Spots, stripes, and labyrinths in reaction diffusion systems

Theodore Kolokolnikov

Joint work with Michael Ward and Juncheng Wei

Some reaction diffusion patterns in 2D

Reference: B. Peña and C. Pérez-García, Stability of Turing patterns in the Brusselator model, Phys. Rev. E. Vol. 64(5), 2001.

Reference: the Xmorphia website

Gierer-Meinhardt model:

(a) Experiment 5: $t=1400$

(b) Experiment 5: $t=1600$

(c) Experiment 5: $t=1800$

(d) Experiment 5: $t=4300$

Gierer-Meinhardt model with large saturation:

Pattern types

- Turing patterns

- Localized structures: spikes

- Localized structures: interfaces, mesas

- What is the stability when these patterns are extended trivially to 2-D?

Gray Scott model

$$
\begin{aligned}
v_{t} & =\varepsilon^{2} \triangle v-v+A v^{2} u \\
\tau u_{t} & =D \triangle u-u+1-v^{2} u
\end{aligned}
$$

- We assume $D \gg \varepsilon^{2}$
- In 1D solutions are spikes.
- Stability in 1D depends on small $O\left(\varepsilon^{2}\right)$ and large $O(1)$ eigenvalues.
- In 2D: large eigenvalues \leftrightarrow breakup, small eigenvalues \leftrightarrow zigzag istability

Main result. Assume that domain width is of O(1) and

$$
\varepsilon^{2} \ll D
$$

Then a breakup instability is always present.

Suppose that

$$
\varepsilon \sqrt{D} \geq \frac{3}{2 z_{0}} A^{2}
$$

where $z_{0} \sim 1.1997$ is a root of

$$
z_{0} \tanh z_{0}=1
$$

and

$$
A \ll O(1) .
$$

Then and only then there are no zigzag instabilities.

Mesa patterns in GS

When $D=O\left(\varepsilon^{2}\right)$, mesa patterns are possible.

In the case

$$
D=\varepsilon^{2} \text { and } A=\frac{3}{\sqrt{2}}=2.1213
$$

an exact heteroclinic solution exists [HPT, 2000].
When $D-\varepsilon^{2}=O(1) \neq 0$, no exact solution is known. However mesa-like patterns are observed numerically:

$$
A=2, D=0.01, \varepsilon=0.05
$$

Numerically, we show that such solution is stable w.r.t breakup but unstable w.r.t. zigzag instabilities.

This solution is very sensitive to changes in A, less sensitive to changes in D :

Gierer-Meinhardt model with saturation

$$
\begin{aligned}
A_{t}= & \varepsilon^{2} \Delta A-A+\frac{A^{2}}{1+\delta A^{2}} \frac{1}{H} \\
\tau H_{t}= & D \Delta H-H+A^{2}, \\
& \varepsilon \ll 1, \quad D \gg 1 .
\end{aligned}
$$

- The limit $\delta \ll 1$ is the usual GM model. Solutions are spikes, always have a breakup instability.
- When $\delta=O(1)$, the solutions are mesas. The length of the mesa and its height are given by

$$
l=0.2003 \sqrt{\delta}, \quad A_{\text {head }} \sim 1.517 \frac{1}{\sqrt{\delta}} .
$$

Example of mesa

Here, $\varepsilon=0.01, D=10$. For left figure, saturation $\delta=0.1$; for right figure, $\delta=2$.

Remark: Mesas occur in many other models, such as FitzHugh-Nagumo model (Goldstein, Muraki, Petrich, 1996), Diblock Copolymers (Choksi, Ren, Wei), and the Brusselator.

