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Abstract. We consider the stationary radial solution in the classical Gierer-
Meinhardt system in R

3:










ǫ2∆u− u+ u
2

v
= 0 in R

3,

∆v − v + u2 = 0 in R
3,

u, v > 0, u(x), v(x) → 0 as |x| → +∞.

We prove the existence of a large ring-like solution. This complements an
earlier work of Ni and Wei [33] in which the existence of O(1) ring solutions
was proved in R

2.

1. introduction

Of concern is the stationary Gierer-Meinhardt system in R
3:







ε2∆u− u+ u2

v
= 0 in R

3,

∆v − v + u2 = 0 in R
3,

u > 0, v > 0, u(x), v(x) → 0 as |x| → +∞,

(1.1)

where ε > 0 is a small constant.
Gierer-Meinhardt system was proposed in [14] to model head formation of hydra,

an animal of a few millimeters in length, made up of approximately 100,000 cells
of about fifteen different types. It consists of a “head” region located at one end
along its length. Typical experiments with hydra involve removing part of the
“head” region and transplanting it to other parts of the body column. Then, a
new “head” will form if the transplanted area is sufficiently far from the (old)
head. These observations led to the assumption of the existence of two chemical
substances—a slowly diffusing activator u and a rapidly diffusing inhibitor v. The
ratio of their diffusion rates, denoted by ε, is assumed to be small.

The Gierer-Meinhardt system falls within the framework of a theory proposed
by Turing [35] in 1952 as a mathematical model for the development of complex
organisms from a single cell. He speculated that localized peaks in concentration
of chemical substances, known as inducers or morphogens, could be responsible
for a group of cells developing differently from the surrounding cells. Turing dis-
covered through linear analysis that a large difference in relative size of diffusivi-
ties for activating and inhibiting substances carries instability of the homogeneous,
constant steady state, thus leading to the presence of nontrivial, possibly stable
stationary configurations. Activator-inhibitor systems have been used extensively
in the mathematical theory of biological pattern formation [21], [22]. Among them
Gierer-Meinhardt system has been the object of extensive mathematical treatment
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in recent years. We refer the reader to two survey articles [25, 42] for a description
of progress made and references.

In particular, it has been a matter of high interest to study nonconstant positive
steady states, namely, solutions of the following elliptic system











ε2∆u− u+ up

vq = 0 in Ω,

D∆v − v + um

vs = 0 in Ω,

∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω,

(1.2)

where the exponents (p, q,m, s) satisfy the following condition:

p > 1, q > 0,m > 1, s ≥ 0,
qm

(p− 1)(1 + s)
> 1. (1.3)

A first step in solving Problem (1.2) is to study its shadow system, namely, we
take D = +∞ first. By suitable scaling, the study of steady-state for the shadow
system can be transformed to that of the scalar equation

{

ε2∆u− u+ up = 0 in Ω,

u > 0 in Ω, ∂u
∂ν

= 0 on ∂Ω.
(1.4)

For problem (1.4), there have been intense works on the construction of a single
or multiple spikes. For the case p in subcritical range, we refer the readers to the
articles [6], [7], [15], [16], [29], [36], [38] and the references therein, starting with the
pioneering works [17], [26], [27], [28], [32]. For the critical exponent case, we refer
to the papers [3], [4], [13], [31], and the references therein. A review of the subject
up to 2004 can be found in [42].

In the case of finite D and bounded domain case, Takagi [34] first constructed
multiple symmetric peaks in the one-dimensional case. In higher dimensional case,
Ni and Takagi [29] constructed multiple boundary spikes in the case of axially
symmetric domains, assuming that D is large. Multiple interior spikes for finite D
case in a bounded two dimensional domain are constructed in [39], [40] and [41].
The stability of multiple spikes as well as the dynamics of spikes are considered in
[11], [30], [37], [40], [41] and the references therein.

From now on, we focus on the case of Ω = R
N . Problem (1.2) has been shown

to exhibit single or multiple bump solutions in one or two dimensions. See [8], [9],
[11], [12] and the references therein.

A long-standing problem is the existence of radially symmetric bound states in
R

N when N ≥ 3. (See also page 579 of [42].) Ni and Wei [33] first constructed
ring-like solutions for the generalized Gierer-Meinhardt system







ε2∆u− u+ up

vq = 0 in R
N ,

∆v − v + um

vs = 0 in R
N ,

u > 0, v > 0, u(x), v(x) → 0 as |x| → +∞,

(1.5)

where (p, q,m, s) satisfies, in addition to the usual structural condition (1.3), the
following new condition

(N − 2)q

N − 1
+ 1 < p < q + 1 if N ≥ 3; 1 < p ≤ q + 1 if N = 2. (1.6)

These are radially symmetric solutions such that u concentrates on an the surface
of a ball of a certain O(1) radius as ε→ 0. In the case of R2, the first two authors
showed in [19] that there are solutions with multiple clustered rings.
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In R
3, unfortunately the classical Gierer-Meinhardt system (1.1) (i.e. p = 2, q =

1), lies at the bordeline case (p = q + 1) in the condition (1.6). The purpose of
this paper is to give a confirmative answer to the existence of radially symmetric
bound states of the classical Gierer-Meinhardt system (1.1) in R

3. This seems to
be the first radial bound states for Gierer-Meinhardt system. We should remark
that as far as non-radial solutions are concerned, in [20], a smoke-ring solution was
constructed for (1.5) with N = 3, provided that (p, q,m, s) satisfy

p = q + 1, 1 < m− s < 3. (1.7)

This includes the case of the classical GM system (1.1). A smoke-ring solution
concentrates on a circle in R

3 and is axi-symmetric but not radially symmetric.
Before we state the main result of this paper, we define some notations to be

used throughout the paper. Let the Green function be

G′′ +
2

r
G′ −G+ δ(r − r0) = 0, G′(0, r0) = 0. (1.8)

Its solution is given by

G(r, r0) =

{

r0
2r (e

r−r0 − e−r−r0) = r0
r
e−r0 sinh(r), r < r0,

r0
2r (e

r0−r − e−r−r0) = r0
r
e−r sinh(r0), r > r0.

(1.9)

Let w(y) be the unique solution for the following ODE:

w
′′

− w + w2 = 0 in R, w > 0, w(0) = max
y∈R

w(y), w(y) → 0 as |y| → ∞; (1.10)

it is well known that

w(y) =
3

2
sech2

(y

2

)

.

We now state our main theorem in this paper.

