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Introduction

• Climate change – both anthropogenic and natural – poses multiple pressures on earth
ecosystems.

• While the earth’s climate has undergone many drastic changes in its history, the rate
at which the current human-induced changes are occurring is unmatched in recent
history going back at least 60 million years.

- The rate of C02 increase is more than 200 times the fastest historical rates of at
least the last 800,000 years, as measured by ice cores

- Ocean acidification is another indicator with unparallelled changed in earth’s
known history.

• Large swings in earth’s climate are not unprecedented, and life has been able to
adapt to such swings more or less successfully in the past. The question is whether a
species is resilient enough not just to the changes in environment, but to the speed
with which these changes occur.

• The speed of climate change is especially important for an ecosystem that is already
under stress, such as vegetation in arid and semi-arid environments, where a relatively
small change in precipitation can have a very large impact.
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Vegetation patterns

• Vegetation adapts to arid environments by growing in patches, where it can conserve
water

• Many mathematical models have been proposed, one of the best-known is Klausmeier
Model (1999)
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Klausmeier model

A reaction-diffusion PDE:

• w(x, t) : water concentration

• n(x, t) : plant density
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Classical “tipping point” theory: ODE
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= δ
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− n + wn2 , b
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Effect of diffusion
• Simplify: take b = 0, c = 0, δ = 0.05 :

dn

dt
= δ

d2n

dx2
− n + wn2 , 0 =

d2w

dx2
+ a− w − wn2

• Turing bifurcation at a = ap = 2.5; fold-point (tipping-point) bifurcation at a = ac = 2.

• Transition from full vegetation state to patterned vegetation as the precipitation a is
decreased

• The patterned state survives for precipitation values a below the tipping point!
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What happens as a is decreased slowly?

• a = a0 + (a1 − a0) (1− cos (εt)) /2+small noise

• Extinction when ε = 0.03 (“fast precipitation change”);

• Resilience when ε = 0.006 (“slow precipitation change”)

• Depends on the level of noise too!

• Question: how do we quantify this?
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Analysis

dn

dt
= δ

d2n

dx2
− n + wn2 , 0 =

d2w

dx2
+ a− w − wn2

a = a0 − εt + σ0
dW

dt
; ε� 1, σ0 � 1; (1)

dW =
√
dt

∞∑
m=−∞

ξm (t) exp (imx) ; ξm ≡ gaussian random variable (2)

Linearize around the “full vegetation state” n+ = a/2 +
√
a2/4− 1, w+ = 1/n+ :

n(x, t) = n+(εt) + φ(x, t) , w(x, t) = w+(εt) + ψ(x, t) ,

so that

dφ

dt
+ εn′+(εt) = δ

d2φ

dx2
+ φ + n2+ψ , (3)

0 =

[
d2ψ

dx2
+
(
−1− n2+

)
ψ − 2φ

]
dt + σ0dW . (4)
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Decompose in fourier modes:

φ(x, t) =
∑

φm(t) e
imx , ψ(x, t) =

∑
ψm(t) e

imx ,

dφ

dt
= −m2δφ + φ + n2+ψ, (5)

0 =
[
−m2ψ +

(
−1− n2+

)
ψ − 2φ

]
dt + σ0

√
dtξ. (6)

Eliminate ψ :
dφ = α (εt)φdt + β (εt)

√
dtξ , (7)

where ξ is a Gaussian random variable with mean zero and variance 1 and where

α (s) = −m2δ + 1−
2n2+ (s)

m2 + 1 + n2+ (s)
, β (s) =

σ0n
2
+ (s)

m2 + 1 + n2+ (s)
, s = εt (8)

Equation (7) is a variant of an Ornstein–Uhlenbeck process, with coefficients that are
slowly changing in time.
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Example: dφ = α (εt)φdt + β(εt)
√
dtξ , φ(0) = 0.

• Take: α(s) = −1 + s, ε = 0.02, β = 10−5.
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• The zero state becomes “unstable” at sp = 1, α = 0. However the bifurcation is
“delayed” and φ “blows up” at a much later time, around α = αd = 0.65 here.

• Numerically, we define the “delayed time” to be when |φ| crosses 1.

• There are 20 realizations realizations plotted, the delayed time appears to be roughly
the same! So we can define the “delayed time” in a consistent way.
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• Below, we will show that

αd =

√
−2ε ln

{
β
(π
ε

)1/4}
If ε = 0.02 and β = 10−5 then αd ≈ 0.64, excellent agreement with the simulations!
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Analysis of dφ = α (εt)φdt + β(εt)
√
dtξ , φ(0) = 0.

The density satisfies the Fokker-Planck PDE given by

ε
∂

∂s
u + α(s)

∂

∂φ
(φu) =

β2(s)

2

∂2u

∂φ2
, u(φ, 0) = δ(φ). (9)

The exact solution is

u(φ, s) =
1√
2πσ

exp

(
− x2

2σ2

)
;

σ2(s ;m) =

∫ s

0

β2(τ ) exp

(
−2
ε

∫ s

τ

α(ρ)dρ

)
dτ. (10)

Let sp be the such that that α(sp) = 0, and we assume that α′(sp) > 0. That is, sp is the
point at which the mode m becomes unstable. Then for s > sp, Laplace’s method yields

σ(s;m) ∼ exp

(
1

ε

∫ s

sp

α(τ )dτ

)
β(sp)

(
π

εα′(sp)

)1/4

, (11)

We define the “take-off” time sd = sd(m) for the mode m to be such that σ(sd;m) = 1.
Alternatively, sd is such that σ � 1 when s < sd and σ � 1 when s > sd. For a fixed
mode m, the value of sd is therefore found by solving simultaneously
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α(sp) = 0; (12)∫ sd

sp

α(s)ds + ε log

(
β(sp)

(
π

εα′(sp)

)1/4
)

= 0 . (13)

This yields the time sd at which the solution density spread σ for a given mode m starts to
grow exponentially fast.

• Similar results – for SDE’s – were derived using a related approaches in [Kuske, 1999]
and [Berglund & Gentz, 2002].
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Back to Klausmeier model:

• The first mode that gets activated yields the delayed take-off value for

ad ≡ a(min
m
sd(m);m), (14)

Note that, depending on the parameters, a solution for sd may not exist, in which case
the corresponding mode m is never activated. If sd does not exist for any mode, the
patterned state is never activated resulting in extinction.
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Conclusions

• We have used a simple mathematical model to illustrate how patterned states can
provide a refuge and prevent extinction under stressed conditions, even as the
precipitation falls below the tipping point of a homogeneous state.

• Under slow climate change, the patterned state can recover to the full vegetation state
when precipitation is dialed back to favorable conditions.

• If precipitation decreases too quickly past the tipping point, the system may have no
time to transition to the patterned state before the tipping point is reached, resulting in
an irreversible extinction.

• This simple mechanism underscores the key role that spatial heterogeneity and noise
have on the resilience of the system. It also illustrates the importance of not only the
absolute level of climate change, but also the speed with which it occurs.

• Reference:

- Yuxin Chen, Theodore Kolokolnikov, Justin Tzou and Chunyi Gai, Patterned
vegetation, tipping points, and the rate of climate change”, to appear, European
Journal of Applied Math.
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