Ring and smoke-ring patterns in Gierer-Meinhardt system

Theodore Kolokolnikov, Xiaofeng Ren and Juncheng Wei

1 Introduction

The Gierer-Meinhardt model is a reaction-diffusion system:

$$
\varepsilon^{2} \Delta u-u+\frac{u^{p}}{v^{q}}=0 ; \quad \Delta v-v+\frac{u^{r}}{v^{s}}=0
$$

with

$$
\varepsilon \ll 1 .
$$

- Comes from mathematical biology (pattern formation in hydra)
- Very popular with mathematicians because it is non autonomous [no max principle, variational formulation] but still can be studied analytically.
- Simplest solutions are spikes; stability analysis very intricate [Doelman, Iron, Kaper, TK, Kowalczyk, Muratov, Ward, Winter, Wei];
- Many other solutions exist: asymmetric spikes [Doelman, Ward, Wei, Winter]
- Generalizations: heterogenous diffusion coefficients [Ward, Wei, Winter]; multiple activators/inhibitors [Wei, Winter]
- What about non-spiky solutions?

2 Ring solutions

Consider radially symmetric solutions of GM system inside a ball of radius R :

$$
\left\{\begin{array}{c}
\varepsilon^{2}\left(u_{r r}+\frac{N-1}{r} u_{r}\right)-u+\frac{u^{p}}{v^{q}}=0 ; \\
v_{r r}+\frac{N-1}{r} v_{r}-v+\frac{1}{\varepsilon} \frac{u^{r}}{v^{s}}=0 ; \\
v^{\prime}(0)=v^{\prime}(R)=u^{\prime}(0)=u^{\prime}(R)=0
\end{array}\right.
$$

We seek solutions that concentrate on a surface of a sphere of radius r_{0}. In 2-D they look like this:

Theorem 1: Let

$$
\begin{equation*}
M_{R}(r):=\frac{1}{r}(N-1) \frac{p-1}{q}+\frac{J_{1}^{\prime}(r)}{J_{1}(r)}+\frac{J_{2, R}^{\prime}(r)}{J_{2, R}(r)}, \tag{1}
\end{equation*}
$$

where

$$
J_{2, R}(r)=J_{2}(r)-\frac{J_{2}^{\prime}(R)}{J_{1}^{\prime}(R)} J_{1}(r) ;
$$

and J_{1}, J_{2} satisfy

$$
J_{r r}+\frac{N-1}{r} J_{r}-J=0
$$

with

$$
J_{2}^{\prime}(0)=0 ; \quad J_{1}(r) \sim \ln (r) \text { as } r \rightarrow 0 .
$$

Suppose that r_{0} satisfies

$$
M_{R}\left(r_{0}\right)=0
$$

Then there exists a ring-type solution concentrated at the radius $r=r_{0}$, of the form

$$
u(x) \sim C w\left(\frac{|x|-r_{0}}{\varepsilon}\right), \quad \varepsilon \rightarrow 0
$$

where C is some constant and w is the ground state

$$
w_{y y}-w+w^{p}=0 ; \quad w \sim C e^{-|y|}, y \rightarrow \infty
$$

Remark:

$$
J_{1}(r)=r^{\frac{2-N}{2}} I_{\nu}(r), \quad J_{2}(r)=r^{\frac{2-N}{2}} K_{\nu}(r), \nu=\frac{N-2}{2}
$$

where I_{ν}, K_{ν} are modified Bessel functions of order ν. Remark: In the case of $N=3, J_{1}, J_{2}$ can be computed explicitly:

$$
\begin{equation*}
J_{1}=\frac{\sinh r}{r}, J_{2}(r)=\frac{e^{-r}}{4 \pi r} \tag{2}
\end{equation*}
$$

Proof (Standard GM in 2d): In radial variables:

$$
\varepsilon^{2} u_{r r}+\varepsilon^{2} \frac{1}{r} u_{r}-u+\frac{u^{2}}{v}=0 ; \quad v_{r r}+\frac{1}{r} v_{r}-\frac{u^{2}}{\varepsilon}=0
$$

