting problem solved with standard code
- Global error tolerance of $10^{-} 6$ is used.

Comparison of meshsize

ε	standard/fixed	standard/adaptive	Transformed
0.05	76	64	
0.01	407	120	19
0.005	880	274	
0.0025	1903	573	
10^{-3}		1623	18
10^{-4}			19
10^{-5}			21
10^{-6}		25	
10^{-7}		29	
10^{-8}		30	
10^{-9}		33	
10^{-10}		36	

- For $\varepsilon=10^{-10}$ we get

$$
\begin{aligned}
\varepsilon & =10^{-10} ; \quad \eta=0.0434294 \\
\lambda_{\text {numeric }} & =0.089757 \\
\lambda_{\text {asymptotic }, 1} & =\mathbf{0 . 0 8 6 8 5 0}=2 \eta \\
\lambda_{\text {asymptotic }, 2} & =\mathbf{0 . 0 8 9 6} 88=2 \eta+\frac{3}{2} \eta^{2}
\end{aligned}
$$

Conclusion: two-term expansion seems to be correct.

Problem 3: Gierer-Meinhardt system in 2D

$$
\begin{aligned}
\varepsilon^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right)-u+u^{2} / v & =0 ; \quad v_{r r}+\frac{1}{r} v_{r}-v+u^{2}=0 ; \quad r \in[0, L] \\
u^{\prime}(0) & =v^{\prime}(0)=u^{\prime}(L)=v^{\prime}(L)
\end{aligned}
$$

$\varepsilon=0.025$; thin lines are one and two-order asymptotic approximation.

Asymptotic solution:

$$
\begin{gathered}
u \sim \xi w\left(\frac{r}{\varepsilon}\right) ; \\
v \sim\left\{\begin{array}{c}
\xi, r \ll \varepsilon \\
\xi \frac{1}{2 \pi}\left[K_{0}(r)-\frac{K_{0}^{\prime}(L)}{I_{0}^{\prime}(L)} I_{0}(r)\right], \quad r \gg \varepsilon
\end{array}\right.
\end{gathered}
$$

where

$$
w_{y y}+\frac{1}{y} w_{y}-w+w^{2}=0 \text { with } w^{\prime}(0)=0, w \rightarrow 0 \text { as } y \rightarrow \infty
$$

and

$$
\begin{gathered}
\xi \sim \xi_{0}+\eta \xi_{1}+\cdots ; \quad \eta=\frac{1}{\ln \frac{1}{\varepsilon}} \\
\xi_{0}=\frac{1}{\int_{0}^{\infty} w^{2}(s) s d s}=0.20266265
\end{gathered}
$$

- To 5 decimal places,

$$
\xi_{1}=\left(0.38330-2 H_{0}\right) \xi_{0}
$$

where

$$
H_{0}=\ln 2-\gamma-\frac{K_{0}^{\prime}(L)}{I_{0}^{\prime}(L)}
$$

- Leading order asymptotics have $O\left(\frac{1}{\ln 1 / \varepsilon}\right)$ error
- If $\varepsilon=0.025$ then $\eta=0.27$, not very small!!
- To verify ξ_{1} numerically, we need to solve this problem for "exponentially small" ε, say $\varepsilon=10^{-3}, 10^{-4}, 10^{-5}$.

Numerical solution using standard formulation

- To handle the singularity at $r=0$, write $u_{r r}+\frac{1}{r} u_{r}=f(u)$; then expand around $r=0$, for small h the BC becomes:

$$
u^{\prime}(h) \sim \frac{1}{2} f(u(h)) h+O\left(h^{2}\right)
$$

- Choose $h=10^{-6} ; L=1$;
- Using continuation and adaptive grid, we can get solution up to $\varepsilon=10^{-3}$ ($\eta=0.14476$) but it requires 1500 meshpoints with $L=1$, global error $=10^{-3}$
- To better verify ξ_{1} numerically, we would like to take $\eta=0.1 \Longrightarrow \varepsilon \sim 4.5 \times 10^{-5}$.

Numerical solution using split domain:

- Choose $h=10^{-2} \varepsilon$, and shift the domain

$$
r=h+(L-h) t, t=[0,1] .
$$

- Choose $l \in[0,1], \varepsilon \ll l \ll 1$.
- On $[0, l]$, transform:

$$
t=l y, \quad u(t)=\hat{u}(y)
$$

- On $[l, 1]$, transform:

$$
t=l+(1-l) y, \quad u(t)=\exp \left(\frac{\tilde{u}(y)}{\varepsilon}\right)
$$

- Using $l=4 \varepsilon \ln \frac{1}{\varepsilon} \ldots$

Comparison of mesh size

ε	$\eta=1 / \ln (1 / \varepsilon)$	Standard	Split domain
0.01	0.217	60	44
0.005	0.189	132	102
10^{-3}	0.145	709	352
5×10^{-4}	0.132	≥ 2000	704
10^{-4}	0.11		≥ 2000

- Here, split domain is only a slight improvement!!!
- Challenge: Can you compute with $\varepsilon=10^{-7}$?

Challenges

- Automate layer detection and domain splitting
- How to choose the optimal l numerically?
- What is the theoretical optimal scaling law for the mesh size, as a function of ε ?
- How to find the optimal transformation numerically?
- Interior spikes?
- Challgenge: Compute Problem 1b with $\varepsilon=10^{-5}$.
- Challgenge: Compute Problem 3 with $\varepsilon=10^{-7}$.

