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Abstract. We study the algebraic connectivity λ2 of an Erdös-Rényi random graph G(n, p)

on n vertices, where the edges are chosen with probability p = p0
log n

n
for some constant p0. It is

well-known that the threshold for connectivity of this graph model is p0 = 1; with high probability
the graph is connected when p0 > 1 and disconnected when p0 < 1. In the connected regime where
p0 > 1 we show that λ2 ∼ anp asymptotically almost surely as n → ∞, where a ∈ (0, 1) satisfies
p0 = 1 + ap0(1 − log a). This estimate recovers the two well-known limits λ2 → 0 as p0 → 1+ and
λ2 ∼ np for np/ logn → ∞. We also provide a similar result λ2(L) ∼ 1 for the first non-trivial
eigenvalue of the normalized graph Laplacian L in this regime.

Keywords: Erdös-Rényi model, spectral graph theory, graph Laplacian, algebraic
connectivity.

1. Introduction. The algebraic connectivity of a graph is defined as the second
smallest eigenvalue λ2(L) of the combinatorial graph Laplacian L = D−A, where A
is its adjacency matrix and D is the diagonal matrix of vertex degrees [20, 15, 30, 9,
16]. This graph invariant arises in the analysis of a variety of graphs processes that
describe, for example, information transfer rates for dynamical models [5, 35, 31],
robustness and stability in inverse problems [8, 33] and synchronizability in complex
networks [3]. It is also widely used in graph partitioning and data clustering algorithms
[34] due to its close relationship to the Cheeger constant.

In this paper, we study the algebraic connectivity of Erdös-Rényi graphs G(n, p)
on n vertices. In this random graph model, each of the

(

n
2

)

possible edges is included
with probability p, independent from every other edge. There is a large literature
on Erdös-Rényi graphs [18, 6, 23, 1] and, in particular, their spectral properties [19,
28, 29]. Perhaps the most interesting phenomena related to Erdös-Rényi graphs is
the evolution of their connectivity properties as p increases. It is well-known that if
np = p0 logn for p0 < 1 then the graph is asymptotically almost surely disconnected,
while if p0 > 1 then the graph is asymptotically almost surely connected. Thus the
graph becomes connected near the connectivity threshold p = log n

n and this transition
occurs in the critical regime np = Θ(logn).

Our goal is to describe the evolution of the algebraic connectivity of an Erdös-
Rényi graph in this critical regime. Since the algebraic connectivity of a disconnected
graph is zero, we trivially have that λ2 = 0 asymptotically almost surely for p0 < 1.
The only non-trivial behavior therefore occurs in the connected regime. Numerous
previous studies have studied the algebraic connectivity of Erdös-Rényi graphs in the
connected case provided np lies above the critical regime. For instance, Juhász [25]
showed that

(1.1) λ2 = np+ o
(

n
1
2
+ε
)

for any ε > 0, but this estimate does not capture the behavior of λ2 for np = O(n
1
2 ).

Chung, Lu and Vu [11] later improved this estimate in the case of the normalized

Laplacian L = D− 1
2LD− 1

2 by using the trace method. Their estimates were designed
for more general graphs than just G(n, p), but specialized to this case their efforts
show

(1.2) max
k≥2

|λk(L)− 1| ≤ (1 + o(1))

(

4√
np

)

+
g(n) log2 n

np
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provided np/ log2 n → ∞, where g(n) denotes any function tending to infinity arbi-
trarily slowly. Oliviera [32] and later Chung and Radcliffe [12] improved this result
by using a new class of matrix concentration inequalities for random matrices. These
results once again apply to more general random graph models, but specialized to
G(n, p) yield

(1.3) max
k≥2

|λk(L)− 1| ≤ O

(
√

log n

np

)

provided np/ logn → ∞, see for instance [12]. While these results apply to the
normalized Laplacian L, they extend in a straightforward way to the unnormalized
case. Indeed, if np/ logn → ∞ then G(n, p) is essentially regular and D is well-
approximated by a diagonal matrix with all entries equal to np, which gives

(1.4) λ2(L) = np+O
(

√

np logn
)

.

A similar estimate also follows directly from the estimates for λ2(L) provided by
Coja-Oghlan [13] or by using the results from [19].