Inner problem:

$$
\begin{aligned}
r & =r_{0}+\varepsilon y \\
u & =U_{0}(y)+\varepsilon U_{1}(y)+\cdots ; \quad v=V_{0}+V_{1}(y)+\cdots
\end{aligned}
$$

Leading order:

$$
\begin{aligned}
0 & =U_{0 y y}-U_{0}+\frac{U_{0}^{2}}{V_{0}} ; \quad V_{0 y y}=0 \\
U_{0}(y) & =\xi w(y) ; \quad w_{y y}-w+w^{2}=0 ; \\
V_{0}(y) & =\xi ; \quad \text { (to be determined later) }
\end{aligned}
$$

$O(\varepsilon)$ terms:

$$
0=U_{1 y y}-U_{1}+2 \frac{U_{0}}{V_{0}} U_{1}-\frac{U_{0}^{2}}{V_{0}^{2}} V_{1}+\frac{1}{r_{0}} U_{0 y} ; \quad V_{1 y y}+U_{0}^{2}=0
$$

$$
\begin{gather*}
V_{1 y}=\underbrace{-\int_{0}^{y} U_{0}^{2}}_{o d d}+A \tag{3}\\
U_{1 y y}-U_{1}+2 w U_{1}=w^{2} V_{1}-\xi \frac{1}{r_{0}} w_{y} \tag{4}
\end{gather*}
$$

Multiply (4) by w_{y} and integrate by parts:

$$
\begin{gathered}
0=\int w_{y} w^{2} V_{1}-\xi \frac{1}{r_{0}} \int w_{y}^{2} \\
\int w_{y} w^{2} V_{1}=-A \int \frac{w^{3}}{3} \\
r_{0}=-\frac{\xi}{A} \frac{\int w_{y}^{2}}{\int \frac{w^{3}}{3}}
\end{gathered}
$$

To determine ξ, A we look at the outer problem:

$$
\begin{aligned}
& v_{r r}+\frac{1}{r} v_{r}-v=-\frac{u^{2}}{\varepsilon} ; \quad \frac{u^{2}}{\varepsilon} \sim C \delta\left(r-r_{0}\right) ; \quad C=\xi^{2}\left(\int w^{2} d y\right)=6 \xi^{2} . \\
& v=6 \xi^{2} G\left(r, r_{0}\right) \text { where } \quad G_{R}\left(r, r_{0}\right)=\frac{1}{J_{1}^{\prime}\left(r_{0}\right) J_{2, R}^{\prime}\left(r_{0}\right)-J_{1}\left(r_{0}\right) J_{2, R}^{\prime}\left(r_{0}\right)} \begin{cases}J_{2, R}\left(r_{0}\right) J_{1}(r), & \text { if } r<r_{0} \\
J_{1}\left(r_{0}\right) J_{2, R}(r), & \text { if } r>r_{0}\end{cases}
\end{aligned}
$$

Matching: In inner variables:

$$
\begin{aligned}
& r=r_{0}+\varepsilon y ; \\
& v=6 \xi^{2} G\left(r_{0}^{+}, r_{0}\right)+\varepsilon y 6 \xi^{2} \begin{cases}G_{r}\left(r_{0}^{+}, r_{0}\right), & \text { if } y>0 \\
G_{r}\left(r_{0}^{+}, r_{0}\right), & \text { if } y<0\end{cases} \\
& \qquad \begin{aligned}
\xi & =6 \xi^{2} G\left(r_{0}, r_{0}\right) \\
-\xi^{2} 3+A & =6 \xi^{2} G_{r}\left(r_{0}^{+}, r_{0}\right) ; \quad \xi^{2} 3+A=6 \xi^{2} G_{r}\left(r_{0}^{-}, r_{0}\right) \\
A & =6 \xi^{2}\left(G_{r}\left(r_{0}^{+}, r_{0}\right)+G_{r}\left(r_{0}^{-}, r_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

Finally,

$$
\frac{1}{r_{0}}+\frac{J_{1}^{\prime}\left(r_{0}\right)}{J_{1}\left(r_{0}\right)}+\frac{J_{2, R}^{\prime}\left(r_{0}\right)}{J_{2, R}\left(r_{0}\right)}=0 .
$$

