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Highlights of past work

#® 1952, Turing; 1968-2006, Prigogine, Lefever,
Brusselator, weakly nonlinear Turing analysis

DALHOUSIE
IIIIIIIIII

Coarsening and self-replication — p. 2/:



Highlights of past work

# 1952, Turing; 1968-2006, Prigogine, Lefever,
Brusselator, weakly nonlinear Turing analysis

#® 1994, Pearson: self-replication in Gray-Scott model.
Also observed a zoo of different patterns: spots, stripes,
hexagonal patterns, oscillatory instabilities,
spatio-temporal chaos...

DALHOUSIE
IIIIIIIIII ) L
Coarsening and self-replication — p. 2/:



Highlights of past work

# 1952, Turing; 1968-2006, Prigogine, Lefever,
Brusselator, weakly nonlinear Turing analysis

#® 1994, Pearson: self-replication in Gray-Scott model.
Also observed a zoo of different patterns: spots, stripes,
hexagonal patterns, oscillatory instabilities,
spatio-temporal chaos...

#® 1994, Lee, McCormick, Pearson and Swinney:
experimental verification

DALHOUSIE

IIIIIIIIII ) L )
Coarsening and self-replication — p. 2/:



Highlights of past work

# 1952, Turing; 1968-2006, Prigogine, Lefever,
Brusselator, weakly nonlinear Turing analysis

#® 1994, Pearson: self-replication in Gray-Scott model.
Also observed a zoo of different patterns: spots, stripes,
hexagonal patterns, oscillatory instabilities,
spatio-temporal chaos...

#® 1994, Lee, McCormick, Pearson and Swinney:
experimental verification

#® 1994-2006: Self-replication observed experimentally
and numerically in other chemical/biological systems:
® Ferrocyanide-iodide-sulfite reaction (Lee, Swinney)

Belousov-Zhabotinsky reaction (Mufiuzuri, Pérez-Villar Markus)

o
® Bonhoffer-van der Pol system (Hayase, Ohta)
o

Gierer-Meinhardt model (Meinhardt)
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Some examples of patterns in 2-D
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Reference: B. Peia and C. Pérez-Garcia, Stability of Turing

patterns in the Brusselator model, Phys. Rev. E. Vol. 64(5),
2001.
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Dynamic patterns: coarsening

In 1-D:
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Dynamic patterns: coarsening

In 2-D:
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Dynamic patterns: self-replication

In 1-D:
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Dynamic patterns: self-replication

In 2-D:
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Media File (video/avi)


Dynamic patterns: Breather
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Part 1. Coarsening and
osclllatory behaviour

______________
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The Brusselator model

Rate equations:

A—- X, B+X—>Y+0O, 2X+Y —»3X, X — E.
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The Brusselator model

Rate equations:

slow slow

AY X, B+X Y +0, 2X+Y —3X, X%'FE
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The Brusselator model

Rate equations:

slow slow

A X, B+ X —>Y+C, 2X+Y —3X, X2 E.

After rescaling, we get a PDE system:

ut:€2um—u+oz+u2?)

TV = 52vm +(1—=0)u— w2,
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The Brusselator model

Rate equations:

slow slow

A X, B+ X —>Y+C, 2X+Y —3X, X2 E.

After rescaling, we get a PDE system:

ut:€2um—u+oz+u2fv

TU; = E°Vpy + (1—0)u— w2,
In terms of total mass w = u + v, steady state becomes

0=c*u" —u+a+u’(w—u

0=c*w" 4+ a— fu.
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Slow-fast structure

Introduce

5 e?
60 R D o
v v

and assuming « small, the steady state problem becomes

0=ce*u —u+u*(w—u)
0=Duw" +1—- Byu.
w'(0) = w' (L) = u'(0) = u'(L) =0

and we assume
e 1, <D, By=0(1).