In any case, the behavior of λ2(L) is well-understood either below the connectivity
threshold p0 = 1 or just above the critical regime. An obvious gap in the literature
therefore exists regarding the behavior of λ2 in the critical regime np = Θ(logn). We
may therefore naturally ask to what extent the previous estimates such as (1.4) hold
in this regime. Very loosely speaking, estimates such as (1.4) rely upon concentration
of a “global” graph property, such as the entire adjacency matrix or degree matrix of
the graph, around their respective mean. This yields much more precise information,
such as simultaneous control over all eigenvalues instead of only λ2, and the results
apply to quite general random graph models as well. However, as (1.4) indicates
this concentration breaks down in the critical regime — the order of the error now
exactly matches the leading order term. To obtain precise information in the critical
regime we cannot rely directly on such concentration results, but instead must sacrifice
generality for exactness and compute the quantities of interest directly for G(n, p).
As we shall see, the leading order coefficient of λ2 in (1.1),(1.4) requires modification
in the critical regime. Our main result is the following characterization of λ2:

Theorem 1.1. Consider a Erdös-Rényi random graph G(n, p) on n vertices,
where the edges are connected with probability

(1.5) p = p0
logn

n

for p0 > 1 constant in n. Let λ2 be the first non-zero eigenvalue of the graph Laplacian
L = D −A. Then

(1.6)
λ2

pn
∼ a(p0) +O

(

1√
np

)

as n → ∞,

where a = a(p0) ∈ (0, 1) denotes the solution to

(1.7) p0 − 1 = ap0(1− log a).

More precisely, there exist universal constants C1, C2, and C3 independent of n such

that
∣

∣

∣

λ2

pn − a(p0)
∣

∣

∣
≤ C1√

np with the probability at least 1− C2e
−C3

√
np.
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By pursuing a line of reasoning that mirrors the proof of theorem 1.1, we obtain
the following corollary that provides a related estimate for the normalized graph
Laplacian.

Corollary 1.2. Let λ2(L) denote the first non-zero eigenvalue of the normalized
graph Laplacian L = Id −D−1/2AD−1/2 and let λn(L) denote its largest eigenvalue.
Under the assumptions of theorem 1.1, the estimates

1−O

(

1√
np

)

≤ λ2(L) ≤
1

1−O
(

1
n

) , λn(L) ≤ 1 +O

(

1√
np

)

(1.8)

hold with probability at least 1 − C1e
−C2

√
np for C1, C2 some positive, universal con-

stants.
Remark 1.3. The function a = a(p0) in Theorem 1.1 has the following limiting

properties: a → 0+ as p0 → 1+ and a → 1− as p0 → ∞. Thus, Theorem 1.1 captures
the transition of λ2 between 0 and np as in (1.1). More precisely,

a(p0) ∼ 1−
√

2/p0 +O(1/p0) for p0 ≫ 1;(1.9)

In Fig. 1.1, we compare the asymptotics (1.9) to a(p0) as defined in (1.7).
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Fig. 1.1. A comparison of a(p0) as defined in (1.7) with the asymptotic limit given in (1.9).
Note that a → 1 as p0 → ∞ and a → 0+ as p0 → 1+

To the best of our knowledge, the result of theorem 1.1 has yet to appear in
the literature. Its proof relies on what are, by now, well-established techniques. Our
contribution therefore lies in explicitly stating and proving the formula (1.7). A formal
derivation of (1.7) is given in Section 2. The proof of Theorem 1.1, given in Section 3,
then makes rigorous this formal argument. We may outline the proof as follows. First,
following [22] and [37, 38] we demonstrate that, at first order, the eigenvalues of L
are the eigenvalues of D; the adjacency matrix, A, can be neglected. The eigenvalues
of D are simply the degrees of the graph vertices, which are binomially distributed.
The proof is then completed by directly estimating the binomial coefficients to obtain
the leading order contribution of the minimal degree, resulting in formula (1.7). We
also remark that this formula also appeared in Exercise 3.4 of [6].

Figure 1.2 shows the comparison of the asymptotic formulae, (1.6) and (1.7), with
numerical computations of the algebraic connectivity. Although the predicted error
of O(1/

√
logn) is rather large, the agreement is very good even for relatively “small”
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Fig. 1.2. A comparison of the algebraic connectivity (black), the minimum degree (blue), and
the estimate given in Theorem 1.1 (red) of Erdös-Rényi graphs, G(n, p) for four different values of n

and p = p0
log n

n
where p0 ∈ [1, 10]. The black dots represent the algebraic connectivity of 50 sampled

graphs and the black curve was obtained by averaging these values. Similarly, the blue curve is the
mean of the minimum degrees. As n → ∞, the estimate agrees with the computed values.

n = 100, and gets better slowly with increased n. This approach to the question
addressed in Theorem 1.1 is most similar to that used by Jamakovic and Van Mieghem
[22]. Their result uses the bound λ2 ≤ n

n−1dmin and bounds the minimal degree of
the graph using a different analysis than the present work.

