Aggregation model and related topics

Theodore Kolokolnikov

Dalhousie University

Aggregation model

We consider a simple model of particle interaction,

$$
\begin{equation*}
\frac{d x_{j}}{d t}=\frac{1}{N} \sum_{\substack{k=1 \ldots N \\ k \neq j}} F\left(\left|x_{j}-x_{k}\right|\right) \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|}, \quad j=1 \ldots N \tag{1}
\end{equation*}
$$

- Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms [Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].
- Interaction force $F(r)$ is of attractive-repelling type: the insects repel each other if they are too close, but attract each-other at a distance.
- Note that acceleration effects are ignored as a first-order approximation.
- Mathematically $F(r)$ is positive for small r, but negative for large r.
- Alternative formulation: (1) is a gradient flow of the minimization problem

$$
\min E\left(x_{1}, \ldots x_{N}\right) \quad \text { where } E=\sum \sum P\left(\left|x_{i}-x_{j}\right|\right) \text { with } F(r)=-P^{\prime}(r)
$$

Confining vs. spreading

- Consider a Morse interaction force:

$$
\begin{equation*}
F(r)=\exp (-r)-G \exp (-r / L) ; \quad G<1, L>1 \tag{2}
\end{equation*}
$$

- If $G L^{3}>1$, the morse potential is confining (or catastrophic): doubling N doubles the density but cloud volume is unchanged:

$$
G=0.5, \quad L=2
$$

- If $G L^{3}<1$, the system is non-confining (or h -stable): doubling N doubles the cloud volume but density is unchanged:

$$
\begin{aligned}
& r=9.56367 \\
& r=13.3742 \\
& r=19.3298 \\
& G=0.5, \quad L=1.2
\end{aligned}
$$

Continuum limit

- For confining potentials, we can take the continuum limit as the number of particles $N \rightarrow \infty$.
- We define the density ρ as

$$
\int_{D} \rho(x) d x \approx \frac{\# \text { particles inside domain } D}{N}
$$

- The flow is then characterized by density ρ and velocity field v :

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(\rho v)=0 ; \quad v(x)=\int_{\mathbb{R}^{n}} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) d y \tag{3}
\end{equation*}
$$

- Variational formulation: Let

$$
\begin{equation*}
E[\rho]:=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \rho(x) \rho(y) P(|x-y|) d x d y ; \quad P^{\prime}(r)=-F(r) \tag{4}
\end{equation*}
$$

Then (3) is the gradient flow of E; minima of E are stable equilibria of (3).

- Questions

1. Describe the equilibrium cloud shape in the limit $t \rightarrow \infty$
2. What about dynamics?

Turing analysis in 1D:

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(v \rho)=0 ; \quad v=K * \rho, \quad K(x)=F(|x|) \operatorname{sign}(x) \tag{5}
\end{equation*}
$$

- Note that $K * 1=0$ (since kernel K is odd) so that $\rho \equiv 1$ is a steady state.
- Linearize around homogeneous state $\rho=1$:

$$
\begin{gathered}
\rho(x, t)=1+\phi(x, t), \quad \phi \ll 1 \\
\phi_{t}+(K * \phi)_{x}=0
\end{gathered}
$$

- Plug in $\phi=e^{\lambda t} e^{i m x}$:

$$
\begin{aligned}
K * \exp (i m x)= & \int_{-\infty}^{\infty} F(|y|) \operatorname{sign}(y) \exp (i m x-i m y) d y \\
= & \exp (i m x) \int_{-\infty}^{\infty} \underbrace{F(|y|) \operatorname{sign}(y)}_{\text {odd }}\{\underbrace{\cos (i m y)}_{\text {even }}-i \underbrace{\sin (i m y)}_{\text {odd }}\} d y \\
= & -2 i \exp (i m x) \int_{0}^{\infty} F(y) \sin (m y) d y \\
& \lambda=-2 m \int_{0}^{\infty} F(y) \sin (m y) d y
\end{aligned}
$$

- Conclusion: The homogeneous state is stable if and only if $\int_{0}^{\infty} F(y) \sin (m y) d y>0$ for all $m>0$.
- In particular, patterns form (w.r.t. low frequencies) if $\int_{0}^{\infty} F(y) y d y<0$.
- Patterns form when the constant state is unstable!
- In the case of the repulsive-attractive morse potential:

$$
\begin{gathered}
F(r)=\exp (-r)-G \exp (-r / L) ; \quad G<1, L>1 \\
\lambda(m)=-2 m^{2}\left(\frac{1}{m^{2}+1}-\frac{G}{m^{2}+\left(\frac{1}{L}\right)^{2}}\right) \\
\lambda(0)=-2\left(1-G L^{2}\right)
\end{gathered}
$$

- Conclusions:
- Homogenous state is unstable iff $G L^{2}>1$
- Confining potential [i.e. "catostrophic case" iff $G L^{2}>1$].

Turing in any dimension d

- Exercise: In dimension d, homogeneous state is unstable (wrt small m) when $\int_{0}^{\infty} F(r) r^{d} d r<0$.
- For Morse force, confining potential if $G L^{d+1}>1$.

Complex patterns:

8

PW-linear force: $F(r)=\min (a r+b, 1-r)$
b=0 0.025

Ring-type steady states

- Seek steady state of the form $x_{j}=r(\cos (2 \pi j / N), \sin (2 \pi j / N)), j=1 \ldots N$.
- In the limit $N \rightarrow \infty$ the radius of the ring must be the root of

$$
\begin{equation*}
I(r):=\int_{0}^{\frac{\pi}{2}} F(2 r \sin \theta) \sin \theta d \theta=0 \tag{6}
\end{equation*}
$$

- For Morse force $F(r)=\exp (-r)-G \exp (-r / L)$, such root exists whenever $G L^{2}>$ 1 [coincides with 1D catastrophic regime]
- For general repulsive-attractive force $F(r)$, a ring steady state exists if $F(r) \leq C<0$ for all large r.
- Even if the ring steady-state exists, the time-dependent problem can be ill-posed!

