
Spot solutions in Reaction-diffusion systems

seashells * vegetation * fish * crime hotspots in LA * stressed bacterial colony
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Classical Gierer-Meinhardt model

At = ε2∆A− A +
A2

H
; τHt = D∆H −H + A2

• Introduced in 1970’s to model cell differentation in hydra

• Mostly of mathematical interest: one of the simplest RD systems

• Has been intensively studied since 1990’s [by mathematicians!]

• Key assumption: separation of scales

ε� 1 and ε2 � D.
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Steady state (1D)

0 = ε2Axx − A +
A2

H
; 0 = Hxx −H + A2, x ∈ R

• Assume a spike at the center x = 0. Inner variables: x = εy

• Inner expansion:
Ayy − A + A2/H = 0, Hyy ∼ 0

H(y) ∼ H0,

A = H0w(y)

wyy − w + w2 = 0

w =
3

2
sech2 (y/2)
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• Outer:

Hxx −H + C0δ(x) = 0, C0 =

∫ ∞
−∞

A2(x)dx

H =
C0

2
exp (− |x|)

H0 =
C0

2

∼ 1

2

∫
A2dx

=
ε

2
H2

0

∫
w2dy

H0 ∼
2

ε
∫
w2dy

=
1

3ε

• Summary:

H0 =
1

3ε
, w(y) =

3

2
sech2 (y/2) ;

A ∼ H0w
(x
ε

)
, H ∼ H0 exp (− |x|)

• Questions: What about stability? What about location of the spike x0?
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“Classical” Results in 1D:

• Wei 97, 99, Iron+Wei+Ward 2000: Stability of K spikes in the GM model in one
dimension

• Two types of possible instabilitities: structural instabilities or translational instabilities

• Structural instabilities (large eigenvalues) lead to spike collapse in O(1) time

• Translational instabilities can lead to ”slow death”: spikes drift over large time scales

• Main result 1: There exists a sequence of thresholds DK such that K spikes are
stable iff D < DK.

• Main result 2: Slow dynamics of K spikes is described by an ODE with 2K
variables (spike heights and centers) subject to K algebraic constraints between
these variables.
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Large eigenvalues

• Careful derivation leads to a nonlocal eigenvalue problem (NLEP) of the form

λφ = ∆φ+(−1 + 2w)φ−χw2

∫
wφ∫
w2

; χ :=
4 sinh2

(
1√
D

)
2 sinh2

(
1√
D

)
+ 1− cos [π(1− 1/K)]

• Key theorem (Wei, 99): Re(λ) < 0 iff χ < 1

• Corrollary: On a domain [−1, 1], large eigenvalues are stable iffD < DK,large where

DK,large =
1

arcsinh2(sin 2π/K)

• When unstable, this can lead to competition instability.

• Movies: stable; unstable
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Small eigenvalues

• Causes a very slow drift

• Iron-Ward-Wei 2000: The slow dynamics of the system can be reduced to a coupled
algbraic-differential system of ODEs

• Movie: slow drift
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Two dimensions

• Structural stability is similar

• Dynamics [Ward et.al, 2000, K-Ward, 2004, K-Ward 2005]:

dx0

dt
∼ − 4πε2

ln ε−1 + 2πR0
∇R0

where

R0 = lim
x→x0

[
G(x, x0) +

1

2π
ln(|x− x0|)

]
;

∇R0 = lim
x→x0
∇x

[
G(x, x0) +

1

2π
ln(|x− x0|)

]
;

∆G− 1

D
G = −δ (x− x0) on Ω; ∂nG = 0 on ∂Ω

• Equilibrium location x0 satisfies∇R0 = 0, occurs at the extremum of the regular part
of the Neumann’s Green’s function
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Dumbbell-shaped domain

• QUESTION: Suppose that a domain has a dumb-bell shape. Where will the spike
drift??

• What are the possible equilibrium locations for a single spike?
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Small D limit

• If D is very small, R0(x0) ∼ C(x0) exp
(
− 1√

D
|x0 − xm|

)
where xm is the point on

the boundary closest to x0

• This means that R0 is minimized at the point furthest away from the boundary
when D � 1

- In the limit ε2 � D � 1, the spike drifts towards the point furthest away from the
boundary.

- For a dumbell-shaped domain above, the three possible equilibria are at the
”centers” of the dumbbells (stable) and at the center of the neck (unstable saddle
point)

- For multiple spikes, their locations solve ”ball-packing problem”.

• Movie: D = 0.03, ε = 0.04
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Large D limit
• We get the modified Green’s function:

∆Gm −
1

|Ω|
= −δ(x− x0) inside Ω, ∂nG = 0 on ∂Ω;

Rm0 = lim
x→x0

[
Gm(x, x0) +

1

2π
ln(|x− x0|)

]
.

• [K, Ward, 2003]: For a domain which is an analytic mapping of a unit disk, Ω = f (B),
we derive an exact formula for ∇Rm0 in terms of the residues of f (z) outside the
unit disk.

• Take f (z) =
(1− a2)z

z2 + a2
; x0 = f (z0) :

1

1

50

3

2

1.5

1.05

11



Then

∇Rm0(x0) =
∇s(z0)

f ′(z0)

where

∇s(z0) =
1

2π

 z0
1−|z0|2 −

(z̄20+3a2)z̄0
z̄40−a4

+ a2z̄0
z̄20a

2−1
+ z̄0

z̄20−a2

−(a4−1)2(|z0|2−1)(z0+a
2z̄0)(z̄

2
0+a2)

(a4+1)(z̄20a
2−1)(z20−a2)(z̄20−a2)2


• Corrollary: for above Ω,∇Rm0 has a unique root at the origin!