Theorem 2: Let

$$
a=(N-1) \frac{p-1}{q}
$$

Suppose that $N \geq 3$. There are three cases.
(1.a) If $N-2<a<N-1$ then there exists R_{0} such that if $R>R_{0}$ then $M_{R}(r)=0$ has exactly two solutions $0<r_{1}<r_{2}<R$, and if $R<R_{0}$, then $M_{R}(r)=0$ has no solution. Moreover, for $R>R_{0}$, $M_{R}^{\prime}\left(r_{1}\right)<0, M_{R}^{\prime}\left(r_{2}\right)>0$.
(1.b) If $a \geq N-1$ then $M_{R}(r)=0$ has no solution for any R.
(1.c) If $a \leq N-2$ then $M_{R}(r)=0$ has precisely one solution r_{1} for any R and moreover $M_{R}^{\prime}\left(r_{1}\right)>0$.

Suppose that $N=2$. Then there exists a number $a_{\infty}>1$ whose numerical value is $a_{\infty}=1.06119$ such that one of the following holds:
(2.a) If $a \in\left(0, a_{\infty}\right)$ then the situation is the same as in case (1.a).
(2.b) If $a>a_{\infty}$ then $M_{R}(r)>0$ for any R.
(2.c) If $a=a_{\infty}$ then $M_{R}(r)>0$ any $R<\infty$. When $R=\infty$, there exists a number r_{0} such that $M_{\infty}\left(r_{0}\right)=0=M_{\infty}^{\prime}\left(r_{0}\right)$, and $M_{R}(r)>0$ for any $r \neq r_{0}$.

As the statement indicates, the situation for $N=2$ is very different from $N \geq 3$. The case $N=2$ and $a \in\left(1, a_{\infty}\right)$ has no analogue in higher dimensions and is considerably more difficult.

Sketch of proof $(N \geq 3)$ Here is M_{R} for several R values:

Step 1. M_{R} is positive for small R. For small R, expand

$$
\begin{equation*}
r M_{R}(r) \sim a-\left(\frac{1-r_{0}^{N}}{\frac{1}{N-2}+N \frac{r_{0}^{N-2}}{R^{2}}}\right), \quad r_{0}=\frac{r}{R} \in(0,1) ; \quad R \ll 1 \tag{5}
\end{equation*}
$$

rhs is $a-N+2$ when $r=0$ and increases from there (hence never crosses 0)
Step 2. Since $J_{2, R}^{\prime}(R)=0$, it follows that $M_{R}(R)=\frac{a}{R}+\frac{J_{1}^{\prime}(R)}{J_{1}(R)}$. But J_{1} is a strictly increasing and positive function so that $M_{R}(R)$ is always strictly positive.

Step 3. $M_{R}(r)$ has a double root iff

$$
\begin{equation*}
r\left(J_{1}(r) J_{2, R}(r)\right)^{\prime}=-a J_{1}(r) J_{2, R}(r) ; \quad \frac{J_{2, R}^{\prime}(r)}{J_{2, R}(r)}=-\frac{a}{r}-\frac{J_{1}^{\prime}(r)}{J_{1}(r)} \tag{6}
\end{equation*}
$$

Eliminate R to get:

$$
\begin{equation*}
g(r):=\left(a^{2}-a(N-2)-2 r^{2}\right) J_{1}^{2}(r)+2 r a J_{1}(r) J_{1}^{\prime}(r)+2 r^{2} J_{1}^{\prime 2}(r)=0 . \tag{7}
\end{equation*}
$$

$g(r)$ satisfies

$$
\begin{equation*}
r g^{\prime}+r^{2} C g=J_{1}^{2}(r)\left(B-A r^{2}\right) \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
A=4(N-1-a), \quad B=(2 N-a-4)(a+2-N) a, \quad C=2 N-4-a \tag{9}
\end{equation*}
$$

Moreover

$$
g(0)=a(a-N+2)>0 ; \quad g(\infty) \rightarrow-\infty
$$

so g has at least one root. Let r_{1} be the first root of g. then $g^{\prime}\left(r_{1}\right)<0$ so rhs $(8)<0$. But rhs changes sign only once (and is negative for $r>r_{1}$); so g cannot have any more roots.
Step 4. For sufficiently large R, M_{R} has a single root (due to large-argument expansion of $M_{\infty}(r)$).