Continuum limit for curve solutions

- If particles concentrate on a curve, in the limit $N \rightarrow \infty$ we obtain

$$
\begin{equation*}
\rho_{t}=\rho \frac{<z_{\alpha}, z_{\alpha t}>}{\left|z_{\alpha}\right|^{2}} ; \quad z_{t}=K * \rho \tag{7}
\end{equation*}
$$

where $z(\alpha ; t)$ is a parametrization of the solution curve; $\rho(\alpha ; t)$ is its density and

$$
\begin{equation*}
K * \rho=\int F\left(\left|z\left(\alpha^{\prime}\right)-z(\alpha)\right|\right) \frac{z\left(\alpha^{\prime}\right)-z(\alpha)}{\left|z\left(\alpha^{\prime}\right)-z(\alpha)\right|} \rho\left(\alpha^{\prime}, t\right) d S\left(\alpha^{\prime}\right) . \tag{8}
\end{equation*}
$$

- Depending on $F(r)$ and initial conditions, the curve evolution may be ill-defined!
- For example a circle can degenerate into an annulus, gaining a dimension.
- We used a Lagrange particle-based numerical method to resolve (7).
- Agrees with direct simulation of the ODE system (1):

Local stability of a ring

- Turing-type analysis (linearization around the ring solution)
- Direct approach for ODE linearization:

$$
x_{k}=r_{0} \exp (2 \pi i k / N)\left(1+\exp (t \lambda) \phi_{k}\right), \quad \phi_{k} \ll 1 .
$$

- After some algebra:

$$
\begin{gathered}
\lambda \phi_{j}=\frac{1}{N} \sum_{k \neq j} G_{+}\left(\frac{\pi(k-j)}{N}\right)\left(\phi_{j}-\phi_{k} \exp \left(\frac{2 \pi i(k-j)}{N}\right)\right) \\
+G_{-}\left(\frac{\pi(k-j)}{N}\right)\left(\bar{\phi}_{k}-\bar{\phi}_{j} \exp \left(\frac{2 \pi i(k-j)}{N}\right)\right), \\
G_{+}=\frac{1}{2} F^{\prime}\left(2 r_{0}|\sin \theta|\right)+\frac{F\left(2 r_{0}|\sin \theta|\right)}{4 r_{0}|\sin \theta|} ; \quad G_{-}=\frac{1}{2} F^{\prime}\left(2 r_{0}|\sin \theta|\right)-\frac{F\left(2 r_{0}|\sin \theta|\right)}{4 r_{0}|\sin \theta|} .
\end{gathered}
$$

- Anzatz:

$$
\phi_{j}=b_{+} e^{2 m \pi i j / N}+b_{-} e^{-2 m \pi i j / N}
$$

$$
\begin{align*}
& \lambda\binom{b_{+}}{b_{-}}= M(m) \tag{9}\\
&\binom{b_{+}}{b_{-}}, \quad M(m):=\left[\begin{array}{cc}
I_{1}(m) & I_{2}(m) \\
I_{2}(m) & I_{1}(-m)
\end{array}\right] ; m=1,2, \ldots \\
& I_{1}(m)=\frac{4}{N} \sum_{l=1}^{N / 2} G_{+}\left(\frac{\pi l}{N}\right) \sin ^{2}\left((m+1) \frac{\pi l}{N}\right) \\
& I_{2}(m)=\frac{4}{N} \sum_{l=1}^{N / 2} G_{-}\left(\frac{\pi l}{N}\right)\left[\sin ^{2}\left(\frac{\pi l}{N}\right)-\sin ^{2}\left(m \frac{\pi l}{N}\right)\right]
\end{align*}
$$

- Taking the limit $N \rightarrow \infty$, we obtain

$$
\begin{align*}
& I_{1}(m)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left[\frac{F(2 r \sin \theta)}{2 r \sin \theta}+F^{\prime}(2 r \sin \theta)\right] \sin ^{2}((m+1) \theta) d \theta \tag{10a}\\
& I_{2}(m)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left[\frac{F(2 r \sin \theta)}{2 r \sin \theta}-F^{\prime}(2 r \sin \theta)\right]\left[\sin ^{2}(m \theta)-\sin ^{2}(\theta)\right] d \theta \tag{10b}
\end{align*}
$$

- Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
the circle.

Quadratic force $F(r)=r-r^{2}$

- Computing explicitly,

$$
\begin{aligned}
\operatorname{tr} M(m) & =-\frac{\left(4 m^{4}-m^{2}-9\right)}{\left(4 m^{2}-1\right)\left(4 m^{2}-9\right)}<0, \quad m=2,3, \ldots \\
\operatorname{det} M(m) & =\frac{3 m^{2}\left(2 m^{2}+1\right)}{\left(4 m^{2}-9\right)\left(4 m^{2}-1\right)^{2}}>0, \quad m=2,3, \ldots
\end{aligned}
$$

- Conclusion: ring pattern corresponding to $F(r)=r-r^{2}$ is locally stable
- For large m, the two eigenvalues are $\lambda \sim-\frac{1}{4}$ and $\lambda \sim-\frac{3}{8 m^{2}} \rightarrow 0$ as $m \rightarrow \infty$. The presence of arbitrary small eigenvalues implies the existence of very slow dynamics near the ring equilibrium.

General power force

$$
F(r)=r^{p}-r^{q}, \quad 0<p<q
$$

- The mode $m=\infty$ is stable if and only if $p q>1$ and $p<1$.
- Stability of other modes can be expressed in terms of Gamma functions.
- The dominant unstable mode corresponds to $m=3$; the boundary is given by

$$
\begin{aligned}
0 & =723-594(p+q)-27\left(p^{2}+q^{2}\right)-431 p q+106\left(p q^{2}+p^{2} q\right)+19\left(p^{3} q+p q^{3}\right) \\
& +10\left(p^{3} q^{2}+p^{2} q^{3}\right)+6\left(p^{3}+q^{3}\right)+p^{3} q^{3}
\end{aligned}
$$

- Boundaries for $m=4,5, \ldots$ are similarly expressed in terms of higher order polynomials in p, q.

Weakly nonlinear analysis

- Near the instability threshold, higher-order analysis shows a supercritical pitchfork bifurcation, whereby a ring solution bifurcates into an m-symmetry breaking solution
- This shows existence of nonlocal solutions.
- Example: $F(r)=r^{1.5}-r^{q}$; bifurcation $m=3$ occurs at $q=q_{c} \approx 4.9696$; nonlinear analysis predicts

$$
\max _{i}\left|x_{i}\right|-\min _{i}\left|x_{i}\right|=\sqrt{\max \left(0, \tau\left(q-q_{c}\right)\right)} ; \tau \approx 0.109
$$

Point-concentration (hole) solutions

$$
F(r)=\min \left(a r, r-r^{2}\right)
$$

Solutions consist of K "clusters", where each cluster has N / K points inside. The number K depends on a :

Spots: "degenerate" holes

$$
F(r)=\min (a r+\delta, 1-r) ; \quad \delta \ll 1
$$

- Points degenerate into spots of size $O(\delta)$. eg. $a=0.3, \delta=0.05$:

- Inside each of the cluster, the reduced problem is:

$$
\phi_{l}^{\prime}=\sum_{j \neq l}^{n} \frac{\phi_{l}-\phi_{j}}{\left|\phi_{l}-\phi_{j}\right|}-n\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right] \phi_{l}
$$

- α, β depend only on $F(r)$ not on N.