- In the limit D � 1, all spikes will drift towards the neck.

• Complex bifurcation diagram as D is increased.

• Movie: ε = 0.05, D = 0.1; D = 1.
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”Huge” D

• In the limit D → ∞, (Shadow limit), an interior spike is unstable and moves towards
the boundary [Iron Ward 2000; Ni, Polácik, Yanagida, 2001].

• For exponentially large but finite D = O(exp(−C/ε)), boundary effects will
compete with the Green’s function.

• [K, Ward, 2004]: Define

σ :=
ε

2
ln

(
C0

|Ω|
Dε−1/2

)
; C0 ≈ 334.80;

Then the spike will move towards the boundary whenever its distance from the closest
point of the boundary is at most σ; otherwise it will move away from the boundary.

• Movies: ε = 0.05, D = 10; D = 100
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Spike dynamics inside a disk

In the limit ε� 1, D � 1, inside the disk we get

C
dxj
dt
∼ 2

∑
k 6=j

xj − xk
|xj − xk|2

−
∑
k

xj︸ ︷︷ ︸+
∑
k

xj − xk/ |xk|2∣∣xj − xk/ |xk|2∣∣2 −
∑
k

−xj |xk|2 + xk |xj|2∣∣xj |xk|2 − xk∣∣2︸ ︷︷ ︸ .
inter − particle force reflection in the boundary of unit disk

• The first two terms are identical to vortex stability model!

• The last two terms represent “reflection in the wall”

• Just like for vortex model, the steady state consists of uniformly-distributed
particles inside the domain!

• Movies: disk; dumbbell.
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Mean first passage time (ice fishing)

• Question: Suppose you want to catch a fish in a lake covered by ice. Where do you
drill a hole to maximize your chances?

• Related questions: cell signalling; oxygen transport in muscle tissues; cooling rods in
a nuclear reactor...

• Consider N non-overlapping small ”holes” each of small radius ε. A particle is
performing a random walk inside the domain Ω. If it hits a hole, it gets destroyed;
if it hits a boundary, it gets reflected. Question: what is the expected lifetime of the
wondering particle? How do we place the holes to minimize this lifetime [i.e. catch the
fish, cool the nuclear reactor...]?
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• The expected lifetime is proportional to 1/λ where λ is the smallest eigenvalue of the
problem:

∆u + λu = 0 inside Ω\Ωp; u = 0 on ∂Ωp; ∂nu = 0 on ∂Ω

where Ωp =
⋃N
i=1 Ωε.

• [K-Ward-Titcombe, 2005]: The smallest eigenvalue is given by

λ ∼ 2πN

ln 1
ε

(
1− 2π

ln 1
ε

p(x1, . . . xN) + O

(
1(

ln 1
ε

)2

))
where

p(x1, . . . xN) :=
∑∑

Gij;

Gij =

{
Gm (xi, xj) if i 6= j
Rm(xi, xi) if i = j

∆Gm(x, x′)− 1

|Ω|
= −δ(x− x′) inside Ω, ∂nG = 0 on ∂Ω; Rm ≡ reg.part

• For a unit disk:

2πGm(x, x′) = − ln |x− x′| − ln

∣∣∣∣x |x′| − x′

|x′|

∣∣∣∣ +
1

2

(
|x|2 + |x′|2

)
2πRm(x, x′) = − ln

∣∣∣∣x |x′| − x′

|x′|

∣∣∣∣ +
1

2

(
|x|2 + |x′|2

)
• The optimum trap placement is at the minimum of p(x1, . . . xN)
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Disk domain, N holes

We need to minimize

p(x1 . . . xN) = −
∑
j 6=k

ln |xj − xk|−
∑
j,k

(
ln

∣∣∣∣xj − xk

|xk|2

∣∣∣∣ + ln |xk|
)

+
1

2

∑
j,k

(
|xj|2 + |xk|2

)
Gradient flow is uniform swarm model plus two extra terms

dxj
dt

= 2
∑
k 6=j

xj − xk
|xj − xk|2

−
∑
k

xj +
∑
k

xj − xk/ |xk|2∣∣xj − xk/ |xk|2∣∣2 −
∑
k

−xj |xk|2 + xk |xj|2∣∣xj |xk|2 − xk∣∣2 .

Particles on a ring: xk = reik2π/N . The min occurs when

r2N

1− r2N
=
N − 1

2N
− r2

Note that r → 1/
√

2 as N → ∞; the optimal ring divides the unit disk into two equal
areas.

Particles on 2,3,. . .m rings: Similar results are derived with complicated but numerically
useful formulas.
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Constrained optimization on up to 3 rings

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25
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Full optimization of K traps

6 (−1.526) 7 (−1.8871) 8 (−2.2538) 9 (−2.6104) 10 (−2.976)

11 (−3.3562) 12 (−3.7593) 13 (−4.1552) 14 (−4.5683) 15 (−4.975)

16 (−5.3914) 17 (−5.8051) 18 (−6.2245) 19 (−6.6731) 20 (−7.1071)

21 (−7.5489) 22 (−7.985) 23 (−8.4207) 24 (−8.8693) 25 (−9.3178)
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Comparison

−1 −0.5 0 0.5 1
−1

−0.5
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1
10, −2.96861, −2.976

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
15, −4.97285, −4.97502

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
13, −4.1511, −4.15515

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
24, −8.85623, −8.86797
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Entire solutions to GM in higher dimensions

0 = ε2∆A− A +
A2

H
; 0 = ∆H −H + A2

• Open question: Does a spike solution exist in all of R3??