Eigenvalues are given by:

$$
\lambda_{\text {zig }} \sim-m^{2} \varepsilon^{2}+3.622 \frac{\varepsilon}{D l}\left(\frac{l(1-l)}{2}-\sigma_{-}\right)
$$

$\lambda_{\text {break }} \sim-m^{2} \varepsilon^{2}+3.622 \frac{\varepsilon}{D l}\left(\frac{(1-l) l}{2}-\frac{\sigma_{+}}{1+5.09 \frac{\xi}{l D}}\right)$
where

$$
\begin{aligned}
\sigma_{+} & =\frac{\cosh \frac{\mu(1-l)}{2}}{\mu} \frac{\cosh \frac{\mu l}{2}}{\sinh \frac{\mu}{2}}, \quad \mu=\sqrt{m^{2}+\frac{1}{D}} \\
\sigma_{-} & =\frac{\cosh \frac{\mu(1-l)}{2} \sinh \frac{\mu l}{2}}{\mu} \frac{\cosh \frac{\mu}{2}}{\mu} \\
\xi & =\frac{\sinh \left(\mu \frac{l}{2}\right)}{\mu^{2} \sinh \left(\frac{\mu}{2}\right)} \cosh \left(\frac{\mu}{2}(l-1)\right)
\end{aligned}
$$

The graph of l versus the maximum value of εD for which an instability can occur. The solid and dotted curves correspond to zigzag and breakup instabilities, respectively.

For example take $l=0.25, \varepsilon=0.01$. We get stability if $D=1.2$, zigzag innstability if $D=$ 0.8 .

GM model with $D=O\left(\varepsilon^{2}\right)$

Take $D=D_{0} \varepsilon$ and $\delta=0$. If

$$
D_{0}<7.17
$$

then a 1-D spike dissapears; leading to pulse splitting. If

$$
7.17<D_{0}<8.06
$$

then the stripe is stable w.r.t. breakup instability, but unstable w.r.t. zigzag instability. The final state is a Turing-type pattern.

(a) Experiment 5: $t=1400$

(c) Experiment 5: $t=1800$

(b) Experiment 5: $t=1600$

(d) Experiment 5: $t=4300$

18

The Brusselator model

Rate equations:

$A \xrightarrow{\varepsilon} X, \quad B+X \rightarrow Y+D, \quad 2 X+Y \rightarrow 3 X, \quad X \xrightarrow{\varepsilon} E$.

After rescaling, we get a PDE system:

$$
\begin{aligned}
v_{t} & =\varepsilon D v_{x x}+B u-u^{2} v, \\
\tau u_{t} & =\varepsilon D u_{x x}+\varepsilon A+u^{2} v-(B+\varepsilon) u
\end{aligned}
$$

Steady state

$$
\begin{aligned}
& 0=\varepsilon D v_{x x}+B u-u^{2} v \\
& 0=\varepsilon D u_{x x}+\varepsilon A+u^{2} v-(B+\varepsilon) u
\end{aligned}
$$

Let $w=v+u$; then

$$
\begin{aligned}
& 0=\delta^{2} v_{x x}+B(w-v)-(w-v)^{2} v \\
& 0=D w_{x x}-w+v+A
\end{aligned}
$$

where $\delta^{2}=\varepsilon D \ll 0$ and $D \gg 1$. Therefore

$$
w \sim w_{0}
$$

is constant to first order; and $\delta^{2} v_{x x}=\operatorname{Cubic}(v)$. The Maxwell line condition then implies:

$$
B=\frac{2}{9} w_{0}^{2}
$$

Away from interfaces, $v \sim w_{0}$ or $v \sim w_{0} / 3$. Near the interface x_{0},

$$
v \sim w_{0} \frac{2}{3} \pm w_{0} \frac{1}{3} \tanh \left(\frac{w_{0}}{3} \frac{\left(x-x_{0}\right)}{\sqrt{2 \varepsilon D}}\right)
$$

Suppose $v \sim w_{0} / 3$ on $[0, l]$ and $v \sim w_{0}$ on [$\left.l, 1\right]$. Using solvability condition we obtain,

$$
w_{0}-A=\int_{0}^{1} v=l w_{0} / 3+(1-l) w_{0}
$$

and so

$$
l=\frac{A}{\sqrt{2 B}} .
$$

An example of a three-mesa equilibrium state for v. Here, $K=3, A=2, B=18, \varepsilon D=$ 0.02^{2}.

In 2D these mesas can be stable. Analysis is similar to GMS.

Coarsening in 1-D

Conclusions

- Stripes formed from spikes break up
- Stripes formed from mesas can be stable
- Turing patterns can form stripes
- Two different mechanisms to get stripes in GMS model
- Space-filling curves occur in presence of zigzag and absence of breakup