We also consider the first non-zero eigenvalue when p0 < 1, i.e. the disconnected
regime. In this case, with high probability G(n, p) has isolated vertices, the graph
is disconnected, and λ2 = 0. The number and size of the connected components is
well-studied, (see, for example, [18] and [23, Ch. 5]). As p0 is decreased below 1, the
number of disconnected components (which is the multiplicity of the zero eigenvalue of
L) increases. For 1/2 < p0 < 1, all such components consist of a single isolated vertex.
As p0 is decreased past 1/2, some of the disconnected components are a two-vertex
tree. As p0 is decreased past 1/3, a 3-vertex tree becomes a disconnected component
and so on. In their now famous paper, Erdös and Rényi ([18, Thm. 2b]) characterize
the number of connected components of each size (see also [23, Thm. 3.30 and Thm
6.38]). Let p0 ∈ (0, 1) and let NK denote the number of connected components that
have K vertices. If K > 1/p0 then NK = 0 asymptotically almost surely. If K < 1/p0
then

(1.10) NK ∼ KK−2

K!
pK−1
0 (logn)K−1n1−Kp0 .
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Additionally, any connected component is asymptotically almost surely a tree (has
K−1 edges). It then follows that N1 ≫ N2 ≫ . . . with N1 ∼ n1−p0 as n → ∞. Since
the dimension of the graph Laplacian kernel is the number of connected components,
we obtain

# of zero eigenvalues of L ∼
⌊1/p0⌋
∑

K=1

NK ∼ n1−p0 .

In Section 5 we briefly investigate the first non-zero eigenvalue of the graph Laplacian
via numerical simulations.

Finally, we mention a few recent studies which are tangentially related to the
present one. Much of the previous work in this area relies on well-known techniques,
such as the trace method, from random matrix theory [21, 39, 2]. In a similar spirit,
[17, 24, 36] establish a law of large numbers for λn−k as n → ∞. Kahle [26] studied the
higher homology groups of the clique complex of Erdös-Rényi graphs. Since the zeroth
homology group is simply the number of connected components of the clique complex,
these estimates can be considered as higher dimensional analogues of the Erdös-Rényi
threshold for connectivity. Bordenave, Caputo, and Chafäı [7] studied the spectrum of
oriented Erdös-Rényi-type graph Laplacians, which are the infinitesimal generator of
a continuous time random walk on the graph. Kolokolnikov [27] studied small graphs
with maximal algebraic connectivity subject to constraints on the volume, number
of edges, and topology. Zhan et. al. [40] numerically studied a number of questions
concerning the eigenvalue distributions of various random graph models, including
the Erdös-Rényi model.

Outline.. The outline of the paper is as follows. In Section 2 we give a formal
derivation of (1.7). A rigorous proof is given in Section 3. Further discussion and
some open questions are given in Section 5.

2. Formal derivation of Theorem 1.1. In this section, we give a formal
derivation of (1.7). Recall that the graph Laplacian is given by L = D −A where D
is the degree matrix and A is the adjacency matrix. A key observation used in the
derivation of our result is the fact that, roughly speaking, the matrix A is of “lower
order” than D and can be discarded. The smallest eigenvalue can then be estimated
by computing the minimum of the diagonal entries of D so that

(2.1) λ2 ∼ min (d1, . . . dn) .

where di = Dii is the degree of the i-th vertex.
Since each degree has distribution Binomial(n− 1, p), the probability that di ≤ z

is given by

(2.2) P(di ≤ z) = f(z) where f(z) :=

⌊z⌋
∑

i=0

(

n− 1

i

)

pi (1− p)
n−1−i

.

Assuming i ≪ n, we estimate

(

n− 1

i

)

pi (1− p)
n−1−i ∼ µie−µ

i!
, where µ = pn = p0 log(n).

∼ (2πi)
−1/2

exp(i log(µ/i)− µ+ i)
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The sum in (2.2) is dominated by its last term if z < µ. To see this, following [4, Ch.
6.7], we estimate the sum in (2.2) by an integral so that

f(z) ∼
∫ z

0

exp (x log(µ/x) + x− µ+ l.o.t.) dx.