The situation is more complicated for $N=2$. Difficult theorem:

- $M_{\infty}(r)$ has exactly 1 root if $0<a<1$
- $M_{\infty}(r)$ has exactly 2 roots if $1<a<a_{c}=1.06$
- $M_{\infty}(r)$ has no roots if $a>a_{c}$.

$$
a=0.8,1,1.03, a_{c}, 1.1
$$

When $1 \ll R \ll \infty$, there is a sharp transition of r_{0} as a crosses 1 .

3 Smoke-ring solutions

Consider GM in all of \mathbb{R}^{3}; we seek solutions that concentrate on a ring. By taking a cross-section in cylindrical coordinates, this becomes a 2-D problem in (r, z) space:

Define the logarithmic scale:

$$
\eta=\frac{-1}{\ln \varepsilon}
$$

Note that we have the relationship

$$
\begin{equation*}
0 \ll \varepsilon \ll \eta \ll 1 \tag{10}
\end{equation*}
$$

After proper scaling, the standard GM system is:

$$
\begin{equation*}
0=\varepsilon^{2}\left(\Delta_{(r, z)} u+\frac{1}{r} u_{r}\right)-u+\frac{u^{2}}{v} ; \quad 0=\left(\Delta_{(r, z)} v+\frac{1}{r} v_{r}\right)-v+\frac{\eta}{\varepsilon^{2}} u^{2} \tag{11}
\end{equation*}
$$

Outer problem: u is a spike at $x_{0}=\left(r_{0}, z_{0}\right)$ so we estimate

$$
\frac{\eta}{\varepsilon^{2}} u^{2} \sim C \delta\left(x-z_{0}\right), \text { where } C=\int \frac{\eta}{\varepsilon^{2}} u^{2} d x
$$

So

$$
u=C G\left(x, x_{0}\right)
$$

where G is the Green's function which satisfies:

$$
\Delta G+\frac{1}{r} G_{r}-G=-\delta\left(x, x_{0}\right)
$$

Descent from 3D: G is a convolution of the 3D Green's function along a ring of radius r_{0} :

$$
G\left(x, x_{0}\right)=\int_{R^{3}} \frac{e^{-\left|x-x^{\prime}\right|}}{4 \pi\left|x-x^{\prime}\right|} R\left(x^{\prime}\right) d x^{\prime}
$$

where $R\left(x^{\prime}\right)$ is the ring of 2d delta functions:

$$
\begin{equation*}
G\left(r, z, r_{0}, z_{0}\right)=\frac{r_{0}}{4 \pi} \int_{0}^{2 \pi} \frac{\exp \left[-\left(r^{2}+r_{0}^{2}-2 r r_{0} \cos \omega+\left(z-z_{0}\right)^{2}\right)^{1 / 2}\right]}{4 \pi\left(r^{2}+r_{0}^{2}-2 r r_{0} \cos \omega+\left(z-z_{0}\right)^{2}\right)^{1 / 2}} d \omega \tag{12}
\end{equation*}
$$

After change of variables we have:

$$
\begin{aligned}
& G=\frac{r_{0} e^{-\beta}}{\pi(\alpha-\beta)} \int_{0}^{1} \frac{\exp [-(\alpha-\beta) \tau] d \tau}{\sqrt{\tau(\delta+\tau)(1+\delta+\tau)(1-\tau)}}, \text { where } \\
& \beta=\left[\left(r-r_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{1 / 2} ; \quad \alpha=\left[\left(r+r_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{1 / 2} ; \delta=\frac{2 \beta}{\alpha-\beta} \ll 1 ;
\end{aligned}
$$

After 7 pages of complicated computations we get the following expansion.