Theorem 1.1. For ε sufficiently small, problem (1.1) has a solution with the fol-
lowing properties:

• uε,R, vε,R are radially symmetric,
• uε,R = 1

6εG(rε,rε)
w
(

r−rε
ε

)

(1 + o(1)),

• vε,R = 1
6εG(rε,rε)2

G(r, rε)(1 + o(1)), where rε stands for the solution of the

following equation

(2r + 1)e−2r =
103

70
ε. (1.11)

Asymptotically the radius rǫ behaves like

rǫ =
1

2
log

1

ǫ
+O(log log

1

ǫ
); (1.12)

so in fact rε → ∞ as ε→ 0. In contrast, for the general GM model (1.5) and under
conditions (1.6), the ring radius was derived in [33]; it was found that when N = 3,
rε → r0 where r0 satisfies

p− 1

q
=
e2r0 − 1− r0

e2r0 − 1

It is clear that r0 → +∞ as p→ q + 1 from the the right; this is indeed consistent
with Theorem 1.1.
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v

u

Figure 1. The ring solution to (1.1) with ε = 0.06. Dashed curves
correspond to the asymptotic profile given in Theorem 1.1

In addition to the rigorous proof below, we also verify the formula (1.11) directly
by comparing it to the full numerical solution of (1.1). This is shown in Figure 1
with ε = 0.06. The following table gives the data for a few additional values of ε :

ε rε (from full numerics) rε from (1.11 ) relative error

0.12 1.5414 1.5797 2.4%
0.06 1.9701 2.0228 2.6%
0.03 2.3917 2.4472 2.2%

Excellent agreement is observed.
For concreteness, we limit this paper to the classical GM model p = 2, q = 1,m =

2, s = 0. However we expect the techniques to apply for more general p, q,m, s,
provided that p = q + 1.

Acknowledgments. The research of the first author is supported by a grant
from AARMS CRG in Dynamical Systems and NSERC grant 47050. He is is also
grateful for the hospitality of Juncheng Wei and CUHK, Mathematics department,
where part of this paper was written. The research of the second author is partly
supported by a General Research Fund from RGC of Hong Kong.

2. outline of the proof of Theorem 1.1

Our strategy of the proof of the main results is based on the idea of solving the
second equation in (1.1) for v and then working with a nonlocal elliptic PDE rather
than directly with the system. This procedure is standard that have been used in
[9], [19] and [33]. However, for the problem (1.1), the key function M(t) introduced
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in [33] can be explicitly computed M(t) = 2
e2t−1 . It is easy to see that the function

M(t) never possesses a zero point in t ∈ (0,+∞), as a result, we can not get the
reduced problem solved. Instead, we need to give a more precise formula of the
approximate solution.

It’s convenient to rescale the problem by replacing the u by (εξ)−1u and v by
(εξ)−1v, where ξ > 0 is to be chosen. (1.1) is transformed into the following radial
form:

{

ε2(u′′ + 2
r
u′)− u+ u2

v
= 0,

v′′ + 2
r
v′ − v + u2

εξ
= 0,

(2.1)

where ξ =
∫∞

0
w2 is for convenience and we will give reason for this choice in

Appendix A.
We consider a point t ∈ (0,+∞) which is a candidate for the location of con-

centration. Then we come to consider the second equation and by T[u2] we denote
the unique solution of the equation

v′′ +
2

r
v′ − v +

u2

εξ
= 0. (2.2)

By using the Green function defined in (1.9), T[u2] can be written in the following
way:

T[u2](r) =
1

εξ

∫ ∞

0

G(r, r′)u2(r′)dr′. (2.3)

Once we solved the second equation for v in (2.1) and scaling r = t+ εy, we get
the nonlocal PDE for u

u′′ +
2ε

t+ εy
u′ − u+

u2

T[u2](t+ εy)
= 0, y ∈ (−

t

ε
,+∞), u′(−

t

ε
) = 0. (2.4)

By writing r′ = t+ εz, we have

v(y) =
1

ξ

∫ ∞

0

G(t+ εy, t+ εz)u2(t+ εz)dz. (2.5)

We look for a solution to (2.4) in the form u = w( r−t
ε
) + εU1 + φ, where U1 is

a function that will be introduced in Appendix A and φ is the perturbation term.
Here we want to say more about the function U1. If we only use w( r−t

ε
) + φ as

our approximate solution, the equation (2.4) would be transformed into a linear
equation with respect to φ of order O(ε), and the reduced problem of this linear
equation is to find the zero point of the function M(t) = 2

e2t−1 . ThoughM(t) never

vanishes in t ∈ (0,+∞), thanks to the fast decay property of this function M(t),
we still can solve the equation (2.4) by giving a better approximation. Following
this idea, we use U1 to cancel out the first order term appeared in the transformed
equation of (2.4), in other words, if we use w( r−t

ε
) + εU1 + φ as our approximate

solution, equation (2.4) will be transformed into a linear equation with respect to
φ of order O(ε2). Then, by using the Lyapunov-Schmidt reduction, we can reduce
this linear equation to a finite dimension problem which can be solved. Formally,
we have

T[u2] = T[w2] + 2εT[wU1] + 2T[wφ] + ε2T[U2
1 ] + h.o.t., (2.6)

where h.o.t. corresponds to the higher order terms.
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Using (2.5) and (2.6), we will prove in Section 4 that v can be written

v = 1 +

∫∞

−∞ wφ
∫∞

0 w2
+ εV1 + h.o.t., (2.7)

where V1 represents the ε−order term in the expansion of v, we will give a explicit
formula for V1 in Appendix A. Then

u2

v
= w2 + 2wφ−

∫∞

−∞ wφ
∫∞

0 w2
w2 − εV1w

2 + 2εwU1 + h.o.t.. (2.8)

Substituting all this in (2.4) we obtain the equation for φ

φ′′ +
2ε

t+ εy
φ′ − φ+ 2wφ−

2
∫∞

−∞
wφ

∫∞

−∞
w2

w2 = Eε +Mε[φ], (2.9)

where Eε and Mε[φ] will be explicitly given in Section 5.
Thus we have reduced the problem of finding solutions to (2.1) to a problem of

solving (2.9) for φ.
Rather than directly solving problem (2.9), we consider first the following aux-

iliary problem: given any point t, find a function φ such that for certain constants
βε(t) the following equation is satisfied

Lε,tφ = Eε +Mε[φ] + βεww
′,

∫

R

φww′ = 0, (2.10)

where

Lε,t[φ] := φ′′ +
2ε

t+ εy
φ′ − φ+ 2wφ−

2
∫∞

−∞
wφ

∫∞

−∞
w2

w2.

We will prove in Section 3 and Section 5 that this problem is uniquely solvable
within a class of small functions φ. We will then get a solution of the original
problem when the point t is adjusted in such a way that βε(t) = 0. We show the
existence of such a point in Section 6, thereby proved Theorem 1.1. In Section 7,
we will give a detail for computing U1 and V1. In Section 8, we list some numerical
results that would be used in Section 6 and Section 7.

3. linear problem

This section is devoted to a study of a linear problem, which reduces our problem
to a one dimensional problem.

Let r1, r2 be a positive given number such that

r1 < t < r2, r1 = 1, r2 =
1

ε2
.