- In 1D or 2D, there is separation of scales so YES. The inner problem is the ground
state

∆w − w + w2 = 0

.

- In 3D, the inner problem is fully coupled, the core problem becomes

0 = ∆A− A +
A2

H
; 0 = ∆H + A2

- No separation of scales in 3D. Open question: Does a spike in 3D exist???
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Solutions concentrating on spheres in R3

• Consider a general GM model:

0 = ε2∆A− A +
Ap

Hq
; 0 = ∆H −H +

Am

Hs
.

• [Ni-Wei 2006, K-Wei, 2006] Shell-solutions: Seek solutions where A concentrates on
a surface of a sphere of radius r0.

A(x) ∼ Cw

(
|x| − r0

ε

)
where w is the 1D ground state: wyy − w + w2 = 0; w = 3

2 sech2(y/2).
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• In 3D, the radius of the sphere satisfies

p− 1

q
∼ e2r0 − 1− r0

e2r0 − 1
as ε→ 0

• Note that p−1
q → 1 as r0 →∞.

• The ”standard GM”

ε2∆A− A + A2/H = 0 = ∆H −H + A2 (1)

has (p, q,m, s) = (2, 1, 2, 0) is a degenerate case (p + 1 = q, r0 →∞)

• [K-Wei, 2012] For (1) we have

ε ∼ exp (−2r0) (1 + 2r0)
70

103
(2)

• The computation to get (2) is about 10 pages.

• Roughly, r0 ∼ −1
2 ln ε→∞ as ε→ 0.
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Smoke-ring solutions

Axi-symmetric anzatz:

A(x, y, z) = u(r, z), H(x, y, z) = v(r, z) where r =
√
x2 + y2

The GM model becomes:

0 = ε2

(
∆(r,z)u +

1

r
ur

)
− u +

up

vq
; 0 =

(
∆(r,z)v +

1

r
vr

)
− v +

um

vs
(3)

Theorem Suppose that q = p− 1. Then the (3) admits a solution of the form

u ∼ Cw (R) ; R =

√
(r − r0)2 + z2

ε
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where w is a 2D ground state:

wRR +
1

R
wR − w + wp = 0; w′(0) = 0; w > 0

and the radius r0 given implicitly by

1− 2r0

∫ 1

0

e−2r0t

√
1− t2

dt =
1

2
(m− s− 1)

∫∞
0
wm
(∫ R

0
wp+1tdt

)
RdR(∫∞

0
wmRd

) (∫∞
0
wp+1RdR

). (4)

The solution to (4) is always unique It exists if m− s− 1 ≤ 2.
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Some key steps in derivation

• Need to compute the axi-symmetric Green’s function:

∆G +
1

r
Gr −G = −δ(x, x0).

• Descent from 3D: G is a convolution of the 3D Green’s function Γ(x, x′) = e−|x−x
′|

4π|x−x′|
along a ring of radius r0 :

G(r, z, r0, z0) =
r0

4π

∫ 2π

0

exp[−(r2 + r2
0 − 2rr0 cosω + (z − z0)2)1/2]

4π(r2 + r2
0 − 2rr0 cosω + (z − z0)2)1/2

dω

• Asymptotically expand the singular integral as r → r0

• Expand the steady state in two scales: ε and ln ε.

• Higher-order solvability condition at O(ε ln ε).

26



Wave propagation through complex geometry
• Motivation:
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Perturbed Allen-Cahn model

ut = ε2∆u− 2(u− εa)(u− 1)(u + 1), x ∈ Ω ⊂ R2; ∂nu = 0 on ∂Ω

• Standard Allen-Cahn corresponds to a = 0 :

- In 1-D, the steady state is given by u = ± tanh(x/ε).

- In 2-D, the profile is 1-dimensional in some direction; the zero set u = 0 is a
straight line, intersects boundary transversally.

- Such straight interface is stable (unstable) provided it is a local min (max) of the
distance function. [Kowalczyk, 05]

- Time dependent solution evolves by mean curvature law until the interface merges
with the boundary or becomes straight. [RSK, 89]

• When a 6= 0, the evolution of the equilibrium solution has a curvature R̂−1 where

R̂ =
1

2a
.
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- Sometimes the interface gets stuck in a narrow channel, other times it passes
through:

- Movie: stuck Movie: unstuck

- In [K-Iron-Rumsey-Wei, 2008] we classify the stability of such an interface.
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• Main result: Eigenvalues satisfy the geometric eigenvalue problem, wzz − R̂−2w = −λ0w;
w′(−l/2) + κ−w(−l/2) = 0;
w′(l/2) + κ−w(l/2) = 0;

where l is the interface length; κ−, κ+ are the two curvatures of the boundary at the
points where the interface intersects it.

• Geometric criterion:
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Layer oscillations

• FitzHuhg-Nagumo type model:

ut = ε2uxx + 2(u− u3) + w, τwt = Dwxx − u + β

Neumann BC on [0, 1]

ε� 1, D � 1

• Stationary steady state is an interface computed from the shadow limit D →∞

w ∼ 0; u ∼ tanh

(
l0 − x
ε

)
; l0 := (1 + β)/2

• [McKay-K]: As τ is increased, the interface is destabilized via a Hopf Bifurcation
(movie1, movie2). The critical scaling is:

τ =
D

ε
τ0, where τ0 = O(1).