Here, l.o.t. denotes terms of lower order. Let z = aµ and substituting x = µy, we
obtain

f(z) ∼ µ

∫ a

0

exp (µ(y log(1/y) + y − 1) + l.o.t.) dy

Note that y log(1/y) + y− 1 has a maximum at y = 1, and is increasing on [0, 1]. We
are interested in the case where z < µ implying that the right endpoint y = a < 1.
Since µ ≫ 1, the integrand decays rapidly to the left of y = a and an application of
Laplace’s method yields

f(aµ) ∼ exp (µ {a log(1/a) + a− 1}+ l.o.t.)

∼ np0{a log(1/a)+a−1} exp(l.o.t.),(2.3)

where we have used µ = p0 logn. Using (2.2) and (2.3) and estimating (1− x/n)
n ∼

exp(−x) for x ≫ 1, we obtain

P(d1, . . . , dn ≥ aµ) ∼
n
∏

i

P(di ≥ aµ)

∼ (1− f(aµ))
n

∼ exp(−nf(aµ))

∼ exp
[

−np0{a log(1/a)+a−1}+1 exp(l.o.t.)
]

.

Define

ω := p0 {a log(1/a) + a− 1}+ 1 =⇒ P(d1, . . . , dn ≥ aµ) ∼ exp (−nω) .

If ω > 0 then P(d1, . . . , dn ≥ aµ) → 0 as n → ∞, which together with (2.1), implies
that λ2 > apn with high probability. Conversely, if ω < 0 then P(d1, . . . , dn ≥ aµ) → 1
as n → ∞ implying λ2 < apn with high probability. This shows formally that
λ2 ∼ apn (as in (1.6)) where a satisfies ω = 0 (as in (1.7)).

3. Proof of Theorem 1.1. Let A = {eij} ∈ Mn×n(R) denote the random
matrix that corresponds to the adjacency matrix of Erdős-Rényi random graph. That
is, eij =d B(1, p) where p denotes the probability that an edge exists between two
vertices. Define

D := diag(d1, . . . , dn) di :=

n
∑

j=1

eij =d B(n, p) L := D −A

and order the eigenvalues of L so that

λn(L) ≥ λn−1(L) ≥ λ2(L) > λ1(L) = 0.
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Note that we allow loops in this definition of D and A, but L itself remains unchanged
from the usual definition of G(n, p). Let 1 denote the constant vector, so that L1 = 0

and

λ2(L) = min
{v⊥1:||v||=1}

〈v, Lv〉.

If we denote the corresponding subset of the unit ball Sn ⊂ R
n as

(3.1) Sn
0 :=

{

v :
∑

i

vi = 0,
∑

i

v2i ≤ 1

}

,

then we have the following probabilistic estimate —
Theorem 3.1. Let α and p0 denote arbitrary positive constants. Let A denote

the adjacency matrix of a random graph from G(n, p). If np > p0 logn then there
exists a constant c = c(α, p0) > 0 so that the estimate

(3.2) max
(v,w)∈Sn

0
×Sn

|〈v, Aw〉| ≤ c
√
np

holds with probability at least 1−O(n−α).
This theorem, from [19], allows us to reduce the study of λ2(L) to a study of vertex
degrees. Put np = p0 logn for some constant p0 > 1 fixed with respect to the number
of vertices. Then we have

Lemma 3.2. (Reduction to Diagonal) Suppose there exists a p0 > 0 so that
np ≥ p0 logn and C, c1 > 0 so that

|dmin − c1np| ≤ C
√
np

with probability at least 1−O(e−Ω(
√
np)). Then there exists a C̃ > 0 so that

|λ2(L)− c1np| ≤ C̃
√
np

with probability at least 1−O(e−Ω(
√
np)).

Proof. Note that

λ2(L) = min
{v⊥1:||v||=1}

〈v, Lv〉 = min
{v⊥1:||v||=1}

〈v, Dv〉 − 〈v, Av〉.

As v ∈ Sn
0 , the preceeding theorem and the estimate λ2(L) ≤ n

n−1dmin imply that
there exists a constant c > 0 so that

(3.3) min
{v⊥1:||v||=1}

〈v, Dv〉 − c
√
np ≤ λ2(L) ≤

n

n− 1
dmin

holds with probability at least 1−O(n−α). Clearly it then holds that

c1np−(C+c)
√
np ≤ dmin−c

√
np ≤ min

{v⊥1:||v||=1}
〈v, Dv〉−c

√
np ≤ λ2(L) ≤ c1np+O(

√
np)

with probability at least 1−O(e−Ω(
√
np)), which gives the claim.

