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Introduction

We consider a simple model of particle interaction in 2D

dxj

dt
=

1

N

∑

k=1...N
k 6=j

F (|xk − xj|)
xk − xj

|xk − xj|
, j = 1 . . . N (1)

• Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

• Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

• Mathematically F (r) is positive for small r, but negative for large r.
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• Commonly, a Morse interaction force is used:

F (r) = exp(−r) − F exp(−r/L); F < 1, L > 1 (2)
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Boundedness, h-stability
• For a fixed N, any initial configuration converges to a bounded steady state [GP 2004]

• In the limit N → ∞, two possibilities exist: either the particle cloud size grows with
N [h-stable case] or its is bounded independent of N [catastrophic regime]. [Ruelle,
1969]

- H-stable regime: the steady state resembles a hexagonal lattice [Topaz et al,

2006], its diameter is of O
(√

N
)

- Catastrophic regime: doubling N doubles the density but size and shape is
independent of N → ∞.

• Here, we want to take N → ∞, so we are interested in a catastrophic case.

• For Morse interaction force F (r) = exp(−r) − F exp(−r/L) :

- In 1D, catastrophic regime if FL2 > 1, else h-stable.

- In 2D, catastrophic regime if FL3 > 1, else h-stable.
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Example of h-stable vs. catastrophic

4



Tanh-type force: F (r) = tanh ((1 − r) a) + b
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Ring-type steady state

• Seek steady state of the form xj = r (cos (2πj/N) , sin (2πj/N)) , j = 1 . . . N.

• In the limit N → ∞ the radius of the ring must be the root of

I(r) :=

∫ π

2

0

F (2r sin θ) sin θdθ = 0. (3)

• For Morse force F (r) = exp(−r)−F exp(−r/L), such root exists whenever FL2 >
1 [coincides with 1D catastrophic regime]

• For general repulsive-attractive force F (r), a ring steady state exists if F (r) ≤ C < 0
for all large r.

• Even if the ring steady-state exists, the time-dependent problem can be ill-posed!

6



Continuum limit for curve solutions
• If particles concentrate on a curve, in the limit N → ∞ we obtain

ρt = ρ
< zα, zαt >

|zα|2
; zt = K ∗ ρ (4)

where z (α; t) is a parametrization of the solution curve; ρ (α; t) is its density and

K ∗ ρ =

∫

F (|z(α′) − z(α)|) z(α′) − z(α)

|z(α′) − z(α)|ρ(α′, t)dS(α′). (5)

• Depending on F (r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

• We used a Lagrange particle-based numerical method to resolve (4).

- Agrees with direct simulation of the ODE system (1):
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Local stability of a ring
• Linearize: z(α, t) = r exp(iα) + exp (λt) φ(α), φ � 1.

• Ring is stable of Re (λ) ≤ 0 for all pair (λ, φ). There are three zero eigenvalues
corresponding to rotation and translation invariance; all other eigenvalues come in
pairs due to rotational invariance.

• λ is the eigenvalue of

M(m) :=

[

I1(m) I2(m)
I2(m) I1(−m)

]

; m = 2, 3, . . . (6)

I1(m) =
2

π

∫ π

2

0

[

F (2r sin θ)

2r sin θ
+ F ′(2r sin θ)

]

sin2 ((m + 1)θ) dθ; (7a)

I2(m) =
2

π

∫ π

2

0

[

F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

]

[

sin2 (mθ) − sin2(θ)
]

dθ. (7b)

• Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
the circle.

m=3, N=50, lambda=0.05 m=25, N=50, lambda=–1.17
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Quadratic force F (r) = r − r2

• Computing explicitly,

tr M (m) = −
(

4m4 − m2 − 9
)

(4m2 − 1)(4m2 − 9)
< 0, m = 2, 3, . . .

det M(m) =
3m2(2m2 + 1)

(4m2 − 9)(4m2 − 1)2
> 0, m = 2, 3, . . .

• Conclusion: ring pattern corresponding to F (r) = r − r2 is locally stable

• For large m, the two eigenvalues are λ ∼ −1

4
and λ ∼ − 3

8m2 → 0 as m → ∞. The
presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.
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General power force

F (r) = rp − rq, 0 < p < q

• The mode m = ∞ is stable if and only if pq > 1 and p < 1.

• Stability of other modes can be expressed in terms of Gamma functions.

• The dominant unstable mode corresponds to m = 3; the boundary is given by

0 = 723 − 594(p + q) − 27(p2 + q2) − 431pq + 106
(

pq2 + p2q
)

+ 19
(

p3q + pq3
)

+ 10
(

p3q2 + p2q3
)

+ 6
(

p3 + q3
)

+ p3q3;

• Boundaries for m = 4, 5, . . . are similarly expressed in terms of higher order
polynomials in p, q.
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(In)stability of m � 1 modes

• If λ(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed .

• For ill-posed problems, the ring can degenerate into either an annulus (eg. F (x) =
0.5 + x − x2) or discrete set of points (eg F (x) = x1.3 − x2)

• , if F (r) is C4 on [0, 2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F (0) = 0, F ′′(0) < 0 and (8)
∫ π/2

0

(

F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

)

dθ < 0. (9)

• Ring solution for the morse force F (r) = exp(−r) − F exp(−r/L) is always ill-
posed.

11



Under construction...

• “Sphere patterns” in 3D and their stability

• What about global stability of rings?

• Forces with sharp transition can produce exotic patterns; examples:

- Flower: F (x) = max(min(1.6,(1-x)*4),-0.1)

- Exotic fish: F (x) = max(min(1.6,(1-x)*6),-0.3)

- Fuzzball: F (x) = max(min(1.6,(1-x)*10),-0.05)
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