31



• The interface position is given by

l(t) ∼ l0 + A(t) cos(
√

3/τ0εD
−1/2t + φ0)

where A is the oscillation envelope that satisfies

D

ε

dA

dt
=

(
1

4
(1− 3β2)− 1

8τ0

)
A− 3

4
A3.

• Hopf bifurcation occurs when

τ0h =

{
1

2(1−3β2)
if |β| < 3−1/2;

∞ otherwise
.
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Self-replication

• In 1993, Pearson reported self-replicating spots in the Gray-Scott model [J.E. Pearson,
Science, 261, 189 (1993)].

• Experiments using Ferrocyanide-iodate-sulphite reaction (which GS models)
confirmed numerical observation [Lee et.al, Nature, 1994].

• Self-replication was found in many other models, including chemial reactions, material
science and nonlinear optics.
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Gray-scott model

• Models a chemical reaction

• Large literature starting from 1990’s: Doelman, Kaper, Muratov, Nishiura....{
ut = Dv∆u− (F + k)u + vu2

vt = Du∆v + F (1− v) + vu2

• Self-replication reduces to study a fully-coupled 4-th order ODE: ∆U − U + U 2V = 0
∆V − U 2V = 0

V ′(0) = 0 = U ′(0), V ′(∞) = B

• Replication has been observed in 1D and 2D (two different types):

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

120

140

160
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Criteria for self-replication

• Four criteria, proposed by Nishiura and Ueyema (1999):

1. The disappearance of the ground-state solution due to a fold point.

2. The existence of a dimple eigenfunction at the fold point, responsible for the
initiation of the self-replication process.

3. Stability of the steady-state solution on one side of the fold point.

4. The alignment (or cascade) of the fold points for K spots.

• Verification of these conditions is usually done numerically

• Analytic verificationis an open problem for the GS model; order too high.

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–10 –8 –6 –4 –2 2 4 6 8 10
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Simpler self-replication model in RN

ut = ∆u− u +
(1 + a|x|q)up∫

RN (1 + a |x|q)up+1
; ∇u(0, t) = 0 (5)

• Steady state satisfies (after rescaling):

0 = urr +
N − 1

r
ur − u + (1 + arq)up; u′ (0) = 0, u > 0 (ss)

• Existence of ground state depends on a, q, p

• Main result: Self-replication occurs if a is gradually increased from 0, provided that

p > 1 and q >
(p− 1)N

2
if N = 1 or 2

1 < p <
N + 2

N − 2
and q >

(p− 1) (N − 1)

2
if N ≥ 3.
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Example: Bifurcation structure in 1-D

0 = urr − u +
(
1 + ar2

)
u2; u′ (0) = 0, u > 0

• Two-bump solution connects to one-bump solution in a fold-point bifurcation. This is
the first condition for self replication.

s := u(0; a)
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Bifurcation structure in 3D

0 = urr +
2

r
ur − u + (1 + arq)u2; u′ (0) = 0, u > 0

• If q > 1, there is a solution with a� 1, u(0)� 1 given by

u(r) ∼ Cw (r − r0) where r0 =

(
1

a

)1/q(
1

q − 1

)1/q

where w′′ − w + wp = 0 is a 1-D ground state, C some constant.

• If q < 1, there is a solution for a� 1 (no fold point)

• If q = 1, there is a solution with a� 1, u(0)� 1 given by

u(r) ∼ Cw (r − r0) where r0 = O (ln a)

0.75
1

1.251.5

2

3

0

1

2

3

4

0.2 0.4 0.6 0.8 1

p = 2, q as indicated
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• Theorem: There is a fold point when q > 1; no fold point if q = 1.

• Theorem: The eigenfunction at the fold point has a dimple shape. This verifies
Nishiura-Ueyema condition 2

–1

0

1

–10 –5 5 10

–1

0

1

–10 –5 5 10

Dimple eigenvalue for simplified model (left) and for GS model (right)
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Comparison with GS model
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Left: GS model (movie). Right: Simplified model (movie).

• GS model: a cascade of self-replication events, resulting in multiple interior spikes.

• Simplified model: only one self-replication event; the spike moves to and merges with
the boundary.

• Initial stages of self-replication mechanism are similar for the two models.

40



Nonradial stability (N = 3)

• Using spherical coordinates we decompose

Z(x, y, z) = Φ(r)Y m
l (θ, φ); l = 0, 1, . . . ; m = 0,±1 . . .± l

where Y m
l are the spherical harmonics.

• For l ≥ 2, The nonlocal term in (NLEP) disappears since
∫
hZup−1 = 0, l ≥ 2 and

we get

λlΦ = Φrr +
2

r
Φr −

γ

r2
Φ− Φ + phup−1Φ; γ = l(l + 1), l ≥ 2. (NREP)

• In the threshold case q = p− 1 and a� 1,

u(r) ∼ Cw (r − r0) where r0 = O (ln a)

so that (NREP) becomes (LEP):

λlΦ ∼ Φrr − Φ + phup−1Φ

which is unstable!

• Non-radial instability leads to peanut-splitting. Click for movie
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Chemotaxis with Logistic growth

“Classical” chemotaxis model:

ut = Duuxx − χ (uvx)x , vt = Dvvxx + αu− βv. (6)

• u is cell density, v is chemo-attractant.