Then w I1s slow and w Is fast.
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Construction of a half-mesa, D > 1

0 =c’u —u+u?(w—u)
0=Duw" +1— Byu.
w'(0) =0=w'(L), v (0)=0=1(L)
Expand in &, then to leading order w(z) ~ wo; and

g2 ~ flu,wy) = u — u?(wy — u)

Moreover, foLu = % = O(1). So f(u,wp) must satisfy the

maxwell line condition, fO“* f(u)du = 0 where f(u*) = 0.

— u*:\/§; w():i.

V2
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Construction of a half-mesa, D > 1

*
() ~ 2 u(z) ~ ut =142, 0<x <
V2’ 0, xr > X
1.2
0.8
0.4
0 o2 o4 %006 08 1

U~ % (1 ~ tanh (w ;fo)) . z€(0,L)

. L
To determine zo: [, u ~ u*zg = % — |1 ~

L
V280
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Construction of multiple mesas

#® Replace L by 2L and use reflection:

1.2
0.8
} 0.4%
1 05 0 o5 1
x0

# Replace L by KL and use translation, reflection,

1.2 i | | |
0.8
0.4
D e (A S —
0 2 3 4
DALHOUSIE

IIIIIIIIII

Coarsening and self-replication — p. 14/:



Stability of K mesas, K2 < D < O (2exp (=))

Theorem 1. Consider a K mesa equilibrium state on [0, 1] with
K2 <D< O (e?exp (<5)). There are 2K small eigenvalues of order

D
smallest 2K eigenvalues are given by

@) (ﬁ> . all other eigenvalues are negative and have order < O (52) . The

2 1$\/1—2K2dl 1 — cos (%)}
Aitf ~ — =1... K —1;
= T DBy - 7) > J /
g2 £?
A~ — Kl, Ay~-— [
DBo(1— 1) i DBo(1— 1)

Here, [ = 60%; d = & — [. All eigenvalues are negative when 7 > 1, and

positive when 7 < 1. The transition from stability to instability occurs via a
Hopf bifurcation as 7 is decreased past ;, where to leading order, 7, ~ 1.
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Instability for exponentially large D

Theorem 2. Let

Dy ~ (\/560_ 1) 5Zexp ( ! ) :

12+/23 cK (/203

Then K-mesa solution is unstable provided that D > Dy.
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Instability for exponentially large D

Theorem 2. Let

(\/550 — 1)2 2 1
D ~ X .
" 1226 i eK 26(3)

Then K-mesa solution is unstable provided that D > Dy.

#® More precise, implicit formula is available.
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Instability for exponentially large D

Theorem 2. Let

(\/550 — 1)2 2 1
D ~ X .
" 1226 i eK 26(3)

Then K-mesa solution is unstable provided that D > Dy.

#® More precise, implicit formula is available.

#® This threshold is responsible for the coarsening
process.
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Example of Theorem 2

logg(t+1)

Bo =28, =0.01,D = 10;

DALHOUSIE
UNIVERSITY
Coarsening and self-replication — p. 17/:



Example of Theorem 2

logg(t+1)

® From Theorem 2,

D; =5 x 10°,
Dy = 15.7,
Dy = 0.23.

0 0.1 0.2 0.3 0.4 05 08 0.7 08 0.9 1
X

Bo =28, =0.01,D = 10;
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Example of Theorem 2

logg(t+1)

® From Theorem 2,

D; =5 x 10°,
Dy = 15.7,
Dy = 0.23.

—

® D3<D<Dy — K=2Is
stable but K = 3 unstable.

— -

0 0.1 0.2 0.3 0.4 05 08 0.7 08 0.9 1
X

Bo =28, =0.01,D = 10;
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Example of Theorem 2

logg(t+1)

® From Theorem 2,

D; =5 x 10°,
Dy = 15.7,
Dy = 0.23.

® D3<D<Dy — K=2Is
stable but K = 3 unstable.

® No more coarsening will be ob-
served.