The preceeding lemmas allow us to reduce the proof of theorem 1.1 to a verification
of the hypothesis

|dmin − c1np| ≤ C
√
np
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in Lemma 3.2. To this end, given X =d B(n, p) and any 0 < c1 < 1 define

(3.4) fn(p, c1) := P(X ≤ c1np) =

i0
∑

i=0

(

n

i

)

pi(1 − p)n−i i0 := ⌊c1np⌋

Then we have the estimate

(3.5)

(

n

i0

)

pi0(1− p)n−i0 < fn(p, c1) < (c1np+ 1)

((

n

i0

)

pi0(1− p)n−i0

)

.

The lower bound is obvious since the sum dominates any singleton summand. The
upper bound comes from the fact that i0 < np, which implies that

(

n

i

)

pi(1 − p)n−i ≤
(

n

i0

)

pi0(1− p)n−i0 (i ≤ i0).

We may use this simple estimate combined with Stirling’s formula to conclude the
following lemma, where we envision taking c1 = a+ o(1) for 0 < a < 1 some constant
(in n) fixed.

Lemma 3.3. Suppose c1 = a+ o(1) for 0 < a < 1 and that there exist constants
p0 > 0 and C > 0 so that p0 logn ≤ np ≤ C logn. Then there exist constants
c′, C′ > 0 so that

c′enpH(c1)

√
np

≤ fn(p, c1) ≤ C′√np enpH(c1)(3.6)

H(c1) := c1 + c1 log
1

c1
− 1.(3.7)

Proof. Write

(

n

i0

)

pi0(1− p)n−i0 = eΦ(i0)

Φ(i0) := logn!− log i0!− log(n− i0)! + i0 log p+ (n− i0) log(1− p).

Stirling’s formula log j! = (j +1/2) log j− j+O(1) for the factorial then implies that

Φ(i0) = n log
n

n− i0
− i0 log

i0
n− i0

+
1

2
log

n

i0(n− i0)
+ i0 log

p

1− p
+ n log(1− p) +O(1).

Define δ0 ∈ [c1 − (np)−1, c1] as δ0np = i0, so that the previous equation simplifies to

Φ(i0) = −n log(1− δ0p) + δ0np log
1− δ0p

δ0(1 − p)
− 1

2
lognp+ n log(1 − p) +O(1).

The fact that log(1− x) = −x+O(x2) as x → 0 then implies

Φ(i0) = δ0np+ δ0np log
1

δ0
− 1

2
lognp− np+O(1) +O(np2).

As δ0 = c1 +O(1/np) and np = O(log n) this relation implies

Φ(i0) = c1np+ c1np log
1

c1
− 1

2
lognp− np+O(1) = npH(c1)−

1

2
lognp+O(1),
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so that
(

n

i0

)

pi0(1 − p)n−i0 = eΦ(i0) =
enpH(c1)

√
np

eO(1).

Combining this with (3.5) then gives the claim.
The preceeding lemma indicates the correct choice of 0 < a < 1 so that the bound

|dmin − anp| ≤ C
√
np

could hold asymptotically almost surely. Given np = p0 logn for p0 > 1 let 0 <
a(p0) < 1 denote the solution to

(3.8) p0H(a(p0)) = −1.

Formally, for any ǫ > 0 sufficiently small there exists a δ > 0 so that

(3.9) p0H(a(p0)− ǫ) ≤ −(1 + δ).

We may therefore conclude that for any such ǫ that

P (di ≤ (a(p0)− ǫ)np) ≤ O(
√

logn)n−(1+δ),

and so by the union bound over all diagonal entries

P (dmin ≤ (a(p0)− ǫ)np) ≤ O(
√

logn)n−δ = o(1).

Conversely, for any ǫ > 0 sufficiently small there exists a δ > 0 so that

p0H(a(p0) + ǫ) ≥ −1 + δ.

In this case, if we were to assume independence of the diagonal entries, we can conclude
that

P (dmin ≤ (a(p0) + ǫ)np) = 1− P (dmin > (a(p0) + ǫ)np) = 1− (1− fn(p, a(p0) + ǫ))n

≥ 1−
(

1− c′δ

n
√
logn

)n

∼ 1− exp

(

− c′δ√
logn

)

= 1− o(1).

In other words, we formally have (a(p0)− ǫ)np ≤ dmin ≤ (a(p0)+ ǫ)np asymptotically
almost surely. To remove the “formally” and to establish the precise error bound

|dmin − a(p0)np| ≤ C
√
np

we must choose ǫ, δ carefully and resolve the issue that the di are not, in fact, inde-
pendent. The following lemma makes the foregoing precise, and completes the proof
of Theorem 1.1 by fulfilling the hypothesis of Lemma 3.2.