We set

Iε,t := (−
t

ε
,
R− t

ε
), (3.1)

where R = 3r2. Choose two fixed numbers R1 = r1
2 , R2 = 2r2. Let χ(s) be a

function such that χ(s) = 1 for s ∈ [R1,
R2+r2

2 ] and χ(s) = 0 for s < R1

2 or s > R2.

Set

wε,t(y) = w(y)χ(t + εy), Ũ1(y) = U1(y)χ(t+ εy). (3.2)
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For u, v ∈ H1
c (R

3), we equip them with the following scalar product:

(u, v)ε =

∫

Iε,t

(u′v′ + uv)(t+ εy)2dy (3.3)

(which is equivalent to the inner product of H1(R3).)
Then orthogonality to the function w′

ε,t with respect to this scalar product is
equivalent to the orthogonality to the function

Zε,t = w′′′
ε,t +

2ε

t+ εy
w′′

ε,t − w′
ε,t (3.4)

in L2(Iε,t), equipped with the following scalar product

〈u, v〉ε =

∫

Iε,t

(uv)(t+ εy)2dy. (3.5)

(which is equivalent to the inner product of L2(R3).)
Then we consider the following problem: for h ∈ L2 ∩L∞(Iε,t) being given, find

a function φ satisfying






Lε,t[φ] := φ′′ + 2ε
t+εy

φ′ − φ+ 2wε,tφ− 2

∫
Iε,t

wε,tφ
∫
Iε,t

w2
ε,t

w2
ε,t = h+ cZε,t,

φ′(− t
ε
) = 0, 〈φ, Zε,t〉ε = 0

(3.6)

for some constant c.
Before we solve system (3.6), we need the following result which is just the

Lemma 5.1 in [33]. For convenience of the readers, we repeat the proof here.

Lemma 3.1. Let φ ∈ C2 (̄Iε,t) satisfy

|φ′′(y) +
2ε

t+ εy
φ′(y)− φ(y)| ≤ c0e

−µ|y|, φ′(−
t

ε
) = 0,

for some c0 > 0 and µ ∈ (0, 1). Then, provided that µ > 0 is sufficiently small,

|φ(y)| ≤ 2e2(|φ(0)|+ c0)e
−µ|y|, ∀y ∈ Iε,t.

Proof. We use a comparison principle. Take η(t) a smooth cut-off function such
that

η(t) = 1 for |t| ≤ 1, η(t) = 0 for |t| ≥ 2, 0 ≤ η ≤ 1.

Now consider the following auxiliary function:

Φ(y) = A[eµy + (eµy0 − eµy)η(µ(y +
t

ε
))],

where

y0 = −
t

ε
+

1

µ
, A = 2e(|φ(0)|+ c0).

If y ∈ (− t
ε
, y0), Φ(y) = Aeµy0 and hence

Φ′′ +
2ε

t+ εy
Φ′ − Φ = −Aeµy0 ≤ −c0e

µy.

If y ∈ (− t
ε
+ 2

µ
, 0), Φ(y) = Aeµy and ε

t+εy
≤ µ

2 , hence

Φ′′ +
2ε

t+ εy
Φ′ − Φ ≤ A[2µ2 − 1]eµy ≤ −c0e

µy
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provided that µ is sufficiently small. Finally it is easy to see that for y ∈ (y0, y0+
1
µ
)

eµy0 ≤ eµy ≤ eeµy0 , Φ(y) ≥ Aeµy0 ,
µ

2
≤

ε

t+ εy
≤ µ;

hence

Φ′′ +
2ε

t+ εy
Φ′ − Φ ≤CA(µ2)eµy −Aeµy0

≤CA(µ2)eµy −
A

e
eµy ≤ −c0e

µy

provided that µ is sufficiently small. Here C is a positive constant.
In any case, we have that for y ∈ (− t

ε
, 0), Φ(y) satisfies

Φ
′′

+
2ε

t+ εy
Φ

′

− Φ ≤ −c0e
µy, Φ

′

(−
t

ε
) = 0, Φ(0) ≥ |φ(0)|. (3.7)

Combining (3.7) with the hypothesis we obtain

(Φ− φ)′′(y) +
2ε

t+ εy
(Φ− φ)′(y)− (Φ− φ)(y) ≤ 0, ∀y ∈ [−

t

ε
, 0] (3.8)

and

(Φ− φ)(0) > 0, (Φ− φ)′(−
t

ε
) = 0,

we claim that (Φ − φ)(y) ≥ 0 for y ∈ [− t
ε
, 0). Assume the contrary, if we call

ȳ the minimum point of Φ − φ in [− t
ε
, 0), then it would be (Φ − φ)(ȳ) < 0 and

(Φ−φ)′(ȳ) = 0, (Φ−φ)′′(ȳ) ≥ 0, in contradiction with (3.8). Hence we have proved
that φ ≤ Φ in [− t

ε
, 0]. On the other hand by (3.8) and the hypothesis we also get

(Φ + φ)′′(y) +
2ε

t+ εy
(Φ + φ)′(y)− (Φ + φ)(y) ≤ 0 ∀y ∈ [−

t

ε
, 0]

and (Φ + φ)(0) > 0, (Φ + φ)′(− t
ε
) = 0. Proceeding as before we conclude φ ≥ −Φ

in [− t
ε
, 0].

For y ∈ [0, R−t
ε

), we use Φ̂(y) = A
cosh(µ(R−t

ε
−y))

cosh(µ(R−t)
ε

)
as comparison function. Note

that Φ̂(0) = A, Φ̂′(R−t
ε

) = 0. It is easy to see that A
2 e

−µy < Φ̂(y) < 2Ae−µy and
hence

Φ̂′′ +
2ε

t+ εy
Φ̂′ − Φ̂ ≤ −c0e

−µy

provided that µ is sufficiently small. By repeating the previous argument we obtain

|φ| ≤ Φ̂ in [0, R−t
ε

) and the conclusion follows. �

Let µ ∈ (0, 1
10 ) be a small number such that Lemma 3.1 holds. For every function

φ : Iε,t → R, we define

‖φ‖∗ = ‖eµ〈y〉φ(y)‖Iε,t , 〈y〉 = (1 + y2)
1
2 . (3.9)

Since 2ε
t+εy

Ũ ′′
0 = O(ε)e−|y|, we obtain

Zε,t(y) = w′′′ − w′ +O(ε)e−µ〈y〉 = −2ww′ +O(ε)e−µ〈y〉 (3.10)

uniformly for t ∈ [R1, R2].
The following proposition provides a priori estimates of φ satisfying (3.6).
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Proposition 3.2. Let (φ, c) satisfy (3.6). Then for ε sufficiently small, r0 ∈
[R1, R2], we have

‖φ‖∗ ≤ C‖h‖∗, (3.11)

where C is a positive constant depending on R,N only.