$$
G\left(x_{0}+\varepsilon y, x_{0}\right)=\frac{1}{2 \pi \eta}\left[1-\eta \ln R+\eta F_{0}+\frac{\varepsilon \rho}{2 r_{0}}\left(-1+\eta \ln R+\eta F_{1}\left(r_{0}\right)\right)+O\left(\varepsilon^{2}\right)\right]
$$

where

$$
\begin{align*}
y & =\frac{x-x_{0}}{\varepsilon}=(\rho, Z) ; \quad R=|y|=\sqrt{\rho^{2}+Z^{2}} ; \quad \eta=\frac{1}{\ln (1 / \varepsilon)} ; \tag{13}\\
F_{0}\left(r_{0}\right) & =g_{1}\left(2 r_{0}\right)+\ln 4 r_{0} \quad \text { where } g_{1}\left(2 r_{0}\right)=\int\left(\frac{\exp \left(-2 r_{0} \tau\right)}{\tau \sqrt{1-\tau^{2}}}-\frac{1}{\tau}\right) d t \tag{14}\\
F_{1}\left(r_{0}\right) & =2 r_{0} g_{1}^{\prime}\left(2 r_{0}\right)-g_{1}\left(2 r_{0}\right)-\ln 4 r_{0}+1 \tag{15}
\end{align*}
$$

The outer solution in the inner variables becomes:

$$
v \sim \xi\left[1-\eta \ln R+\eta F_{0}+\frac{\varepsilon \rho}{2 r_{0}}\left(-1+\eta \ln R+\eta F_{1}\left(r_{0}\right)\right)\right], \quad|y| \rightarrow \infty
$$

where ξ is given by

$$
2 \pi \xi=\int \frac{u^{2}}{\varepsilon^{2}} d x
$$

The smoke-ring radius r_{0} will be determined by $O(\varepsilon \eta)!!$ This requires an expanding

$$
\xi=\xi_{00}+\eta \xi_{01}+O(\varepsilon)
$$

Inner problem, $y=\frac{x-x_{0}}{\varepsilon}$:
Expand in ε while treating η as a constant:

$$
\begin{aligned}
u(x, t) & =U=U_{0}(|y|)+\varepsilon U_{1}(y)+\cdots \\
V(x, t) & =V=V_{0}(|y|)+\varepsilon V_{1}(y)+\cdots \\
\xi & =\xi_{0}+\varepsilon \xi_{1}+\cdots
\end{aligned}
$$

The leading order equations are

$$
\begin{gathered}
0=\Delta U_{0}-U_{0}+\frac{U_{0}^{2}}{V_{0}} \\
0=\Delta V_{0}+\eta U_{0}^{2} \\
2 \pi \xi_{0}=\int U_{0}^{2} d x .
\end{gathered}
$$

Next we expand in η :

$$
\begin{aligned}
U_{0} & =U_{01}+\eta U_{11} ; \quad V_{0}=V_{01}+\eta V_{11} \\
\xi_{0} & =\xi_{01}+\eta \xi_{01}
\end{aligned}
$$

We get

$$
\xi_{00}=\frac{1}{\int_{0}^{\infty} w^{2}(s) s d s}=0.20266 \quad \text { where } \Delta w-w+w^{2}=0
$$

After 2 pages of computation,

$$
\xi_{01}=\xi_{00}\left(\alpha-2 F_{0}\right) ; \quad \alpha=0.3833
$$

This gives us a correction to $O(\varepsilon \eta)$ term:

$$
\begin{aligned}
v & \sim\left(\xi_{00}+\eta \xi_{01}\right)\left(1-\eta \ln R+\eta F_{0}+\frac{\varepsilon \rho}{2 r_{0}}\left(-1+\eta \ln R+\eta F_{1}\right)\right) \\
& =\xi_{00}\left(1-\eta \ln R-\eta\left(F_{0}+\alpha\right)+\frac{\varepsilon \rho}{2 r_{0}}\left(-1+\eta \ln R+\eta\left(F_{1}+2 F_{0}-\alpha\right)\right)\right)
\end{aligned}
$$

Next we must study the $O(\varepsilon+\varepsilon \eta)$ terms... After 4 more pages of solvability computations involving adjoint operator... we finally get the equation for r_{0} :

$$
F_{1}\left(r_{0}\right)+2 F_{0}\left(r_{0}\right)-\alpha+\beta=0, \quad \text { where } \alpha=0.3833, \quad \beta=0.087
$$