• Models the ability of micro-organisms or cells to sense and move in response to
chemical gradients.

• Introduced by Keller and Segel in 1970.

• Models:

- Slime molds [Keller 1970],
- Bacterial colonies [Hofer et.al 1995; Tyson Lubkin Murray 1999]
- Skin patterns [Maini, Myerscough, Winters and Murray 1991; Murray and

Myerscough, 1991]
- Tumor formation [Owen, Markus, Sherratt, 1999]

• Mathematics:

- Existence/uniqueness
- Blowup analysis, asymptotics (”Chemotactic collapse)
- Rich pattern formation
- Reviews: Hillen 2009, Horstmann, 2003.
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Chemotaxis with logistic self-production term

ut = Duuxx − χ (uvx)x + ru(1− u/K), vt = Dvvxx + αu− βv. (7)

• The logistic term (r > 0) prevents the chemotactic collapse

• Introduced in [Oster,Murray1989] and [Maini,Myerscough,Winters,Murray 1991].

• When u(1− u/K) is replaced by u(1− u)(u− a), solution consists of back-to-back
interfaces whose stability was studied in detail by [Mimura,Tsujikawa,1996]

• For quadratic logistic terms, spike patterns are observed.

- Complex spike dynamics were observed numerically by Hillen and his students
[Hillen&Painter2001; Wang&Hillen2007]

- Movie: Spike merging/emerging, oscillations, spatio-temporal chaos

- “High-level” modelling by a particle dynamical system: [Hillen,Zielinski&Painter,
2013]
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t = 100

x

u

u

t

v

x

Figure 1: Left: numerical simulation of (8) on a domain of size 10 with ε = 0.05, a = 15.
Contour plot of u in time and space is shown. Right: snapshot of the solution at t = 100..
Software FlexPDE [?] was used for numerical simulations of the time-dependent system
(8).
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Basic mechanisms underlying spike dynamics

1. What is the profile of the spike?

2. Why/when do the spikes move towards each-other? [Merging]

3. What is the mechanism responsible for “spike insertion”? [Emerging]

4. Is it possible to stabilize an interior spike? [which is unstable for the ”classical” KS
model]
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Regime 1: spike merging/emerging

• Rescale to this form:

ut = (εux − uvx)x + u− u2, τvt = vxx +
a

ε
u− v (8)

ux(±L, t) = 0 = vx(±L, t) (9)

• Biologically, this corresponds to small diffusion of cell density u (relative to the chemo-
attractant v) and high chemo-attractant production by cells.

• Inner region:

x = εy

u = U(y);

v = v0 + εW (y)

U0yy − (U0W0y)y = 0; W0yy + aU0 = 0. (10)

U0 = ξ sech2

(
y

√
ξa

2

)
; W0y = −

√
2ξa tanh

(
y

√
ξa

2

)
(11)

• Outer region: two types.
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- Type 1:
v′′ − v = 0, x� ε, v′(L) = 0

v = A cosh(x− L), x� ε. (12)

- Type 2: a novel, third order ODE for v :

(v − v′′) (v′′ − 1) + (v − v′′)′ v′ = 0. (13)

• The height ξ is determined using solvability condition to be ξ = 3/2 [for type 1]
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Figure 2: Two types of steady state solutions to (ss). Parameter values are ε = 0.1, L =
1.5, a = 5. Solid curves are obtained by using Maple’s numerical boundary value problem
solver to solve (ss). Dashed curves are asymptotic approximations as follows. Type I: u is
exponentially small in the outer region. Dashed curve is the asymptotic solution given by
(??) (for u) and by (??) (for v). Type II: u is ofO(ε) in the outer region and is non-constant
there. Dashed curve for u denotes the inner asymptotic solution (11) with ξ determined by
solving (??) (??), (??) simultaneously. Dashed curve for v shows the corresponding outer
solution (??).
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Merging behaviour (Type 1)

• A single interior spike is structurally stable (wrt to even perturbations) but
translationally unstable (odd perturbation)

• Main result: there exists a positive translational eigenvalue λ given by

λ
sinhL cosh(µL)√

2ξa
= coshL coshµL− µ sinhµL sinhL; µ =

√
1 + λτ. (14)

• Positivity follows from (14):

- lhs(14)→∞ as λ→∞ and rhs(14)→ −∞ as λ→∞.

- When λ = 0 we have lhs(14) = 0 and rhs(14) = 1.

- Thus there is a λ > 0 solution to (14).

• Conclusion: a single interior spike moves to the boundary of the interval.

• Corrollary: two interior spikes will move either towards each other or to the boundary.
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Emerging behaviour (Type 2)

• Due to a fold-point bifurcation in the outer region

• Corresponds to the dissapearence of the solution to the 3rd order ODE.
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a a

ac

ac

v(L) v(L)

(a) (b)

Figure 3: Bifurcation diagram for type I and II solutions. Solid curves denote the full
problem whereas dotted curves are the asymptotics. The horizontal red line corresponds
to the fold point ac. (a) ε = 0.05, L = 1.5. (b) ε = 0.15, L = 2.5. Maple’s boundary
value probelm solver and its continuation capabilities were used to compute the solid
curves
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u v

Figure 4: Evolution of (8) with ε = 0.05, L = 1.5 and a = 2 − 10−4t. Due to the fold
point bifurcation, spike insertion occurs as a is decreased below ac ∼ 1.08. FlexPDE [?]
was used for numerical computations
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NEW: Stable interior spike