Remark. A more precise inequality should be

‖φ‖∗ ≤ C‖h⊥‖∗, where h
⊥ = h−

〈h, Zε,t〉

〈Zε,t, Zε,t〉
Zε,t. (3.12)

Proof. We prove the inequality by contradiction. Arguing by contradiction there
exists sequence εk → 0, tk ∈ [R1, R2] and a sequence of functions φεk,tk satisfying
(3.6) such that the following holds

‖φεk,tk‖∗ = 1, ‖hk‖∗ = o(1),

∫

Iεk,tk

φεk,tkZεk,tk(tk + εky)
2dy = 0.

For simplicity of notation, we drop the subindex k.
Multiplying the first equation of (3.6) by w′

ε,t and integrating over Iε,t, we obtain
that

c

∫

Iε,t

Zε,tw
′
ε,t = −

∫

Iε,t

hw′
ε,t +

∫

Iε,t

(Lε,t[φε,t]w
′
ε,t). (3.13)

The left-hand side of (3.13) equals c(−
∫

R
pwp−1w′2 + o(1)) because of (3.10). The

first term on the right-hand side of (3.13) can be estimated by
∫

Iε,t

hw′
ε,t = O(‖h‖∗),

where we have used the fact that w is exponentially decay.
The last term equals

∫

Iε,t

(Lε,t[φε,t])w
′
ε,t =

∫

Iε,t

[

φ′′ε,t +
2ε

t+ εy
φ′ε,t − φε,t + 2wε,tφε,t

]

w′
ε,t

− 2

∫

Iε,t
wε,tφε,t

∫

Iε,t
w2

ε,t

∫

Iε,t

w2
ε,tw

′
ε,t

=

∫

Iε,t

[

w′′′
ε,t − w′

ε,t + 2wε,tw
′
ε,t

]

φε,t +O(ε‖φε,t‖∗)

=o(‖φε,t‖∗).

Hence we obtain that

|c| = O(‖h‖∗) + o(‖φε,t‖∗), ‖h+ cZε,t‖∗ = o(1). (3.14)

Next, we claim that ‖φε,t(y)‖ → 0 in any compact interval of R. In fact, we

consider φε(y) = φε,tχ(t + εy) where χ is the cut-off function introduced at the

beginning of the this section. Then since ‖φε,t‖∗ = 1, it is easy to see that ‖φε‖H2 ≤

C and hence φε → φ0 weakly in H2(R) and φ0 satisfies

φ′′0 − φ0 + 2wφ0 −
2
∫

R
wφ0

∫

R
w2

w2 = 0, |φ0| ≤ Ce−µ|y|.
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By Lemma 4.2 in [33], we must have φ0 = cw′. On the other hand,
∫

Iε,t
φε,tZε,t(t+

εy)2dy = 0 and hence
∫

R
φ0ww

′ = 0 which implies that c = 0 and hence φε,t → 0
in any compact interval of R. This shows that

‖wε,tφε,t‖∗ = sup
y∈Iε,t

|eµ〈y〉wε,t(y)φε,t(y)| = o(1). (3.15)

On the other hand, by Lebesgue’s Dominated Convergence Theorem, we have
that

∫

Iε,t

wε,tφε,t → 0

which implies

‖

∫

Iε,t
wε,tφε,t

∫

Iε,t
w2

ε,t

wε,t‖∗ = o(1). (3.16)

Thus we have arrived at the following situation φε,t satisfies

φ′′ε,t +
2ε

t+ εy
φ′ε,t − φε,t = o(eµ〈y〉), φ′ε,t(−

t

ε
) = 0. (3.17)

Since φε,t → 0 in any compact interval, φε,t(0) = o(1). Applying Lemma 3.1,

we conclude that φε,t = o(eµ|y|). A contradiction to the assumption that ‖φ‖∗ = 1.
This proves the proposition. �

Finally, we have

Proposition 3.3. There exists an ε0 > 0 such that for any ε0 > 0 such that for
any ε < ε0, t ∈ [R1, R2], given any h ∈ L2(Iε,t) ∩ L∞(Iε,t), there exists a unique
pair (φ, c) such that the following hold:

Lε,t[φ] = h+ cZε,t, φ
′(−

t

ε
) = 0, 〈φ, Zε,t〉ε = 0. (3.18)

Moreover, we have
‖φ‖∗ ≤ C‖h‖∗. (3.19)

Proof. The existence follows from Fredholm alternatives. To this end, let us set

H = {u ∈ H1(BR) | (u,w
′
ε,t)ε = 0}.

Observe that φ solves (3.18) if only if φ ∈ H1(BR) satisfies
∫

BR

(∇φ∇ψ + φψ) − 2〈wε,tφ, ψ〉ε − 2

∫

Iε,t
wε,tφ

∫

Iε,t
w2

ε,t

〈w2
ε,t, ψ〉ε = 〈h, ψ〉ε, ∀ψ ∈ H1(BR).

This equation can be rewritten in the following form:

φ+ S(φ) = h, (3.20)

where S is a linear compact operator from H to H, h = (∆ − 1)−1(h⊥) ∈ H and
φ ∈ H.

Using Fredholm’s alternatives, we will show Eq.(3.20) has a unique solvable
solution for each h by proving that the equation has a unique solution for h = 0,
i.e., h⊥ = 0. To this end, we assume the contrary. That is, there exists (φ, c) such
that

Lε,t[φ] = cZε,t, φ
′(−

t

ε
) = 0, 〈φ, Zε,t〉ε = 0. (3.21)

From (3.21), it is easy to see that ‖φ‖∗ < +∞. So without loss of generality, we
may assume ‖φ‖∗ = 1. But then this contradicts (3.12). �



ON LARGE RING SOLUTIONS FOR GIERER-MEINHARDT SYSTEM IN R
3 11

4. Study of the operator T[h]

In this section, we study the operator T[h], where we choose h to be

h = (wε,t(
r − t

ε
) + εŨ1(

r − t

ε
) + φ(

r − t

ε
))2, ‖φ‖∗ = O(εσ), σ > 1. (4.1)

According the choice of h and the definition of operator T, we have

T[h](y) =
1

ξ

∫ ∞

0

G(t+ εy, t+ εz)(wε,t(z) + εŨ1(z) + φ(z))2dz,

where ξ =
∫∞

0 w2. From Appendix A, we can easily prove that U1 and w are
exponential decay, therefore, we conclude

T[h](y) =
1

ξ

∫ ∞

−∞

G(r0 + εy, r0 + εz)(wε,t(z) + εŨ1(z) + φ(z))2dz + o(ε3)

=
1

ξ

∫ ∞

−∞

G(r0 + εy, r0 + εz)(w(z) + εU1(z) + φ(z))2dz + o(ε3). (4.2)

Define a by

e−2t = aε. (4.3)

Then we write

G(t+ εy, t+ εz) = G0 +

{

εG−
1 + ε2G−

2 , y < z,

εG+
1 + ε2G+

2 , y > z,
(4.4)

where:

G0 =
1

2
, G−

1 = −
a

2
+ (y − z)(

1

2
−

1

2t
), G+

1 = −
a

2
+ (y − z)(−

1

2
−

1

2t
),

G−
2 =

(y − z)2

4t2
(y(t2 − 2t+ 2) + z(−t2 + 2t)) +

a

2t
(y(t+ 1) + z(t− 1)),

G+
2 =

(y − z)2

4t2
(y(t2 + 2t+ 2) + z(−t2 − 2t)) +

a

2t
(y(t+ 1) + z(t− 1)).