Lemma 3.4. (Minimum Degree) Let np = p0 logn for p0 > 1 constant with
respect to n and a(p0) denote the solution to

(3.10) p0 − 1 = ap0(1− log a).

satisfying 0 < a(p0) < 1. Then

|dmin − a(p0)np| ≤ C
√
np
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with probability at least 1−O(e−Ω(
√
np)).

Proof. Let

c±1 := a(p0)±
1√
np

.

Then by the mean value theorem, there exist a+ ∈ (a(p0), a(p0) + 1/
√
np) and a− ∈

(a(p0)− 1/
√
np), a(p0)) so that

(3.11) H(c±1 ) = H(a(p0))±
H′(a±)√

np
H′(a±) = H′(a(p0)) + o(1) > 0

for all n sufficiently large. This implies that for each 1 ≤ i ≤ n that

(3.12) P(di ≤ a(p0)np−
√
np) ≤ O(

√
np)n−1e−

√
npH′(a−),

and so by the union bound that

(3.13) P (dmin ≤ a(p0)np−
√
np) ≤ O(

√
np)e−

√
npH′(a−) = O(e−Ω(

√
np)).

In other words,

(3.14) dmin ≥ a(p0)np−
√
np

with probability at least 1−O(e−Ω(
√
np)). The converse direction proves slightly more

difficult due to the fact that the diagonal entries di exhibit a mild dependence that
results from the undirected graph. Let Xi := 1{di≤c+

1
np} denote the indicator of the

event that the ith diagonal satisfies di ≤ a(p0)np+
√
np and define

N0 :=

n
∑

i=1

Xi

as the total number of such events that occur. Let µ0 := E(N0) = nfn(p, c
+
1 ) de-

note the expected number of such entries. Chebyshev’s inequality then implies that
(writing fn as shorthand for fn(p, c

+
1 )) for any γ > 0 the inequality

(3.15) P(|N0 − µ0| > γnfn) ≤
Var(N0)

γ2n2f2
n

holds. The variance satisfies

Var(N0) =

n
∑

i=1

Var(Xi)+2

n
∑

i=1

∑

j>i

Cov(Xi, Xj) = nfn(1−fn)+2

n
∑

i=1

∑

j>i

Cov(Xi, Xj),

whereas the covariance satisfies

Cov(Xi, Xj) = P(Xi = 1 ∩Xj = 1)− f2
n.

Recalling the definition of D shows that the vertex degrees di and dj decompose as

di =
n
∑

k=1

eik dj =
n
∑

k=1

ejk,

10



which obviates the fact that the only dependence between di and dj occurs via the
entry eij ; indeed, the entries {eik}nk 6=j , {ejk}nk 6=i are independent. With this in mind,
define

d̃i :=

n
∑

k 6=j

eik = di − eij

and define d̃j similarly. Conditioning on the possible values of eij ∈ {0, 1} shows

P(Xi = 1∩Xj = 1) = P(d̃i+1 ≤ c+1 np)P(d̃j+1 ≤ c+1 np)p+P(d̃i ≤ c+1 np)P(d̃j ≤ c+1 np)(1−p).

Note that

P(d̃i ≤ c+1 np) =

⌊c+
1
np⌋
∑

i=0

(

n− 1

i

)

pi(1− p)n−(i+1),

and also that
(

n− 1

i

)

pi(1 − p)n−(i+1) ≤
(

1 +
p

1− p

)(

n

i

)

pi(1− p)n−i.

These facts imply

P(d̃i ≤ c+1 np) ≤
(

1 +
p

1− p

)

fn.

The fact that {d̃i + 1 ≤ c+1 np} ⊂ {Xi = 1} implies

P(d̃i + 1 ≤ c+1 np) ≤ fn,

which yields as a consequence the estimate

P(Xi = 1 ∩Xj = 1) ≤ f2
n +O(1)f2

np.

Substituting this estimate into the covariance shows that

Var(N0) ≤ nfn +O(1)n2f2
np.