• Regime 2:

ut = uxx − (uvx)x + u− u2, τvt = ε2vxx − aεv + u, x ∈ [−L,L] (15)

• Steady state: triple-deck boundary layer :

Inner layer: x = εy

Middle layer: x = ε1/2z

Outer layer: x = x

- Inner layer: as before,

u ∼ ξ sech2

(
y

√
ξa

2

)
, v ∼ ln(u)

- Middle layer:

v ∼ Ae−z, u ∼ 4ξ exp
(
Ae−z − A

)
, A =

√
2ξ

aε
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- Outer layer: uxx + u ∼ 0,

u ∼ B cos (x− L) , B =
4ξ

cosL
exp

(
−
√

2ξ

aε

)

• Matching through the three layers, we get

v(L) ∼ 6

εa cosL
exp

(
−
√

3

aε

)
+

√
6

aε
2 exp

(
−L
√
a

ε

)
. (16)

- The first term is dominant if L >
√

3
a and second term is dominant if L <

√
3/a

- v(L) has a minimum when L =
√

3/a.

- THEOREM: A single interior spike in regime 2 is stable if L >
√

3/a, it is
unstable if L <

√
3/a.

- This is the first time that a interior stable spike was shown to exist for KS-type
model!
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Figure 5: Numerical simulation of (15) with ε = 0.05, τ = 1. Left: a = 1, the interior spike
is unstable and moves to the boundary. Right: a = 2, the interior spike is stable. FlexPDE
[?] was used for numerical computations.
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Reference

T. Kolokolonikov, J Wei, and A. Alcolado, (2013) Basic mechanisms driving complex spike
dynamics in a chemotaxis model with logistic growth, SIAM J.Appl.Math, 2014.
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UCLA Model of hot-spots in crime

• Originally proposed by Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi, and
Chayes, 2008 [The UCLA model]

• Crime is ubiquious but not uniformly distributed

- Some neigbourhoods are worse than others, leading to crime ”hot spots”

- Crime hotspots can persist for long time.

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.
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• Crime is temporaly correlated:

- Criminals often return to the spot of previous crime

- If a home was broken into in the past, the likelyhood of subsequent breakin
increases

- Example: graffitti ”tagging”
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Modelling criminal’s movement

• In the original model, biased Brownian motion was used to model criminal’s movement

• Our goal is to extend this model to incorporate more realistic motion

• Typical human motion consists short periods of fast movement [car trips] interspersed
with long periods of slow motion [pacing, thinking about theorems, sleeping...]

• Such motion is often modelled using Levi Flights: At each time, the speed
is chosen according to a power-law distribution; direction chosen at random:
|y(t + δt)− y(t)| = δtX where X is a power-law distribution whose distribution
function is

f (d) = C |d|−µ

• µ is the power law exponent

- In 1D, 1 < µ ≤ 3; in 2D, 1 < µ ≤ 4.

- µ = 3 corresponds to Brownian motion in one dimension.
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• González, Hidalgo, Barabási, Understanding individual human mobility patterns,
Nature 2008, use cellphone data to suggest that human motion follows “truncated”
Levi flight distribution with µ ≈ 2.75.
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Discrete (cellular automata) model

• Two variables

Ak(t) ≡ attractiveness at node k, time t;

Nk(t) ≡ criminal density at node k

• Modelling attractiveness: Attractiveness has static and dynamic component:

Ak(t) ≡ A0 + Bk(t).

Bk(t + δt) =

[
(1− η̂)Bk(t) +

η̂

2
(Bk−1 + Bk+1)

]
︸ ︷︷ ︸ (1− wδt)︸ ︷︷ ︸+ δtAkNkθ︸ ︷︷ ︸ .

”broken window effect” decay rate # of robberies

- 0 < η̂ < 1 is the strength of broken window effect

- w is the decay rate
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• Modelling criminal movement: Define the relative weight of a criminal moving from
node i to node k, where i 6= k, as

wi→k =
Ak

lµ |i− k|µ
. (17)

- l is the grid spacing, µ the Levi flight power law exponent
- The weight is biased by attractiveness field

• The transition probability of a criminal moving from point i to point k, where i 6= k,
is

qi→k =
wi→k∑

j∈Z,j 6=iwi→j
. (18)

• Update rule for criminal density:

Nk(t + δt) =
∑

i∈Z,i 6=k

Ni · (1− Aiδt) · qi→k + Γδt. (19)

- Aiδt ≡ probability that criminal robs
- (1− Aiδt) ≡ probability that no robbery occurs
- Ni · (1− Aiδt) ≡ expected number of criminals at node i that don’t rob
- Ni · (1−Aiδt) · qi→k ≡ expected number of criminals that move from mode i to

mode k.
- Γδt ≡ constant ”feed rate” of the criminals
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Take a limit l, δt� 1 :

• Main trick is to write Ai ∼ A(x) where x = li; then∑
j∈Z,j 6=i

wi→j =
∑

j∈Z,j 6=i

Aj

lµ |i− j|µ

=
∑

j∈Z,j 6=i

Aj − Ai

lµ |i− j|µ
+
∑

j∈Z,j 6=i

Ai

lµ |i− j|µ
(20)

∼ 1

l

∫ ∞
−∞

A(y)− A(x)

|x− y|µ
dy + l−µ2ζ(µ)A(x)

• We recognize the integral as fractional Laplacian,

∆sf (x) = 22s Γ (s + 1/2)

π1/2|Γ(−s)|

∫ ∞
−∞

f (x)− f (y)

|x− y|2s+1
dy, 0 < s ≤ 1.