Substituting (4.3) and (4.4) into (4.2),

T[h](y) =
1

ξ

∫ ∞

−∞

G0(w(z) + εU1(z) + φ(z))2dz

+
1

ξ

∫ y

−∞

εG+
1 (w(z) + εU1(z) + φ(z))2dz

+
1

ξ

∫ ∞

y

εG−
1 (w(z) + εU1(z) + φ(z))2dz

+
1

ξ

∫ y

−∞

ε2G+
2 (w(z) + εU1(z) + φ(z))2dz

+
1

ξ

∫ ∞

y

ε2G−
2 (w(z) + εU1(z) + φ(z))2dz + o(ε3)

=A1 +A2 +A3 +A4 +A5 + o(ε3). (4.5)
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We study the terms Ai (i = 1, 2, 3, 4, 5) respectively in the following. For A1, we
have

A1 =
1

ξ

∫ ∞

−∞

G0(w
2 + 2wφ+ 2εwU1 + 2εU1φ+ ε2U2

1 + φ2)

=1 +
1

ξ

∫ ∞

−∞

wφ+
ε

ξ

∫ ∞

−∞

(wU1 + U1φ) +
ε2

2ξ

∫ ∞

−∞

U2
1

+O(ε1+σ + ‖φ‖2∗), (4.6)

where we have used G0 = 1
2 and ‖φ‖∗ ≤ Cεσ, σ > 1. For A2 and A3, we have

A2 +A3 =
ε

ξ
(

∫ y

−∞

G+
1 w

2 +

∫ ∞

y

G−
1 w

2) +
ε2

ξ
(

∫ y

−∞

2G+
1 wU1 +

∫ ∞

y

2G−
1 wU1)

+O(ε1+σ + ‖φ‖2∗). (4.7)

For A4 and A5, we have

A4 +A5 =
ε2

ξ
(

∫ y

−∞

G+
2 w

2 +

∫ ∞

y

G−
2 w

2) +O(ε1+σ + ‖φ‖2∗). (4.8)

Combining (4.6)-(4.8), we get

T[h] =1 +
1

ξ

∫ ∞

−∞

wφ+ εΘ1 +
ε2

2ξ

∫ ∞

−∞

U2
1 +

ε2

ξ

∫ y

−∞

(2G+
1 wU1 +G+

2 w
2)

+
ε2

ξ

∫ ∞

y

(2G−
1 wU1 +G−

2 w
2) +O(ε1+σ + ‖φ‖2∗), (4.9)

where

Θ1 =
1

ξ
(

∫ ∞

−∞

wU1 +

∫ y

−∞

G+
1 w

2 +

∫ ∞

y

G−
1 w

2).

From Appendix A, we can see Θ1 = V1. Summarizing the results, we obtain the
following lemma:

Lemma 4.1. For r = t+ εy, we have

T[(wε,t + εŨ1 + φ)2](t+ εy) =1 +
1

ξ

∫ ∞

−∞

wφ+ εV1 +
ε2

2ξ

∫ ∞

−∞

U2
1

+
ε2

ξ

∫ y

−∞

(2G+
1 wU1 +G+

2 w
2)

+
ε2

ξ

∫ ∞

y

(2G−
1 wU1 +G−

2 w
2)

+O(ε1+σ + ‖φ‖2∗). (4.10)
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5. A nonlinear problem

In this section, we solve the following system of equation for (φ, β):

(wε,t + εŨ1 + φ)′′ +
2ε

t+ εy
(wε,t + εŨ1 + φ)′ − (wε,t + εŨ1 + φ)

+
(wε,t + εŨ1 + φ)2

T[(wε,t + εŨ1 + φ)2]
= βZε,t, (5.1)

with the following constrained condition

φ′(−
t

ε
) = 0,

∫

Iε,t

φZε,t(t+ εy)2dy = 0. (5.2)

The main result in this section is to show the following proposition

Proposition 5.1. For t ∈ [R1, R2] and ε sufficiently small, there exists a unique
pair (φε,t, βε,(t)) satisfying (5.1) and (5.2). Furthermore, (φε,t, βε,(t)) is continuous
in t and we have the following estimate

‖φε,t‖∗ ≤ εσ, (5.3)

where σ ∈ (1, 2) is a constant.

Proof. We write (5.1) in the following form

Lε,t[φ] = Eε +Mε[φ] + βZε,t, (5.4)

where

Eε = −ε(Ũ ′′
1 − Ũ1 + 2wε,tŨ1 +

2

t
w′

ε,t − V1w
2
ε,t)− (w′′

ε,t − wε,t + w2
ε,t), (5.5)

and

Mε[φ] =−

[

(wε,t + εŨ1 + φ)2

T[(wε,t + εŨ1 + φ)2]
− w2

ε,t + 2

∫

Iε,t
wε,tφ

∫

Iε,t
w2

ε,t

w2
ε,t − 2wε,tφ+ εV1w

2
ε,t

− 2εwε,tŨ1

]

+ (
2ε

t
−

2ε

t+ εy
)w′

ε,t −
2ε2

t+ εy
Ũ ′
1

= M
1
ε[φ] +M

2
ε[φ] +M

3
ε[φ]. (5.6)

For Eε, it is easy to see

Eε =− ε(Ũ ′′
1 − Ũ1 + 2wε,tŨ1 +

2

t
w′

ε,t − V1w
2
ε,t)− (w′′

ε,t − wε,t + w2
ε,t)

=− ε(U ′′
1 − U1 + 2wU1 +

2

t
w′ − V1w

2)− (w′′ − w + w2) +O(ε3e−µ〈y〉), (5.7)

where we have used the fact that U1, w are exponential decay and 0 < µ < 1
10 .

From Appendix A, we see U1 is just the solution to the following equation

U ′′
1 − U1 + 2wU1 +

2

t
w′ − V1w

2 = 0.

While w′′ − w + w2 = 0 holds for the setting of w. Hence, we conclude

‖Eε‖∗ ≤ Cε3. (5.8)
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For Mε, using (4.10), we can write
(wε,t+εŨ1+φ)2

T[(wε,t+εŨ1+φ)2]
as

(wε,t + εŨ1 + φ)2

T[(wε,t + εŨ1 + φ)2]
=w2

ε,t + 2εwε,tŨ1 − εV1w
2
ε,t + 2wε,tφ−

∫∞

−∞
wφ

ξ
w2

ε,t + ε2Ũ2
1

+ ε2w2
ε,tV

2
1 − 2ε2wε,tŨ1V1 − ε2Θ2w

2
ε,t +O(ε2+δ), (5.9)

where

Θ2 =
ε2

2ξ

∫ ∞

−∞

U2
1 +

ε2

ξ

∫ y

−∞

(2G+
1 wU1 +G+

2 w
2) +

ε2

ξ

∫ ∞

y

(2G−
1 wU1 +G−

2 w
2).