0 0.1 0.2 0.3 0.4 05 08 0.7 08 0.9 1
X

Bo =28, =0.01,D = 10;
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Scaling laws

# The characterisitic width of the interface is O(e).
#® The threshold at which coarsening occurs is of order

D C
=~ 0(ew(52))
# For this D, the exponentially small tails of « are of the
same order as w. This causes instability.
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Coarsening and Asymmetric patterns

Consider a single symmetric mesa solution on domain
0, L]. Second order computation yields,

w (L) ~ %+(1—\/§50)58L2+3\/§ (eXp (%21) P (_TM))
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Asymmetric patterns: example

9.04 -
9.035 |
9.03
9,025 -
9.02°
9.015 -
9.01°
9.005 -

w(L)

04 05 06 0.7L 08 09 1
® By glueing, two-mesa asymmetric solution is constructed on interval
of length 1.4 = 0.6 + 0.8 (red line).

® Forinterval length 1.1, only symmetric solution is possible (green line,
1.1=0.55+0.55).

®» Asymmetric branch bifurcates from symmetricat L ~ 1.4 =2 x 0.7.
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"Proof" of Theorem 2

9.04 -
9.035 |
9.03
9,025 -
9.02°
9.015 -
9.01°
9.005 -

w(L)

04 05 06 0.7L 08 09 1
® Let L* be minimum of the curve L — w(L) (here L* = 0.7).

» At that point an asymmetric solution bifurcates from the symmetric
branch.

® This point coincides with the instability threshold for K mesas after
setting L = KL™.
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Comparison with Turing instability

# From Theorem 2, coarsening occurs whenever

1 1
K>K"=0|- D> 1.
> <6ln(€%)>, >
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Comparison with Turing instability

# From Theorem 2, coarsening occurs whenever

I 1
K>K"=0| - D> 1.
> (511’1(6%))7 >

# From Turing analysis, the homogenous steady state
develops instabilities of the mode

ol
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Comparison with Turing instability

#® From Theorem 2, coarsening occurs whenever

I 1
K>K"=0| - D> 1.
> (6111(6%)), >

# From Turing analysis, the homogenous steady state
develops instabilities of the mode

ol

#® k™ > K™ by a logarithmically large amount. Therefore
initial Turing instability is always followed by the
coarsening process.
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Comparison with Turing instability

#® From Theorem 2, coarsening occurs whenever

I 1
K>K"=0| - D> 1.
> (6111(6%)), >

# From Turing analysis, the homogenous steady state
develops instabilities of the mode

ol

#® k™ > K™ by a logarithmically large amount. Therefore
initial Turing instability is always followed by the
coarsening process.

# Numerical simulations suggest that this is also true In
2-D. click here
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Breather-type instability

Theorem 3. Suppose that D < 2 exp (<) . Then all small eigenvalues
undergo a Hopf bifrcation as 7 is increased past 1. If in addition

1
- D
€

then the first mode to undergo a Hopf bifurcation is the mode A, . This
occurs at 7 is increased past

Th+:1—f—g(ld—§(d3+l3))

The corresponding eigenvalue has value

A\ Z,\/8Kﬁo€3
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Breather-type instability: example
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Theorem 3 gives A\, ~ 0.0168 so that one period is

P = i—j ~ 373.5. This agrees with an estimate P ~ 400 from

the figure.
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Part 2: Self-replication, D = O(1).

_____________
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Steady state, Outer region

0 =c%Upy —u+u?(w—1u); 0= Duwg+1— Fou

Neglect £%u,,. Then

1
wwa—l—u:g(u),

Dwgy = 509_1(10) — 1
So u Is slave to w in the outer region.
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Steady state, Inner region

0 =c%Upy —u+u?(w—1u); 0= Duwg+1— Fou

Rescale
T — X
Yy = ;
E

then w,, ~ 0 so that to leading order,

w(y) ~ wo; Uy = f(u) =u— u?(wy — u).