• Key properties:

- The normalization constant is chosen so that the Fourier transform is:

Fx 7→q {∆sf (x)} = −|q|2sFx 7→q{f (x)}. (21)

- s = 1 corresponds to the usual Laplacian: ∆sf (x) = fxx if s = 1.
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Continuum model

The continuum limit of CA model becomes
∂A

∂t
= ηAxx − A + α + Aρ. (22)

∂ρ

∂t
= D

[
A∆s

( ρ
A

)
− ρ

A
∆s (A)

]
− Aρ + β (23)

where

s =
µ− 1

2
∈ (0, 1]; η =

l2η̂

2δtw
; D =

l2s

δt

π1/22−2s|Γ (−s) |
zΓ (2s + 1)w

; α = A0/w; β = Γθ/w2.

• Separation of scales: if l, δt� 1 then

Dη−s � 1; 0 < s ≤ 1. (24)

• The special case s = 1 (µ = 3) corresponds to regular diffusion ∆1f (x) = fxx.

- We recover the UCLA model because:

A
( ρ
A

)
xx
− ρ

A
Axx =

(
ρx − 2

ρ

A
Ax

)
x

- Note that D →∞ as s→ 1− since |Γ (−s) | ∼ 1/(1− s).
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Simulation of continuum model

• Use a spectral method in space combined with method of lines in time.

• That is, we first discretize in space x ∈ [0, L]. To approximate ∆su, we make use of
Fourier transform:

∆su = F−1
(
−|q|2sFx 7→q{u}

)
. (25)

• This becomes FFT on a bounded interval

• Matlab code to estimate the discretization of ∆su(x), x ∈ [0, 1] :
n = numel(u);

q = 2*pi*[0:n/2-1, -n/2:-1]’;

LaplaceS u = ifft(-q.ˆ(2*s).*fft(u));

• This implicitly imposes periodic boundary conditions on the solution.
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Comparison: discrete vs. continuum

Example: Take µ = 2.5, n = 60, l = 1/60, η̂ = 0.1, δt = 0.01, A0 = 1, Γ = 3.

Then the continuum model gives s = 0.75, η = 0.001388, D = 0.1828, α = 1, β = 3.
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Discrete model is represented by dots; continuum model by solid curves. Blue is A, red is
ρ. Two hot-spots form.
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Turing instability analysis

∂A

∂t
= ηAxx − A + α + Aρ,

∂ρ

∂t
= D

[
A∆s

( ρ
A

)
− ρ

A
∆s (A)

]
− Aρ + β

Steady state:

Ā = α + β; ρ̄ =
β

α + β
.

Linearization:

A(x, t) = A + φeλteikx, (26a)

ρ(x, t) = ρ + ψeλteikx. (26b)

Using the Fourier transform property, we have:

∆seikx = −|k|2seikx

so the eigenvalue problem becomes[
−η|k|2 − 1 + ρ̄ Ā

2ρ̄
Ā
D|k|2s − ρ̄ −D|k|2s − Ā

] [
φ
ψ

]
= λ

[
φ
ψ

]
. (27)

The dispersion relationsh is then given by

λ2 − τλ + δ = 0
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where

τ = −D|k|2s−η|k|2−Ā−1+ρ̄; δ = D|k|2s
(
η |k|2 + 1− 3ρ̄

)
+η |k|2 Ā+Ā.

Note that τ < 0 so the steady state is stable iff δ > 0 for all k. Equilibrium is stable
if ρ̄ < 1/3. If ρ̄ > 1/3 then equilibrium is unstable iff

Ā < Dηsxs
(
−1 +

3ρ̄

x + 1

)
(28)

where x is the unique positive root of

x2 + x (2 + 3ρ̄(1− s)/s) + 1− 3ρ̄ = 0.
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Comparison with numerics
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The effect of changing s on dispersion relationship
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Dominant instability [biggest λ]

••••••• Recall that in terms of original gridsize l and time step δt, we have:

s =
µ− 1

2
∈ (0, 1]; η =

l2η̂

2δtw
; D =

l2s

δt

π1/22−2s|Γ (−s) |
zΓ (2s + 1)w

so that η−sD = O((1− s)−1 (δt)s−1)� 1, 0 < s ≤ 1

• For a physically relevant regime, the continuum model satisfies the key
relationship

η−sD � 1. (29)

Change the variables k = x1/2η−1/2 and let M = Dη−s � 1. Then we obtain

τ = −Mxs − x2 + ρ̄− 1− Ā; δ = Mxs(x + 1− 3ρ̄) + xĀ + Ā.

The fastest growing mode corresponds to the maximum of the dispersion curve:

λ2 − τλ + δ = 0 and λ = τx/δx.
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• Asymptotically, this becomes

kfastest(s) ∼
[
sρ̄(−2 + 3Ā + 6ρ̄)

Dη

] 1
2(s+1)

, Dη−s � 1. (30)

Expected number of “bumps” ≈ floor

(
L

2π
kfastest

)
. (31)

• kfastest is at a maximum when s satisfies

log

(
ρ̄(−2 + 3Ā + 6ρ̄)

Dη
s

)
= s + 1

• In terms of original variables:

µoptimal ∼ 3− 2/ log(1/δt)

• Conclusion: the optimal exponent (from the point of view of criminals) is just below
the Brownian motion µ = 3
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Comparison with numerics

l = 0.01, δt = 0.05, η̂ = 0.02, A0 = 1,Γ = 3

• Intuitively, if the criminals move too fast or too sporadically (smaller µ), they will miss
some opportunities for looting. On the other hand, they will also miss opportunities
if they move very little (µ close to 3). The best strategy should therefore be a
compromise between widely exploring the state space and exploring localized niches.
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• The initial instability has sinusoidal shape

• Eventually, hot-spot forms.