(In)stability of $m \gg 1$ modes

- If $\lambda(m)>0$ for all sufficiently large m, then we call the ring solution ill-posed. Otherwise we call it well-posed.
- For ill-posed problems, the ring can degenerate into either an annulus (eg. $F(x)=$ $0.5+x-x^{2}$) or discrete set of points (eg $F(x)=x^{1.3}-x^{2}$)
- , if $F(r)$ is C^{4} on $[0,2 r]$, then the necessary and sufficient conditions for wellposedness of a ring are:

$$
\begin{align*}
& F(0)=0, \quad F^{\prime \prime}(0)<0 \text { and } \tag{11}\\
& \int_{0}^{\pi / 2}\left(\frac{F(2 r \sin \theta)}{2 r \sin \theta}-F^{\prime}(2 r \sin \theta)\right) d \theta<0 \tag{12}
\end{align*}
$$

- Ring solution for the morse force $F(r)=\exp (-r)-G \exp (-r / L)$ is always ill-posed since $F(0)>0$.

Bifurcation to annulus:

Consider

$$
F(r)=r-r^{2}+\delta, \quad 0 \leq \delta \ll 1 .
$$

- A ring is stable of radius $R \sim \frac{3 \pi}{16}+\frac{2}{\pi} \delta+O\left(\delta^{2}\right)$ if $\delta=0$ but high modes become unstable for $\delta>0$
- The most unstable mode in the discrete system is $m=N / 2$ and can be stable even if the continuous model is ill-posed!
- Proposition: Let

$$
N_{c} \sim \frac{\pi}{4} e^{4-\gamma} \exp \left(\frac{3 \pi^{2}}{64 \delta}\right) .
$$

The ring is stable if $N<N_{c}$.

- For $N>N_{c}$ but $N \sim N_{c}$, solution consists of two radii $R \pm \varepsilon$ where

$$
R=\frac{3 \pi}{32}\left(1+\sqrt{1+\frac{128}{3 \pi^{2}}} \delta\right) ; \quad \varepsilon \sim 4 R e^{-2} \exp \left(\frac{-4 R^{2}+R \pi / 2}{\delta}\right)
$$

- Example: $\delta=0.35 \Longrightarrow N_{c} \sim 90,2 \varepsilon \sim 0.033$. Numerically, we obtain $2 \varepsilon \approx 0.036$. Good agreement!

- Increasing N further, more rings appear until we get a thin annulus of width $O(\varepsilon)$.

Annulus: continuum limit $N \gg N_{c}$:

- $F(r)=r-r^{2}+\delta, \quad 0<\delta \ll 1$
- Main result: In the limit $\delta \rightarrow 0$, the annulus inner and outer radii R_{1}, R_{2} are given by

$$
R \sim \frac{3 \pi}{16}+\frac{2}{\pi} \delta ; \quad R_{1} \sim R-\beta, \quad R_{2} \sim R+\beta
$$

where

$$
\beta \sim 3 \pi e^{-5} \exp \left(-\frac{3 \pi^{2}}{64} \frac{1}{\delta}\right) \ll \delta \ll 1
$$

The radial density profile inside the annulus is

$$
\rho(x) \sim\left\{\begin{array}{c}
\frac{c}{\sqrt{\beta^{2}-(R-|x|)^{2}}}, \quad|R-x|<\beta \ll 1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

- Annulus is exponentially thin in $\delta \ldots$ note the $1 /$ sqrt singularity near the edges!

Key steps for computing annulus profile

- For radially symmetric density, the velocity field reduces to a 1D problem:

$$
v(r)=\int_{0}^{\infty} K(s, r) \rho(s) s d s
$$

where

$$
K(s, r):=\int_{0}^{2 \pi}(r-s \cos \theta) f\left(\sqrt{r^{2}+s^{2}-2 r s \cos \theta}\right) d \theta ; \quad f(r)=1-r+\frac{\delta}{r}
$$

- Assume thin annulus; expand all integrals. It boils down to integral equation

$$
\int_{-\beta}^{\beta} \ln |\eta-\xi| \varrho(\eta) d \eta=1 \text { for all } \xi \in(\alpha, \beta)
$$

- Explicit solution is a special case of Formula 3.4.2 from "Handbook of integral equations" A.Polyanin and A.Manzhirov:

$$
\varrho(\xi)=\frac{C}{\sqrt{\beta^{2}-\xi^{2}}}
$$

3D sphere instabilities

- Radius satisfies: $\int_{0}^{\pi} F\left(2 r_{0} \sin \theta\right) \sin \theta \sin 2 \theta=0$
- Instability can be done using spherical harmonics

Stability of a spherical shell

Define

$$
g(s):=\frac{F(\sqrt{2 s})}{\sqrt{2 s}}
$$

The spherical shell has a radius given implicitly by

$$
0=\int_{-1}^{1} g\left(R^{2}(1-s)\right)(1-s) \mathrm{d} s
$$

Its stability is given by a sequence of 2×2 eigenvalue problems

$$
\lambda\binom{c_{1}}{c_{2}}=\left(\begin{array}{cc}
\alpha+\lambda_{l}\left(g_{1}\right) & l(l+1) \lambda_{l}\left(g_{2}\right) \\
\lambda_{l}\left(g_{2}\right) & \frac{l(l+1)}{R^{2}} \lambda_{l}\left(g_{3}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}, \quad l=2,3,4, \ldots
$$

where

$$
\lambda_{l}(f):=2 \pi \int_{-1}^{1} f(s) P_{l}(s) \mathrm{d} s ;
$$

with $P_{l}(s)$ the Legendre polynomial and

$$
\begin{aligned}
\alpha & :=8 \pi g\left(2 R^{2}\right)+\lambda_{0}\left(g\left(R^{2}\left(1-s^{2}\right)\right)\right. \\
g_{1}(s) & :=R^{2} g^{\prime}\left(R^{2}(1-s)\right)(1-s)^{2}-g\left(R^{2}(1-s)\right) s \\
g_{2}(s) & :=g\left(R^{2}(1-s)\right)(1-s) ; \quad g_{3}(s):=\int_{0}^{R^{2}(1-s)} g(z) d z .
\end{aligned}
$$

Well-posedness in 3D

Suppose that $g(s)$ can be written in terms of the generalized power series as

$$
g(s)=\sum_{i=1}^{\infty} c_{i} s^{p_{i}}, \quad p_{1}<p_{2}<\cdots \quad \text { with } \quad c_{1}>0
$$