Impose the Maxwell line condition (the areas between roots
of f are equal); obtain

w(xg) ~ \/7§; u(zo) ~ V2.
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Steady state, matching

0 =c%Upy —u+u?(w—1u); 0= Duwg+1— Fou

Solve
Dwgy = 509_1(10) -1, ze (O,ZC())

where g(u) = + + u subject to

W) =0, wle) =g(vD) =S [ T

—L — X0 O i L
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Dissapearence of steady state

® There exists D. = O(1) such that no outer solution exists for D < D...

® When D = D., w(0) corresponds to @ minimum of w = g(u) = < + «,
w(0) ~2; u(0)~1 when D= D,.

® A boundary layer forms near x = 0 when D ~ D...

1.4
1.2

13
0.8-
0.6
0.4

y J . . k
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The core problem

# The solution within the boundary is described by a core
problem,

U'(y) =U*—A—vy* U'(0)=0, U —1as y— oco. (1)
#® The proof of self-replication is reduced to the study of
this core problem

# We rigorously show the existence of fold-point bifurcaiton
for (1). This provides a connection between single and
double mesa pattern, leading to pulse splitting.
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Universality of the Core Problem

® Mesa-type patterns are common in many systems.

# Some other models that exhibit mesa self-replication are:
s Lengyel & Epstein model:

9 duv _ D ’ U
ut—euxx—u+a—1+u2, TVt = DUgpy+ u—1+u2

o Gilerer-Meinhardt model with saturation:

2 a’

af = € Qggy — QT h(1‘|‘/<3a2); Tht:thx_h+a2

# Both of these systems have self-replication thresholds
# The same core problem appears at that threshold.

DALHOUSIE
IIIIIIIIII ) L
Coarsening and self-replication — p. 31/:



Universality of the Core Problem

Epstein model:

)
///////,’rjr’”

///

. “/////J'//;;/////I /%%Zl
6] mé// ////// // f 100
4 ‘ ' " /

0.2 500
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Comparison to other bistable systems

# Brusselator: Has an asymptotic “mass conservation” law.
Coarsening process terminates when K = K* > 1.
Algebraically slow dynamics?

# Cahn-Hilliard: Has a variational structure, exact mass
conservation. Coarsening proceeds until only one
Interface iIs left. Exponentially slow dynamics.

# FitzHugh-Nagumo: No coarsening, no mass
conservation [Goldstein, Muraki, Petrich, 96]
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Open guestion 1

Study the limit where a mesa becomes a spike (5y — 0)

o Self-replication may still occur but the core problem is
more complicated.

# Coarsening regime dissapears?

# Osclillatory behaviour changes. Thresholds?

4
x10

5000 45
4500 4
4000
3500
3000
2500
2000
1500
1000

500 05

0
0 01 02 03 04 05 06 0.7 0.8 09 1 0 0.2 0.4 0.6 08 1 12 14 16 18 2
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Open guestion 2

Describe the slow dynamics of the mesas. There are two
types:
# slow mass exchange (¢ ~ 0 — 2000)

# slow motion (¢t > 2200)

10000
6000

2000
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Open gquestion 3

Study the Brusselator in 2D or 3D.

# Coarsening in 2D

# Stability of a disk, ring or stripe

# Can one obtain labrynthian patterns?
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Some References

® T. Kolokolnikov, T. Erneux and J. Wei, Mesa-type patterns in the
one-dimensional Brusselator and their stability, Physica D 214(2006)
63-77.

® T. Kolokolnikov, T. Erneux, and J. Wei, Self-replication of mesas in
reaction-diffusion models, preprint

® T. Kolokolnikov, M.J. Ward and J. Wei, The Stability of a Stripe for the
Gierer-Meinhardt Model and the Effect of Saturation, to appear, SIAM
J. Appl. Dyn. Systems.

These can be downloaded from my website,
http://www.mathstat.dal.ca/~tkolokol
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