- Hot-spots are localized regions which are not of the sinusoidal shape!

- In general, the total number of stable hot-spots does not correspond to fastest-
growing Turing mode!

- The hot-spot regime is separate from the Turing regime!
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Construction of hotspot solution

Hotspot solution satisfies:

0 = ηAxx − A + α + Aρ; 0 = D
[
A∆s

( ρ
A

)
− ρ

A
∆s (A)

]
− Aρ + β (32)

and is periodic on [−1, 1].

• Key transformation: Let ρ = vA2; then

0 = ηAxx − A + α + A3v; 0 = D [A∆s (vA)− vA∆s (A)]− A3v + β (33)

• Inner problem: Change variables x = η1/2y; then

0 = Ayy − A + α + A3v; 0 = Dη−s [A∆s (vA)− vA∆s (A)]− A3v + β

• As before, Dη−s � 1 so that in the inner region,

A∆s
y (vA)− vA∆s

y (A) ∼ 0 =⇒ v(y) ∼ const . ∼ v0

- Change variables A = v
−1/2
0 w(y), then

wyy − w + w3 = 0 =⇒ w =
√

2 sech (y)
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- To determine v0, integrate (33) and use the identity
∫
f∆sg − g∆sf = 0; then∫

A3v0 ∼
∫
β

• The final result is

A(x) ∼
{
Amaxw(x/

√
η), x = O (ε)

α, x� O(ε).

Amax ∼
2lβπ−3/2

√
η

where l is the half-width of the spot.
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Stability of hot-spots (1D, s = 1)

• Localized states: Consider a periodic pattern consisting of localized hotspots of
radius l. It is stable iff l > lc where

lc :=
(ηD)1/4 π1/2α1/2

β3/4
.

• Turing instability in the limit ε→ 0:

- Preferred Turing characteristic length:

lturing ∼ 2π

[
Dη

ρ̄(−2 + 3Ā + 6ρ̄)

]1/4

, Dη−1 � 1

• Note that both O (lc) = O(lturing) = O((Dη)1/4)!
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Example: lc = 0.60; lturing = 0.13 < lc

t=0.0

t=1.8

t=14.5

t=17.1

t=19.9

0 1 2 3 4 5

t=34505.5
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Small and large eigenvalues
• Near-translational invariance leads to “small eigenvalues (perturbation from zero)”

corresponding eigenfunction is φ ∼ w′.

• Large eigenvalues are responsible for “competition instability”.

• Small eigenvalues become unstable before the large eigenvalues.

• Example: Take l = 1, γ = 2, α = 1, K = 2, ε = 0.07. Then Dc,small =
20.67, Dc,large = 41.33.

- if D = 15 =⇒ two spikes are stable

- if D = 30 =⇒ two spikes have very slow developing instability

- if D = 50 =⇒ two spikes have very fast developing instability
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Stability: large eigenvalues

• Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):

λφ = φ′′ − φ + 3w2φ− χ
(∫

w2φ

)
w3 where w′′ − w + w3 = 0. (34)

with

χ ∼ 3∫∞
−∞w

3dy

(
1 + ε2D(1− cos

πk

K
)
α2π2

4l4β3

)−1

• Step 2: Key identity : L0w
2 = 3w2, where L0φ := φ′′ − φ + 3w2φ. Multiply (34) by

w2 and integrate to get

λ = 3− χ
∫
w5 = 3− χ3

2

∫
w3

Conclusion: (34) is stable iff χ > 2∫
w3 ⇐⇒ D > Dc,large.

• This NLEP in 1D can be fully solved!!
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Stability: small eigenvalues

• Compute asymmetric spikes

• They bifurcate from symmetric branch

• The bifurcation point is precisely when D = Dc,small.

• This is “cheating”... but it gets the correct threshold!!
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Stability of K spikes

• Possible boundary conditions:

Config type Boundary conditions for φ
Single interior spike on [−l, l]

even eigenvalue
φ′(0) = 0 = φ′(l)

Single interior spike on [−l, l]
odd eigenvalue

φ(0) = 0 = φ′(l)

Two half-spikes at [0, l] φ′(0) = 0 = φ(l)
K spikes on [−l, (2K − 1)l],

Periodic BC
φ(l) = zφ(−l), φ′(l) = zφ′(−l),
z = exp (2πik/K) , k = 0 . . . K − 1

K spikes on [−l, (2K − 1)l],
Neumann BC

φ(l) = zφ(−l), φ′(l) = zφ′(−l),
z = exp (πik/K) , k = 0 . . . K − 1

(same BC for ψ)
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Two dimensions

Given domain of size S, let

Kc := 0.07037η−3/8D−1/3

(
ln

1
√
η

)1/3

βα−2/3S. (35)

Then K spikes are stable if K < Kc. Example: α = 1, γ = 2, ε = 0.08, D = 1.

We get S = 16, Kc ≈ 10.19. Starting with random initial conditions, the end state
constits of K = 7.5 < Kc hot-spots [counting boundary spots with weight 1/2 and corner
spots with weight 1/4], in agreement with the theory.
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