Then the ring is well-posed [i.e. $\lambda<0$ for all sufficiently large l] if

$$
\text { (i) } \alpha<0 \quad \text { and } \quad \text { (ii) } p_{1} \in(-1,0) \bigcup(1,2) \bigcup(3,4) \ldots
$$

The ring is ill-posed [i.e. $\lambda>0$ for all sufficiently large l] if either $\alpha>0$ or $p_{1} \notin$ $[-1,0] \bigcup[1,2] \bigcup[3,4] \ldots$

Key identity to prove well-posedness:

$$
\begin{aligned}
\int_{-1}^{1}(1-s)^{p} P_{l}(s) \mathrm{d} s & =\frac{2^{p+1}}{p+1} \frac{\Gamma(l-p) \Gamma(p+2)}{\Gamma(l+p+2) \Gamma(-p)} \\
& \sim-\frac{1}{\pi} \sin (\pi p) \Gamma^{2}(p+1) 2^{p+1} l^{-2 p-2} \quad \text { as } l \rightarrow \infty
\end{aligned}
$$

Proof:

- Use hypergeometric representation: $P_{l}(s)={ }_{2} F_{1}\left(\begin{array}{c}l+1,-l \\ 1\end{array} ; \frac{1-s}{2}\right)$.
- Use generalized Euler transform:
${ }_{A+1} F_{B+1}\left(\begin{array}{l}a_{1}, \ldots, a_{A}, c \\ b_{1}, \ldots, b_{B}, d\end{array} ; z\right)=\frac{\Gamma(d)}{\Gamma(c) \Gamma(d-c)} \int_{0}^{1} t^{c-1}(1-t)^{d-c-1}{ }_{A} F_{B}\left(\begin{array}{l}a_{1}, \ldots, a_{A}, c \\ b_{1}, \ldots, b_{B}, a\end{array}\right.$
to get $\int_{-1}^{1}(1-s)^{p} P_{l}(s) \mathrm{d} s=\frac{2 \pi 2^{p+1}}{p+1}{ }_{3} F_{2}\left(\begin{array}{c}p+1, l+1,-l \\ p+2,1\end{array} ; 1\right)$.
- Apply the Saalschütz Theorem to simplify

$$
{ }_{3} F_{2}\left(\begin{array}{c}
p+1, l+1,-l \\
p+2,1
\end{array} ; 1\right)=\frac{\Gamma(l-p) \Gamma(p+2)}{\Gamma(l+p+2) \Gamma(-p)} .
$$

Generalized Lennard-Jones interaction

$$
g(s)=s^{-p}-s^{-q} ; \quad 0<p, q<1 ; \quad p>q
$$

- Well posed if $q<\frac{2 p-1}{2 p-2}$; ill-posed if $q>\frac{2 p-1}{2 p-2}$.

Example: steady state with $N=1000$ particles. (a) $(p, q)=(1 / 3,1 / 6)$. Particles concentrate uniformly on a surface of the sphere, with no particles in the interior. (b) $(p, q)=(1 / 2,1 / 4)$. Particles fill the interior of a ball. The particles are color-coded according to their distance from the center of mass.

Custom-designed kernels

- In 3D, we can design force $F(r)$ which is stable for all modes except specified mode.
- EXAMPLE: Suppose we want only mode $m=5$ to be unstable. Using our algorithm, we get

$$
\begin{aligned}
& F(r)=\left\{3\left(1-\frac{r^{2}}{2}\right)^{2}+4\left(1-\frac{r^{2}}{2}\right)^{3}-\left(1-\frac{r^{2}}{2}\right)^{4}\right\} r+\varepsilon ; \quad \varepsilon=0.1 . \\
& \text { Particle simulation } \quad \text { Linearized solution }
\end{aligned}
$$

Part II: Constant-density swarms

- Biological swarms have sharp boundaries, relatively constant internal population.
- Question: What interaction force leads to such swarms?
- More generally, can we deduce an interaction force from the swarm density?

Bounded states of constant density

Claim. Suppose that

$$
F(r)=\frac{1}{r^{n-1}}-r, \quad \text { where } n \equiv \text { dimension }
$$

Then the aggregation model

$$
\rho_{t}+\nabla \cdot(\rho v)=0 ; \quad v(x)=\int_{\mathbb{R}^{n}} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) d y .
$$

admits a steady state of the form

$$
\rho(x)=\left\{\begin{array}{ll}
1, & |x|<R \\
0, & |x|>R
\end{array} ; \quad v(x)= \begin{cases}0, & |x|<1 \\
-a x, & |x|>1\end{cases}\right.
$$

where $R=1$ for $n=1,2$ and $a=2$ in one dimension and $a=2 \pi$ in two dimensions.

Proof for two dimensions

Define

$$
G(x):=\ln |x|-\frac{|x|^{2}}{2} ; \quad M=\int_{\mathbb{R}^{n}} \rho(y) d y
$$

Then we have:

$$
\nabla G=F(|x|) \frac{x}{|x|} \quad \text { and } \quad \Delta G(x)=2 \pi \delta(x)-2
$$

so that

$$
v(x)=\int_{\mathbb{R}^{n}} \nabla_{x} G(x-y) \rho(y) d y .
$$

Thus we get:

$$
\begin{aligned}
\nabla \cdot v & =\int_{\mathbb{R}^{n}}(2 \pi \delta(x-y)-2) \rho(y) d y \\
& =2 \pi \rho(x)-2 M \\
& =\left\{\begin{array}{c}
0,|x|<R \\
-2 M,|x|>R
\end{array}\right.
\end{aligned}
$$

The steady state satisfies $\nabla \cdot v=0$ inside some ball of radius R with $\rho=0$ outside such a ball but then $\rho=M / \pi$ inside this ball and $M=\int_{\mathbb{R}^{n}} \rho(y) d y=M R^{2} \Longrightarrow R=1$.