Substituting (5.9) into M
1
ε, we obtain

‖M1
ε[φ]‖∗ ≤ C(ε2 + ‖φ‖2∗), (5.10)

where we have used U1 and w are exponential decay. For the another two terms, it
is not difficult to find that

‖M2
ε[φ]‖∗ + ‖M3

ε[φ]‖∗ ≤ Cε2. (5.11)

Combining (5.10) and (5.11), we get ‖Mε[φ]‖∗ ≤ C(‖φ‖2∗ + ε2).
Set B = {φ ∈ H | ‖φ‖∗ < Cεσ}. Fix φ ∈ B and let Aε be the unique map h→ φ

given by Proposition 3.3. Defining

Gε = Aε(Eε +Mε[φ]).

We now show that Gε is a contraction map. In fact, by Proposition 3.3, we have

‖Gε[φ]‖∗ ≤ C‖Eε +Mε[φ]‖∗ ≤ Cε2 + ε2σ ≤ Cε2, (5.12)

since 1 < σ < 2, and hence Gε[φ] ∈ B. Moreover, we also have

‖Gε[φ1]− Gε[φ2]‖∗ ≤C‖Mε[φ1]−Mε[φ2]‖

≤C(ε+ ‖φ1‖∗ + ‖φ2‖∗)‖φ1 − φ2‖∗. (5.13)

Eq. (5.12) and (5.13) show that the map Gε is a contraction map from B to B. By
the contraction mapping theorem, (5.4) has a unique solution φ ∈ B, called φε,t.

The continuity of (φε,t, βε(t)) follows from the uniqueness of (φε,t, βε(t)). �

6. The reduced problem

In this section we solve the reduced problem and prove our main result. In
particular, we obtain that

Proposition 6.1. For ε sufficiently small, βε(t) is continuous in t and we have

βε(t) =
b0

t
ε2(

309

700
−

3

5
ta−

3

10
a) + o(ε2+δ), (6.1)

where b0 6= 0 is some generic constant and δ ∈ (0, σ).

From Proposition 6.1, we can finish the proof of Theorem 1.1.
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Proof of Theorem 1.1. Since ε−2b−1
0 βε(t) = 1

t
(309700 − 3

5 ta − 3
10a) + o(εδ). On the

other hand, we have a = e−2t

ε
. Then we can write

b−1
0 ε−2βε(t) =

1

t
(
309

700
−

3

10

(2t+ 1)e−2t

ε
) + o(εδ). (6.2)

For ε sufficiently small. From Section 3, we have 1 < t < 1
ε2
. If we choose t = 2, we

can make the right hand side of (6.2) negative. While if we choose t = −2 ln(ε) < 1
ε2

we can make the right hand side of (6.2) positive. By the continuity of βε(t) and
the mean value theorem, a zero of βε, denoted by tε, is thus guaranteed, which
produces a solution uε = wε,t + εŨ1 + φε,t to (5.1) and (5.2). It is easy to verify
that uε satisfies all the properties of Theorem 1.1. �

We now prove Proposition 6.1. Observing that φε,t satisfies (5.4). Multiplying
Eq.(5.4) by w′

ε,t and integrating by over Iε,t, we obtain

βε(t)

∫

Iε,t

Zε,tw
′
ε,t =

∫

Iε,t

Lε,t[φε,t]w
′
ε,t +

∫

Iε,t

(−Eεw
′
ε,t) +

∫

Iε,t

(−Mε[φε,t]w
′
ε,t).

(6.3)

The left hand side of (6.3) can be computed as:

βε(t)

∫

Iε,t

Zε,tw
′
ε,t = −2βε(t)

∫

R

(w(w′)2) +O(εβε(t)). (6.4)

We estimate each term on the right hand side of (6.3). For the first term, we use
integration by parts:

∫

Iε,t

Lε,t[φε,t]w
′
ε,t =

∫

Iε,t

[φ′′ε,t − φε,t + 2wε,tφε,t]w
′
ε,t +O(ε‖φε,t‖∗)

=

∫

Iε,t

[w′′′
ε,t − w′

ε,t + 2wε,tw
′
ε,t]φε,t = O(ε1+σ). (6.5)

The second term in (6.3) gives, using (5.8),
∫

Iε,r0

EεŨ
′
0 = O(ε3). (6.6)

It remains to compute the third term on the right hand side of (6.3), by (5.9),

(wε,t + εŨ1 + φ)2

T[(wε,t + εŨ1 + φ)2]
=w2

ε,t + 2εwε,tŨ1 − εV1w
2
ε,t + 2wε,tφ−

∫∞

−∞
wφ

ξ
w2

ε,t + ε2Ũ2
1

+ ε2w2
ε,tV

2
1 − 2ε2wε,tŨ1V1 − ε2Θ2w

2
ε,t +O(ε2+δ), (6.7)

we can write Mε as

Mε[φ] =ε
2
[

−
2

t
Ũ ′
1 +

2y

t2
w′

ε,t + w2
ε,tΘ2 + 2wε,tŨ1V1 − Ũ2

1 − w2
ε,tV

2
1

]

+ (
2ε

t
−

2ε

t+ εy
−

2yε2

t2
)w′

ε,t + (
2ε2

t
−

2ε2

t+ εy
)Ũ ′

1 + o(ε2+σ)

=ε2
[

−
2

t
U ′
1 +

2y

t2
w′ + w2Θ2 + 2wU1V1 − U2

1 − w2V 2
1

]

+ o(ε2+δ), (6.8)

where we used that fact that w, U1 are exponential decay.



16 T. KOLOKOLONIKOV, JUNCHENG WEI, AND WEN YANG

Next, we consider the term

Π = −
2

t
U ′
1 +

2y

t2
w′ + w2Θ2 + 2wU1V1 − U2

1 − w2V 2
1 .

Specifically, we need to compute the inner product of Π and w′
ε,t, and we find

∫ ∞

−∞

Πw′
ε,t =

∫ ∞

−∞

Πw′ +O(ε3).

Therefore, it is only necessary to compute
∫∞

−∞ Πw′. From Appendix A, we see

Θ2 = V2 −
1

ξ

∫ ∞

−∞

wU2,

where U2, V2 represent the ε2−order term in the expansion of u, v respectively.
Then we find
∫ ∞

−∞

Πw′ =

∫ ∞

−∞

[

2

t
U1(w − w2)−

1

3
w3V ′

2 + 2ww′U1V1 − U2
1w

′ − w2w′V 2
1

]

, (6.9)

where we used the fact
∫ ∞

−∞

yw′2 = 0,

∫ ∞

−∞

w2w′ = 0, w′′ − w + w2 = 0.