This estimate combines with (3.15) to show that for any fixed γ > 0 the inequality

(3.16) P(|N0 − µ0| > γnfn) ≤
1

γ2nfn
+

O(1)p

γ2
.

holds. Moreover, the previous lemma yields that

nfn ≥ c′
eH

′(a+)
√
np

√
np

→ ∞,

so that by taking γ = 1/2 (for instance), it follows that N0 ≥ nfn/2 with probability
at least 1 − O(e−Ω(

√
np)). Thus the random graph has at least nfn/2 → ∞ vertices

that satisfy

di ≤ a(p0)np+
√
np,

11



with at least this probability, so in particular

dmin ≤ a(p0)np+
√
np,

with at least this probability as well. Combining this with the previous case shows
that

|dmin − a(p0)np| ≤
√
np

with probability at least 1−O(e−Ω(
√
np)), as claimed.

4. Proof of Corollary 1.2. Just as results for the normalized Laplacian L =
Id−D−1/2AD−1/2 furnish results for the unnormalized case L = D−A when G(n, p)
is regular, lemma 3.4 regarding the minimal degree of G(n, p) also combines with
theorem 3.1 to provide spectral estimates for the normalized graph Laplacian just
as easily as the unnormalized case. The following lemmas suffice to establish the
corollary, which yields a result similar in spirit to those presented in [11, 13, 10, 14,
32, 12, 29].

Lemma 4.1. Let A = {eij} denote the adjacency matrix of a random graph drawn
from G(n, p) and define

(4.1) X :=

n
∑

i,j=1

eij =

n
∑

i=1

di.

If there exists a c0 > 0 so that np > c0 logn then X = n2p+O(n
√
np) with probability

at least 1−O(e−n/4).
Proof. Let Y :=

∑n
i=1

∑n
j=i+1 eij and note that X = 2Y due to symmetry.

Moreover, Y is a sum of n(n− 1)/2 i.i.d. Bernoulli random variables. For such sums,
the Chernoff bound states

P (|Y − E(Y )| ≥ λσ) ≤ 2e−
λ2

4

provided Var(X) ≤ σ2 and λ ≤ 2σ. As Y is binomial, E(Y ) = n(n − 1)p/2 and
Var(Y ) = n(n− 1)p(1− p)/2 ≤ n2p. Choosing σ = n

√
p and λ =

√
n in the Chernoff

bound then implies that

P (|Y − n(n− 1)p/2| ≥ n
√
np) ≤ 2e−n/4.

Thus X = 2Y = n2p+O(n
√
np) with probability at least 1− O(e−n/4), which gives

the result.
Lemma 4.2. Let dmin denote the minimum degree of an Erdös-Rényi random

graph G(n, p). Let np = p0 logn for p0 > 1 and suppose

dmin ≥ a(p0)np+O(
√
np).

Then

1−O

(

1√
np

)

≤λ2(L) ≤
1

1−O
(

1
n

) , λn(L) ≤ 1 +O

(

1√
np

)

.(4.2)

Proof. Note that

λ2(L) = min
{v⊥D1/21:||v||=1}

〈v,Lv〉.
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Let v2 denote any normalized (||v2|| = 1) eigenvector satisfying Lv2 = λ2(L)v2 and
put

D−1/2v2 = α1+ 1⊥,

where α is the mean of D−1/2v2 and 1⊥ denotes its orthogonal projection onto mean-
zero vectors. Now note that the fact 〈v2, D

1/21〉 = 0 implies

λ2(L) = 1− 〈D−1/2v2, AD
−1/2v2〉 = 1− 〈D−1/2v2, αA1〉 − 〈D−1/2v2, A1

⊥〉
= 1− 〈D−1/2v2, αD1〉 − 〈D−1/2v2, A1

⊥〉 = 1− 〈D−1/2v2, A1
⊥〉

≥ 1−O(
√
np)||D−1/2v2|| ||1⊥||,

where the last inequality follows from theorem 3.1. But note that ||1⊥|| ≤ ||D−1/2v2||
since the decomposition of D−1/2v2 is orthogonal. Thus the minimum degree assump-
tion implies

λ2(L) ≥ 1−O(
√
np)||D−1/2v2||2 = 1−O(

√
np)

n
∑

i=1

(v2)
2
i

di

≥ 1−O

( √
np

a(p0)np+O(
√
np)

)

||v2||2 = 1−O

(

1√
np

)

.

To see that the reverse inequality also holds, consider the test vector

w := D1/2emin − 〈D1/2emin, D
1/21〉 D1/21

||D1/21||2

where emin denotes the standard basis vector corresponding to the vertex of minimal
degree. By definition, since 〈w, D1/21〉 = 0 the inequality

λ2(L)||w||2 ≤ 〈w,Lw〉 = dmin

holds. Under the minimal degree assumption, the norm ||w|| satisfies

||w||2 = dmin −
〈D1/2emin, D

1/21〉2
||D1/21||2 = dmin −

d2min
∑n

i=1 di

= dmin

(

1− a(p0)np+O(
√
np)

n2p+O(n
√
np)

)

= dmin

(

1− a(p0) +O(1/
√
np)

n(1 +O(1/
√
np))

)

.