Dynamics in 1D with $F(r)=1-r$

Assume WLOG that

$$
\int_{-\infty}^{\infty} x \rho(x)=0 ; \quad M:=\int_{-\infty}^{\infty} \rho(x) d x
$$

Then

$$
\begin{aligned}
v(x) & =\int_{-\infty}^{\infty} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) d y \\
& =\int_{-\infty}^{\infty}(1-|x-y|) \operatorname{sign}(x-y) \rho(y) \\
& =2 \int_{-\infty}^{x} \rho(y) d y-M(x+1)
\end{aligned}
$$

and continuity equations become

$$
\begin{aligned}
\rho_{t}+v \rho_{x} & =-v_{x} \rho \\
& =(M-2 \rho) \rho
\end{aligned}
$$

Define the characteristic curves $X\left(t, x_{0}\right)$ by

$$
\frac{d}{d t} X\left(t ; x_{0}\right)=v ; \quad X\left(0, x_{0}\right)=x_{0}
$$

Then along the characteristics, we have $\rho=\rho(X, t)$;

$$
\frac{d}{d t} \rho=\rho(M-2 \rho)
$$

Solving we get:

$$
\rho\left(X\left(t, x_{0}\right), t\right)=\frac{M}{2+e^{-M t}\left(M / \rho_{0}-2\right)} ; \quad \rho\left(X\left(t, x_{0}\right), t\right) \rightarrow M / 2 \text { as } t \rightarrow \infty
$$

Solving for characteristic curves

Let

$$
w:=\int_{-\infty}^{x} \rho(y) d y
$$

then

$$
v=2 w-M(x+1) ; \quad v_{x}=2 \rho-M
$$

and integrating $\rho_{t}+(\rho v)_{x}=0$ we get:

$$
w_{t}+v w_{x}=0
$$

Thus w is constant along the characteristics X of ρ, so that characteristics $\frac{d}{d t} X=v$ become

$$
\frac{d}{d t} X=2 w_{0}-M(X+1) ; \quad X\left(0 ; x_{0}\right)=x_{0}
$$

Summary for $F(r)=1-r$ in 1D:

$$
\begin{aligned}
X & =\frac{2 w_{0}\left(x_{0}\right)}{M}-1+e^{-M t}\left(x_{0}+1-\frac{2 w_{0}\left(x_{0}\right)}{M}\right) \\
w_{0}\left(x_{0}\right) & =\int_{-\infty}^{x_{0}} \rho_{0}(z) d z ; \quad M=\int_{-\infty}^{\infty} \rho_{0}(z) d z \\
\rho(X, t) & =\frac{M}{2+e^{-t M}\left(M / \rho_{0}\left(x_{0}\right)-2\right)}
\end{aligned}
$$

Example: $\rho_{0}(x)=\exp \left(-x^{2}\right) / \sqrt{\pi} ; \quad M=1$:

Global stability

In limit $t \rightarrow \infty$ we get:

$$
X=\frac{2 w_{0}}{M}-1 ; \quad w_{0}=0 \ldots M ; \quad \rho(X, \infty)=\frac{M}{2}
$$

We have shown that as $t \rightarrow \infty$, the steady state is

$$
\rho(x, \infty)=\left\{\begin{array}{c}
M / 2, \quad|x|<1 \tag{13}\\
0,|x|>1
\end{array}\right.
$$

- This proves the global stability of (13)!
- Characteristics intersect at $t=\infty$; solution forms a shock at $x= \pm 1$ at $t=\infty$.

Dynamics in 2D, $F(r)=\frac{1}{r}-r$

- Similar to 1D,

$$
\begin{gathered}
\nabla \cdot v=2 \pi \rho(x)-4 \pi M \\
\rho_{t}+v \cdot \nabla \rho
\end{gathered} \begin{aligned}
& =-\rho \nabla \cdot v \\
& =-\rho(\rho-2 M) 2 \pi
\end{aligned}
$$

- Along the characterisitics:

$$
\frac{d}{d t} X\left(t ; x_{0}\right)=v ; \quad X\left(0, x_{0}\right)=x_{0}
$$

we still get

$$
\begin{gather*}
\frac{d}{d t} \rho=2 \pi \rho(2 M-\rho) \\
\rho\left(X\left(t ; x_{0}\right), t\right)=\frac{2 M}{1+\left(\frac{2 M}{\rho\left(x_{0}\right)}-1\right) \exp (-4 \pi M t)} \tag{14}
\end{gather*}
$$

- Continuity equations yield:

$$
\rho\left(X\left(t ; x_{0}\right), t\right) \operatorname{det} \nabla_{x_{0}} X\left(t ; x_{0}\right)=\rho_{0}\left(x_{0}\right)
$$

- Using (14) we get

$$
\operatorname{det} \nabla_{x_{0}} X\left(t ; x_{0}\right)=\frac{\rho_{0}\left(x_{0}\right)}{2 M}+\left(1-\frac{\rho_{0}\left(x_{0}\right)}{2 M}\right) \exp (-4 \pi M t)
$$

- If ρ is radially symmetric, characteristics are also radially symmetric, i.e.

$$
X\left(t ; x_{0}\right)=\lambda\left(\left|x_{0}\right|, t\right) x_{0}
$$

then

$$
\operatorname{det} \nabla_{x_{0}} X\left(t ; x_{0}\right)=\lambda(t ; r)\left(\lambda(t ; r)+\lambda_{r}(t ; r) r\right), \quad r=\left|x_{0}\right|
$$

so that

$$
\begin{gathered}
\lambda^{2}+\lambda_{r} \lambda r=\frac{\rho_{0}\left(x_{0}\right)}{2 M}+\left(1-\frac{\rho_{0}\left(x_{0}\right)}{2 M}\right) \exp (-4 \pi M t) \\
\lambda^{2} r^{2}=\frac{1}{M} \int_{0}^{r} s \rho_{0}(s) d s+2 \exp (-4 \pi M t) \int_{0}^{r} s\left(1-\frac{\rho(s)}{2 M}\right) d s
\end{gathered}
$$

So characteristics are fully solvable!!

- This proves global stability in the space of radial initial conditions $\rho_{0}(x)=$ $\rho_{0}(|x|)$.
- More general global stability is still open.

The force $F(r)=\frac{1}{r}-r^{q-1}$ in 2D

- If $q=2$, we have explicit ode and solution for characteristics.
- For other q, no explicit solution is available but we have differential inequalities: Define

$$
\rho_{\max }:=\sup _{x} \rho(x, t) ; \quad R(t):=\text { radius of support of } \rho(x, t)
$$

Then

$$
\begin{aligned}
\frac{d \rho_{\max }}{d t} & \leq\left(a R^{q-2}-b \rho_{\max }\right) \rho_{\max } \\
\frac{d R}{d t} & \leq c \sqrt{\rho_{\max }}-d R^{q-1}
\end{aligned}
$$

where a, b, c, d are some [known] positive constants.

- It follows that if $R(0)$ is sufficiently big, then $R(t), \rho_{\max }(t)$ remain bounded for all t. [using bounding box argument]
- Theorem: For $q \geq 2$, there exists a bounded steady state [uniqueness??]