It is to check (6.9) is just the following one

2

t
(I1 − I2)−

1

3
I3 + 2I4 − I5 − I6,

where

I1 =

∫ ∞

0

U1evenw, I2 =

∫ ∞

0

U1evenw
2, I3 =

∫ ∞

0

w3(V ′
2 )even,

I4 =
1

2

∫ ∞

−∞

ww′U1V1 =

∫ ∞

−∞

ww′[U1evenV1odd + V1evenU1odd],

I5 =
1

2

∫ ∞

−∞

w′U2
1 = 2

∫ ∞

0

w′(U1evenU1odd),

I6 =
1

2

∫ ∞

−∞

w2w′V 2
1 = 2

∫ ∞

0

w2w′(V1evenV1odd),

where U1even stands for the even function part of U1, U1odd stands for the odd
function part of U1(same notation for U0, U2, V0, V1, V2).

By (7.9), we have

I1 − I2 =

∫ ∞

0

(C0w − φ1)(w − w2) = −
3

5
C0 +

∫ ∞

0

φ1w
2 −

∫ ∞

0

φ1w (6.10)

and

I3 =

∫ ∞

−∞

w3(a−
C0

t
+

1

t
(2ρ(y) + 3

∫∞

0
zw2

∫∞

0
w2

− 2

∫ y

0
zw2

∫∞

0
w2

− 2
w2

∫∞

0
w2

))

=(a−
C0

t
+

1

t

∫ ∞

0

zw2)

∫ ∞

−∞

w3 −
2

3t

∫ ∞

0

w3(

∫ y

0

zw2dz)dy

−
2

3t

∫ ∞

0

w5 +
2

t

∫ ∞

0

w3ρ, (6.11)
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where ρ(y), φ1, C0 will be given in Appendix A and we have used
∫∞

0
w2 = 3 (this

identity will be given in Appendix B). Thus, we obtain

I1 − I2 −
t

6
I3 =

∫ ∞

0

φ1w
2 −

∫ ∞

0

φ1w −
3

5
(ta+

∫ ∞

0

zw2) +
1

9

∫ ∞

0

w3(

∫ y

0

zw2dz)dy

+
1

9

∫ ∞

0

w5 −
1

3

∫ ∞

0

w3ρ. (6.12)

Then, in Appendix B, we show

I1 − I2 −
t

6
I3 = −

57

100
−

3

5
ta. (6.13)

On the other hand, we have

I4 = −
2

t
C0

∫ ∞

0

ww′(w′ + yw) +
1

t

∫ ∞

0

ww′[yφ1 + (2w′ + yw)ρ],

I5 = −
2

t

∫ ∞

0

w′(C0w − φ1)(2w
′ + yw), I6 = −

2

t

∫ ∞

0

yww′(C0 − ρ).

Hence,

−
t

2
(I5 + I6 − 2I4) =−

∫ ∞

0

2w′2φ1 +

∫ ∞

0

ww′(2w′ + yw − y)ρ

+ C0

∫ ∞

0

yww′(1− w). (6.14)

Further, we will show in Appendix B

−
t

2
(I5 + I6 − 2I4) =

177

175
−

3

10
a. (6.15)

Combining (6.7)-(6.15), we get
∫ ∞

−∞

Mε,tw
′
ε,t =

2

t
ε2(

309

700
−

3

5
ta−

3

10
a) + o(ε2+δ). (6.16)

By (6.3)-(6.6) and (6.16), we have

βε(t) =
b0

t
ε2(

309

700
−

3

5
ta−

3

10
a) + o(ε2+δ). (6.17)

Therefore, we get the proposition proved. �

7. Appendix A

In this appendix, we compute the explicit expressions of the first and second
approximation of u and v. Let U(y) = u(r), V (y) = v(r), y = r−t

ε
. We formally

write U, V into the following

U = U0 + εU1 + ε2U2 + · · · ; V = V0 + εV1 + ε2V2 + · · · .

By (2.3), we have

V (y) ∼
1

ξ

∫ ∞

−∞

G(r0 + εy, r0 + εz)U2(z)dz. (7.1)
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At leading order, we then get

V0 =
G0

ξ

∫ ∞

−∞

U2
0 ; U ′′

0 − U0 +
U2
0

V0
= 0,

where we used the expansion of G in (4.4). We now choose the constant ξ so that
V0 = 1 and therefore U0 = w; that is

ξ =

∫ ∞

0

w(y)2dy; V0 = 1; U0 = w.

Next, after computing all the terms up to O(ε2) in (2.1), we obtain

L0U1 +
2

t
U ′
0 − U2

0V1 = 0,

L0U2 +
2

t
U ′
1 −

2y

r20
U ′
0 − U2

0V2 − 2U0U1V1 + U2
1 + U2

0V
2
1 = 0,

V ′′
1 +

1

ξ
U2
0 = 0,

V ′′
2 +

2

t
V ′
1 − 1 +

2

ξ
U0U1 = 0, (7.2)

where the operator L0 is defined as L0ψ = (∂2 − 1 + 2U0)ψ. Multiplying the first
equation in (7.2) by U ′

0, we get

2

t

∫ ∞

−∞

U ′2
0 +

1

3

∫ ∞

−∞

U3
0V

′
1 = 0. (7.3)

From (7.1), we have

ξV1 = 2G0

∫ ∞

−∞

U0U1dz +

∫ y

−∞

G+
1 (y, z)U

2
0 (z)dz +

∫ ∞

y

G−
1 (y, z)U

2
0 (z)dz. (7.4)

Differentiating the both two sides with respect to y, we get

ξV ′
1 =

∫ y

−∞

(−
1

2
−

1

2t
)U2

0 (z)dz +

∫ ∞

y

(
1

2
−

1

2t
)U2

0 (z)dz

=−
1

2t

∫ ∞

−∞

U2
0 (z)dz + f1,

where f1 is an odd function of y. In addition, we can write

V ′
1 = −

1

t
+ f2, f2 is an odd function of y.

Then, the left hand side of (7.3) becomes

2

t

∫ ∞

−∞

U ′2
0 −

1

3t

∫ ∞

−∞

U3
0 = 0.