The estimate on
∑n

i=1 di follows by applying the previous lemma on the sum of vertex
degrees. All together, this yields the claimed estimate

1−O

(

1√
np

)

≤ λ2(L) ≤
1

1− a(p0)+O(1/
√
np)

n(1+O(1/
√
np))

=
1

1−O
(

1
n

)

for λ2(L).
The estimate for λn(L) follows in a similar way. Let vn denote a normalized

(||vn|| = 1) eigenvector Lvn = λnvn, and decompose D−1/2vn into its mean and
mean-zero components

D−1/2vn = α1+ 1⊥,

13
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Fig. 5.1. Density distribution of the algebraic connectivity of the giant component in the regime
p0 < 1.

exactly as before. The fact that 〈vn, D
1/21〉 = 0 then combines with theorem 3.1 to

imply

λn(L) = 1− 〈D−1/2vn, AD
−1/2vn〉 = 1− 〈D−1/2vn, αA1〉 − 〈D−1/2vn, A1

⊥〉
= 1− 〈D−1/2vn, αD1〉 − 〈D−1/2vn, A1

⊥〉 = 1− 〈D−1/2vn, A1
⊥〉

≤ 1 +O(
√
np)||D−1/2vn|| ||1⊥|| ≤ 1 +O(

√
np)||D−1/2vn||2.

That

O(
√
np)||D−1/2vn||2 = O

(

1√
np

)

then follows by using the same argument used for the second eigenvector. The conclu-
sion of corollary 1.2 then follows from the estimate provided for the minimal degree.

5. Discussion. In this paper, we gave a precise asymptotic description of the
evolution of algebraic connectivity of a random graph in the critical regime p = p0

lnn
n

above the connectivity threshold p0 = 1. Our description captures the transition of λ2

between 0 (as p0 → 1+) and np (as p0 becomes large). For p0 > 1, we showed that the
distribution of λ2, as well as that of the minimum degree, approaches a delta function
centered at a(p0) given by (1.7), as n → ∞. On the other hand, for 0 < p0 < 1,
the graph is disconnected almost surely and its algebraic connectivity is zero. We
gave a simple estimate of n1−p0 for the number of zero eigenvalues in this case, which
corresponds to the number of disconnected components.

Since λ2(G) = 0 for p0 < 1, a natural question to ask then is: what is the
distribution of the smallest non-zero eigenvalue of the Laplacian? For p0 ∈ (0, 1),
this corresponds to λ2(G1) where G1 is the largest connected component of G (i.e.
the so-called giant component). In Figure 5.1, we plot λ2(G1) for 10,000 simulations
with n = 1, 000 and n = 10, 000 as p0 is increased from 0.2 to 1. When p0 < 1, the
minimum degree of G1 is exactly 1, so it follows that λ2(G1) ≤ 1. Tighter bounds than
this are elusive because of the high complexity (|E|− |V |+1) of the giant component
[18]. On the other hand, numerical simulations suggest

λ2(G1) < p0,

as indicated by the dashed line in Figure 5.1. Additionally, Figure 5.1 shows that for
fixed p0 < 1, (e.g. p0 = 0.7) the distribution of λ2(G1) does not appear to concentrate
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at any single value as n → ∞. The distribution appears to have a band-like structure
with gaps, which persists as n is increased. It would be very interesting to study the
distribution of these bands.

For the normalized Laplacian L Corrollary 1.2 shows that its eigenvalues concen-
trate near 1 in the regime p = O(log(N)/N). However the convergence is very slow
(of O(

√

1/ log(N))). In practical terms, this means that λ2 of L can deviate very
significantly from 1 even for very large N . To illustrate this, we took p0 = 2 and
computed the average of λ2 and λn for several values of N resulting in the following
table:

N λ2(L) λn(L)
100 0.4115 (0.014) 1.603 (0.013)
500 0.4655 (0.004) 1.538 (0.0048)
1000 0.4863 (0.0029) 1.515 (0.0026)
5000 0.5312 (0.00089) 1.469 (0.00082)
10000 0.5475 (0.00068) 1.4524 (0.00028)

(the value in brackets denote the standard deviation of 100 simulations). Computing
the next term in the expansion is an open problem.
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