Inverse problem: Custom-designer kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

$$
\rho(x)=\left\{\begin{array}{c}
b_{0}+b_{2} x^{2}+b_{4} x^{4}+\ldots+b_{2 n} x^{2 n}, \quad|x|<R \tag{15}\\
0, \quad|x| \geq R
\end{array}\right.
$$

Define the following quantities,

$$
\begin{equation*}
m_{2 q}:=\int_{0}^{R} \rho(r) r^{2 q} d r \tag{16}
\end{equation*}
$$

Then $\rho(r)$ is the steady state corresponding to the kernel

$$
\begin{equation*}
F(r)=1-a_{0} r-\frac{a_{2}}{3} r^{3}-\frac{a_{4}}{5} r^{5}-\ldots-\frac{a_{2 n}}{2 n+1} r^{2 n+1} \tag{17}
\end{equation*}
$$

where the constants $a_{0}, a_{2}, \ldots, a_{2 n}$, are computed from the constants $b_{0}, b_{2}, \ldots, b_{2 n}$ by solving the following linear problem:

$$
\begin{equation*}
b_{2 k}=\sum_{j=k}^{n} a_{2 j}\binom{2 j}{2 k} m_{2(j-k)}, \quad k=0 \ldots n \tag{18}
\end{equation*}
$$

Example: custom kernels 1D

Example 1: $\rho=1-x^{2}, \quad R=1$, then $F(r)=1-9 / 5 r+1 / 2 r^{3}$.

Example 2: $\rho=x^{2}, \quad R=1$, then $F(r)=1+9 / 5 r-r^{3}$.

Example 3: $\rho=1 / 2+x^{2}-x^{4}, \quad R=1$; then $F(r)=1+\frac{209425}{336091} r-\frac{4150}{2527} r^{3}+\frac{6}{19} r^{5}$.

Inverse problem: Custom-designer kernels: 2D

Theorem. In two dimensions, conisder a radially symmetric density $\rho(x)=\rho(|x|)$ of the form

$$
\rho(r)=\left\{\begin{array}{c}
b_{0}+b_{2} r^{2}+b_{4} r^{4}+\ldots+b_{2 n} r^{2 n}, \quad r<R \tag{19}\\
0, \quad r \geq R
\end{array}\right.
$$

Define the following quantities,

$$
\begin{equation*}
m_{2 q}:=\int_{0}^{R} \rho(r) r^{2 q} d r \tag{20}
\end{equation*}
$$

Then $\rho(r)$ is the steady state corresponding to the kernel

$$
\begin{equation*}
F(r)=\frac{1}{r}-\frac{a_{0}}{2} r-\frac{a_{2}}{4} r^{3}-\ldots-\frac{a_{2 n}}{2 n+2} r^{2 n+1} \tag{21}
\end{equation*}
$$

where the constants $a_{0}, a_{2}, \ldots, a_{2 n}$, are computed from the constants $b_{0}, b_{2}, \ldots, b_{2 n}$ by solving the following linear problem:

$$
\begin{equation*}
b_{2 k}=\sum_{j=k}^{n} a_{2 j}\binom{j}{k}^{2} m_{2(j-k)+1} ; \quad k=0 \ldots n \tag{22}
\end{equation*}
$$

This system always has a unique solution for provided that $m_{0} \neq 0$.

Numerical simulations, 1D

- First, use standard ODE solver to integrate the corresponding discrete particle model,

$$
\frac{d x_{j}}{d t}=\frac{1}{N} \sum_{\substack{k=1 \ldots N \\ k \neq j}} F\left(\left|x_{j}-x_{k}\right|\right) \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|}, \quad j=1 \ldots N
$$

- How to compute $\rho(x)$ from x_{i} ? [Topaz-Bernoff, 2010]
- Use x_{i} to approximate the cumulitive distribution, $w(x)=\int_{-\infty}^{x} \rho(z) d z$.
- Next take derivative to get $\rho(x)=w^{\prime}(x)$

[Figure taken from Topaz+Bernoff, 2010 preprint]

Numerical simulations, 2D

- Solve for x_{i} using ODE particle model as before [$2 N$ variables]
- Use x_{i} to compute Voronoi diagram;
- Estimate $\rho\left(x_{j}\right)=1 / a_{j}$ where a_{j} is the area of the voronoi cell around x_{j}.
- Use Delanay triangulation to generate smooth mesh.
- Example: Take

$$
\rho(r)=\left\{\begin{array}{c}
1+r^{2}, r<1 \\
0, r>0
\end{array}\right.
$$

Then by Custom-designed kernel in 2D is:

$$
F(r)=\frac{1}{r}-\frac{8}{27} r-\frac{r^{3}}{3}
$$

Running the particle method yeids...

Numerical solutions for radial steady states for $F(r)=$

 $\frac{1}{r}-r^{q-1}$- Radial steady states of radius R satisfy $\rho(r)=2 q \int_{0}^{R}\left(r^{\prime} \rho\left(r^{\prime}\right) I\left(r, r^{\prime}\right) d r^{\prime}\right.$ where $c(q)$ is some constant and $I\left(r, r^{\prime}\right)=\int_{0}^{\pi}\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \sin \theta\right)^{q / 2-1} d \theta$.
- To find ρ and R, we adjust R until the operator $\rho \rightarrow c(q) \int_{0}^{R}\left(r^{\prime} \rho\left(r^{\prime}\right) K\left(r, r^{\prime}\right) d r^{\prime}\right.$ has eigenvalue 1 ; then ρ is the corresponding eigenfunction.

Vortex dynamics

- Equations first given by Helmholtz (1858): each vortex generates a rotational velocity field which advects all other vortices. Vortex model:

$$
\frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, \quad j=1 \ldots N
$$

- Classical problem; observed in many physical experiments: floating magnetized needles (Meyer, 1876); Malmberg-Penning trap (Durkin \& Fajans, 2000), BoseEinstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides et.al, 2001)
- Conservative, hamiltonian system
- General initial conditions lead to chaos: movie - chaos
- Certain special configurations are "stable" in hamiltonial sense: movie - stable
- Rigidly rotating steady states are called relative equilibria:

$$
z_{j}(t)=e^{\omega i t} \xi_{j} \Longleftrightarrow 0=\sum_{k \neq j} \gamma_{k} \frac{\xi_{j}-\xi_{k}}{\left|\xi_{j}-\xi_{k}\right|^{2}}-\omega \xi_{j}
$$

PHYSICAL REVIEW E, VOLUME 64, 011603

Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms and molecules

Figure 2 Dynamic patterns formed by various numbers (m) of disks rotating at the ethylene glycol/water-air interface. This interface is 27 mm above the plane of the external magnet. The disks are composed of a section of polyethylene tube (white) of outer diameter 1.27 mm , filled with poly(dimethylsiloxane), POMS, doped with $25 \mathrm{wt} \%$ of magnetite (black centre). All disks spin around their centres at $\omega=700$ r.p.m., and the entire aggregate slowly ($\Omega<2$ r.p.m.) precesses around its centre. For $n<5$, the aggregates do not have a 'nucleus' - all disks are precessing on the rim of a circle. For $n>5$, nucleated structures appear. For $n=10$ and $n=12$, the patterns are bistable in the sense that the two observed patterns interconvert irregularly with time. For $n=19$, the hexagonal pattern (left) appears only above $\omega \approx 800$ r.p.m., but can be 'annealed' down

Observation of Vortex Lattices in Bose-Einstein Condensates

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle

Fig. 1. Observation of vortex lattices. The examples shown contain approximately (A) 16, (B) 32, (C) 80 , and (D) 130 vortices. The vortices have "crystallized" in a triangular pattern. The diameter of the cloud in (D) was 1 mm after ballistic expansion, which represents a
 magnification of 20. Slight asymmetries in the density distribution were due to absorption of the optical pumping light.

- Campbell and Ziff (1978) classified many stable configurations for small (eg. $N=$ 18) number of vortices of equal strength.

- Goal: describe the stable configuration in the continuum limit of a large number of vortices N (eg. $N=100,1000 \ldots$). These have been observed in several recent expriments: Bose Einstein Condensates, magnetized disks

Key observation

$$
\begin{equation*}
\text { Vortex model: } \frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, \quad j=1 \ldots N . \tag{V}
\end{equation*}
$$

Relative equilibrium: $z_{j}(t)=e^{\omega i t} \xi_{j} \Longleftrightarrow 0=\sum_{k \neq j} \gamma_{k} \frac{\xi_{j}-\xi_{k}}{\left|\xi_{j}-\xi_{k}\right|^{2}}-\omega \xi_{j}$

$$
\begin{equation*}
\text { Aggregation model: } \frac{d x_{j}}{d t}=\sum_{k \neq j} \gamma_{k} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}-\omega x_{j} \text {. } \tag{A}
\end{equation*}
$$

- One-to-one correspondence between the steady statates $x_{j}(t)=\xi_{j}$ of (A) and the relative equilibrium $z_{j}(t)=e^{\omega i t} \xi_{j}$ of (V).
- Spectral equivalence of (V) and (A) : The equilibrium $x_{j}(t)=\xi_{j}$ is asymptotically stable for the aggregation model (A) if and only if the relative equilibrium $z_{j}(t)=e^{\omega i t} \xi_{j}$ is stable (neutrally, in the Hamiltonian sense) for the vortex model (V)!
- Aggregation model fully describes relative equilibria and their linear stability in the vortex model.
- Aggregation model is easier to study than the vortex model.

Vortices of equal strength $\gamma_{k}=\gamma$

Corresponding aggregation model:

$$
\begin{equation*}
\frac{d x_{j}}{d t}=\sum_{k \neq j} \gamma \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}-\omega x_{j} \tag{23}
\end{equation*}
$$

- Coarse-grain by defining the particle density to be

$$
\begin{equation*}
\rho(x)=\sum_{k=1 \ldots N} \delta\left(x-x_{k}\right) \tag{24}
\end{equation*}
$$

Then (23) is equivalent to $\dot{x}_{j}=v\left(x_{j}\right)$ where

$$
\begin{equation*}
v(x) \equiv-\omega x+\gamma \int_{\mathbb{R}^{2}} \frac{x-y}{|x-y|^{2}} \rho(y) d y \tag{25}
\end{equation*}
$$

and density is subject to conservation of mass

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(\rho v)=0 \tag{26}
\end{equation*}
$$

- [Fetecau\&Huang\&Kolokolnikov2011]: In the limit $N \rightarrow \infty$, the steady state density of (A) is constant inside the ball of radius

$$
R_{0}=\sqrt{N \gamma / \omega} .
$$

Fig. 1. Stable relative equilibria of $N=25,50$ and 200 vortices of equal strength. The dashed line shows the analytical prediction $R_{0}=\sqrt{N \gamma / \omega}$ of the
 swarm radius in the $N \rightarrow \infty$ limit (see (6)).

Crystallization

$$
\begin{equation*}
\text { Vortex model: } \frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, \quad j=1 \ldots N \tag{V}
\end{equation*}
$$

Reltive equiliria: $z_{j}(t)=e^{\omega i t} \xi_{j} \Longleftrightarrow 0=\sum_{k \neq j} \gamma_{k} \frac{\xi_{j}-\xi_{k}}{\left|\xi_{j}-\xi_{k}\right|^{2}}-\omega \xi_{j}$
Vortex with dissipation: $\frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}+\mu\left(\sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}-\omega z_{j}\right)$

- In many physical experiments of BEC there is damping or dissipation involved.
- Spectral equivalence: Relative equilibria and their stability are the same for (V) and (D)
- Both the vortex model and the "aggregation model" model are limiting cases of (D).
- Taking $\mu>0$ stabilizes vortex dynamics! chaos damped stable
- This allows us to find stable relative equilibria numerically.

Vortex dynamics in BEC with trap

- For BEC, dynamics have extra term corresponding to prcession around the trap:

$$
\begin{equation*}
\dot{z}_{j}=\underbrace{i \frac{a}{1-r^{2}} z_{j}}_{\text {trap-interaction }}+\underbrace{i c \sum_{k \neq j} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}}_{\text {self-interaction }}, \quad j=1 \ldots N \tag{27}
\end{equation*}
$$

- Large N limit:

$$
\begin{gathered}
v(x) \equiv(f(r)-\omega) x+c \int_{\mathbb{R}^{2}} \frac{x-y}{|x-y|^{2}} \rho(y) d y \\
\int_{\mathbb{R}^{2}} \rho(x) d x=N
\end{gathered}
$$

- Non-uniform vortex lattice state:

$$
\begin{aligned}
\rho & \sim \frac{1}{\pi c}\left(\omega-\frac{a}{\left(1-r^{2}\right)^{2}}\right) \text { if } r<R, \quad \rho=0 \text { otherwise, } \\
\text { with } \omega & =\frac{a}{1-R^{2}}+\frac{c N}{R^{2}}
\end{aligned}
$$

(c)

Figure 2. Top row: stable equilibrium of Eq. (2.4) with $f(r)$ as in Eq. (2.2), with N as shown in the title and with $c=$ $0.5 / N, \omega=2.95139, a=1$. The dashed circle is the asymptotic boundary whose radius $R=0.6$ is the smaller solution to Eq. (4.9). Bottom row: average of $\rho(|x|) / \rho(0)$ as a function of $r=|x|$. Solid curve corresponds to the numerical computation. Dashed curve is the formula (4.10). Vertical line is the boundary $r=R$.

Maximum N

$$
\omega_{c}=(\sqrt{a}+\sqrt{c N})^{2} ; \quad R_{c}^{2}=\frac{\sqrt{c N}}{\sqrt{a}+\sqrt{c N}} .
$$

- No solutions if $\omega<\omega_{c}$
- Two solutions $R=R_{ \pm}$if $\omega>\omega_{c}$
- smaller is stable, larger has negative density (unphysical).
- Corrollary: must have $N<N_{\max }$ where

$$
\begin{equation*}
N_{\max }=\frac{(\sqrt{\omega}-\sqrt{a})^{2}}{c} \tag{28}
\end{equation*}
$$

$N+1$ problem

- N vortices of equal strength and a single vortex of a much higher strength:

$$
\begin{align*}
\frac{d x_{j}}{d t} & =\frac{a}{N} \sum_{\substack{k=1 \ldots N \\
k \neq j}} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}+b \frac{x_{j}-\eta}{\left|x_{j}-\eta\right|^{2}}-x_{j}, \quad j=1 \ldots N \tag{29}\\
\frac{d \eta}{d t} & =\frac{a}{N} \sum_{k=1 \ldots N} \frac{\eta-x_{k}}{\left|\eta-x_{k}\right|^{2}}-\eta \tag{30}
\end{align*}
$$

- Mean-field limit $N \rightarrow \infty$:

$$
\left\{\begin{array}{l}
\rho_{t}+\nabla \cdot(\rho \nabla v)=0 \tag{31}\\
v(x)=a \int_{\mathbb{R}^{2}} \rho(y) \frac{x-y}{|x-y|^{2}} d y+b \frac{x-\eta}{|x-\eta|^{2}}-x \\
\frac{d \eta}{d t}=a \int_{\mathbb{R}^{2}} \rho(y) \frac{\eta-y}{|\eta-y|^{2}} d y-\eta
\end{array} .\right.
$$

- Main result:. Define $R_{1}=\sqrt{b}, R_{0}=\sqrt{a+b}$ and suppose that η is any point such that $B_{R_{1}}(\eta) \subset B_{R_{0}}(0)$. Then the equilibrium solution for (31) is constant inside $B_{R_{0}}(0) \backslash B_{R_{1}}(\eta)$ and is zero outside.

61

- Unlike the $N+0$ problem, the relative equilibrium for the $N+1$ problem is non-unique: any choice of η yields a steady state as long as $|\eta|<R_{0}-R_{1}$.

Degenerate case: big central vortex

- Small vortices are constrained to a ring of radius R_{0}. with big vortex at the center.
- Non-uniform distribution of small particles!
- Question: Determine the size of the gap $\Theta_{\text {gap }}$.

- Main Result:

$$
\Theta_{g a p} \sim C N^{-1 / 3}
$$

where the constant $C=8.244$ satisfies

$$
\left(8-6 u+2 u^{3}\right) \ln (u-1)=3 u\left(u^{2}-4\right) ; \quad C=2\left(\frac{6 \pi(2-u)}{u\left(u^{2}-1\right)}\right)^{1 / 3}
$$

Sketch of proof

- [Barry+Wayne, 2012]: Set $x_{j}(t) \sim R_{0} e^{i \theta_{j}(t)}$ then at leading order we get

$$
\begin{equation*}
\frac{d \theta_{j}}{d t}=\frac{1}{N} \sum_{k \neq j}\left(\frac{\sin \left(\theta_{j}-\theta_{k}\right)}{2-2 \cos \left(\theta_{j}-\theta_{k}\right)}-\sin \left(\theta_{j}-\theta_{k}\right)\right) \tag{32}
\end{equation*}
$$

- In the mean-field limit $N \rightarrow \infty$, the density distribution $\rho(\theta)$ for the angles θ_{j} satisfies

$$
\left\{\begin{array}{l}
\rho_{t}+\left(\rho v_{\theta}\right)_{\theta}=0 \tag{33}\\
v(\theta)=P V \int_{-\pi}^{\pi} \rho(\phi)\left(\frac{\sin (\theta-\phi)}{2-2 \cos (\theta-\phi)}-\sin (\theta-\phi)\right) d \phi
\end{array}\right.
$$

where $P V$ denotes the principal value integral, and $\int_{-\pi}^{\pi} \rho=1$.

- [Barry, PhD Thesis]: Up to rotations, the steady state density $\rho(\theta)$ for which $v=0$ must be of the form

$$
\begin{equation*}
\rho(\theta)=\frac{1}{2 \pi}(1+\alpha \cos \theta) . \tag{34}
\end{equation*}
$$

This follows from (33) and (formal) expansion

$$
\frac{\sin t}{2-2 \cos t}-\sin t=\sin (2 t)+\sin (3 t)+\sin (4 t)+\ldots
$$

- α is free parameter in the continuum limit.
- For discrete N, particle positions satisfy

$$
\int_{\theta_{j-1}}^{\theta_{j}} \frac{1}{2 \pi}(1+\alpha \cos \theta) d \theta=\frac{1}{N}
$$

To estimate $\Phi_{\text {gap }}$, choose θ_{1} so that $v\left(\theta_{1}\right) \sim 0$. See our paper for hairy details.

$N+K$ problem

Main result: Let $R_{k}=\sqrt{b_{k}}, \quad k=1 \ldots K$ and $R_{0}=\sqrt{a+b_{1}+\ldots+b_{K}}$. Suppose $\eta_{1} \ldots \eta_{K}$ are such $B_{R_{1}}\left(\eta_{1}\right) \ldots B_{R_{K}}\left(\eta_{K}\right)$ are all disjoint and are contained inside $B_{R_{0}}(0)$. The equilibrium density is constant inside $B_{R_{0}}(0) \backslash \bigcup_{k=1}^{K} B_{R_{k}}\left(\eta_{k}\right)$ and is zero outside.

$N+K$ problem, with very large K vortices

- The blue ellipse is described by the reduced system

$$
\begin{equation*}
\frac{d \xi_{j}}{d t}=\frac{1}{N} \sum_{\substack{k=1 \ldots N \\ k \neq j}} \frac{1}{\overline{\xi_{j}-\xi_{k}}}+\frac{1}{2} \bar{\xi}_{k}-\xi_{k} \tag{35}
\end{equation*}
$$

- From [K, Huang, Fetecau, 20011], its axis ratio is 3.