This expression is identically zero, since
∫∞

−∞ U ′2
0 = 6

5 and
∫∞

−∞ U3
0 = 36

5 . These two

identities can be directly proven by using w(y) = 3
2 sech

2(y2 ).
Next we consider the function V2. From (7.1), we have

ξV2 =

∫ ∞

−∞

G2U
2
0 +

∫ ∞

−∞

2G1U0U1 +

∫ ∞

−∞

G0(U
2
1 + 2U0U2). (7.5)
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Actually we only care about the even part of V ′
2 . We have

ξV ′
2 =[G+

2 (y, y)−G−
2 (y, y)]U

2
0 +

∫ y

−∞

G+
2yU

2
0 +

∫ ∞

y

G−
2yU

2
0

+ 2[G+
1 (y, y)−G−

1 (y, y)]U0U1 +

∫ y

−∞

2G+
1yU0U1 +

∫ ∞

y

2G−
1yU0U1, (7.6)

where G+
2y =

∂G
+
2

∂y
, similar notation will be used for G+

1 , G
−
1 , G

−
2 respectively. Since

G+
2 (y, y)−G−

2 (y, y) = G+
1 (y, y)−G−

1 (y, y) = 0,

(7.6) becomes

ξV ′
2 =

∫ y

−∞

G+
2yU

2
0 +

∫ ∞

y

G−
2yU

2
0 +

∫ y

−∞

2G+
1yU0U1 +

∫ ∞

y

2G−
1yU0U1. (7.7)

Now we evaluate the first two terms on the right hand side of (7.7), keeping only
the even terms in y. We have

G−
2y =

1

2t2
(y + (y − z)(t− 1)2) +

a

2t
(t+ 1),

G+
2y =

1

2t2
(y + (y − z)(t+ 1)2) +

a

2t
(t+ 1),

then
∫ y

−∞

G+
2yU

2
0 +

∫ ∞

y

G−
2yU

2
0 =

∫ y

0

G+
2yU

2
0 +

∫ 0

y

G−
2yU

2
0 +

∫ 0

−∞

G+
2yU

2
0 +

∫ ∞

0

G−
2yU

2
0 ,

∫ 0

−∞

G+
2yU

2
0 +

∫ ∞

0

G−
2yU

2
0 = a(1 +

1

t
)

∫ ∞

0

U2
0 +

2

t

∫ ∞

0

zU2
0 + f3,

and
∫ y

0

G+
2yU

2
0 +

∫ 0

y

G−
2yU

2
0 =

2

t

∫ y

0

(y − z)U2
0 ,

where f3 is an odd function of y. So that
∫ y

−∞

G+
2yU

2
0 +

∫ ∞

y

G−
2yU

2
0 = a(1 +

1

t
)

∫ ∞

0

U2
0 +

2

t

∫ ∞

0

zU2
0 +

2

t

∫ y

0

(y − z)U2
0 + f3.

Next we compute the terms involving U1. We can write
∫ y

−∞

2G+
1yU0U1 +

∫ ∞

y

2G−
1yU0U1 =

∫ 0

−∞

2G+
1yU0U1 +

∫ ∞

0

2G−
1yU0U1

+

∫ y

0

2G+
1yU0U1 +

∫ 0

y

2G−
1yU0U1. (7.8)

Since G−
1y = (12 − 1

2t ) and G
+
1y = (− 1

2 − 1
2t ), we get

∫ 0

−∞

2G+
1yU0U1 +

∫ ∞

0

2G−
1yU0U1 =

∫ 0

−∞

(−1−
1

t
)U0U1 +

∫ ∞

0

(1−
1

t
)U0U1

=−
2

t

∫ ∞

0

U0U1even + 2

∫ ∞

0

U0U1odd,
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and
∫ y

0

2G+
1yU0U1 +

∫ 0

y

2G−
1yU0U1 =

∫ y

0

(
1

t
− 1)U0U1odd −

∫ y

0

(
1

t
+ 1)U0U1odd + f4

=− 2

∫ y

0

U0U1odd + f4,

where f4 is a odd function of y. Let’s define ρ(y) :=
∫

y

0
(y−z)U2

0dz

ξ
. Then we have

(V ′
2 )even =a(1 +

1

t
) +

2

tξ

∫ ∞

0

zU2
0 +

2

t
ρ(y)−

2

tξ

∫ ∞

0

U0U1even

+
2

ξ

∫ ∞

0

U0U1odd −
2

ξ

∫ y

0

U0U1odd.

Next, we compute U1, V1 explicitly. We have

ξV1 =

∫ ∞

−∞

U0(z)U1(z)dz +

∫ ∞

0

G−
1 U

2
0 +

∫ 0

−∞

G+
1 U

2
0 +

∫ 0

y

G−
1 U

2
0 +

∫ y

0

G+
1 U

2
0 ,

∫ 0

−∞

G+
1 U

2
0 +

∫ ∞

0

G−
1 U

2
0 = −

y

t

∫ ∞

0

U2
0 +

∫ ∞

0

(−zU2
0 − aU2

0 ),

∫ y

0

G+
1 U

2
0 +

∫ 0

y

G−
1 U

2
0 = −

∫ y

0

(y − z)U2
0 .

So that

V1 = −
y

t
− a−

1

ξ

∫ ∞

0

zU2
0 − ρ(y) +

1

ξ

∫ ∞

−∞

U0(z)U1(z)dz.

Separating the odd and even part of V1 and U1, we find

V1odd = −
y

t
, V1even = −a−

1

ξ

∫ ∞

0

zU2
0 − ρ(y) +

2

ξ

∫ ∞

0

U0U1even,

U1odd and U1even satisfies

L0U1odd +
2

t
U ′
0 +

y

t
U2
0 = 0,

L0U1even − U2
0 (−a−

1

ξ

∫ ∞

0

zU2
0 − ρ(y) +

2

ξ

∫ ∞

0

U0U1even) = 0.

Therefore

U1even =

(

− a−
1

ξ

∫ ∞

0

zU2
0 +

2

ξ

∫ ∞

0

U0U1even

)

U0 − L−1
0 (U2

0 ρ),

U1odd = −
y

t
U0 −BU ′

0,

where B is defined later. Now we can get
∫ ∞

0

U0U1even = −a

∫ ∞

0

U2
0 −

∫ ∞

0

zU2
0 + 2

∫ ∞

0

U0U1even −

∫ ∞

0

U0L
−1
0 (U2

0 ρ),

so that
∫ ∞

0

U0U1even = a

∫ ∞

0

U2
0 +

∫ ∞

0

zU2
0 +

∫ ∞

0

U0L
−1
0 (U2

0 ρ).

As a consequence,

U1even =

(

a+
1

ξ

∫ ∞

0

zU2
0 +

2

ξ

∫ ∞

0

U0L
−1
0 (U2

0 ρ)

)

U0 − L−1
0 (U2

0 ρ).
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To get the constant B, we impose U ′
1(0) = 0. We have

−U ′
1(0) =

1

t
U0(0) +BU ′′

0 (0) =
1

t

3

2
+B(

3

2
−

9

4
) = 0,

so that B = 2
t
. Then we obtain

U1odd = −
1

t
(2U ′

0 + yU0).

Combining the formula of U1even and V1even, we get

V1even = a+
1

ξ

∫ ∞

0

zU2
0 − ρ(y) +

2

ξ

∫ ∞

0

U0L
−1
0 (U2

0 ρ).

Next we simplify (V ′
2)even as follows. First, we have

∫ ∞

0

U0U1even = a

∫ ∞

0

U2
0 +

∫ ∞

0

zU2
0 +

∫ ∞

0

U0L
−1
0 (U2

0 ρ),

∫ y

0

U0U1odd = −
1

t
(U2

0 −
9

4
+

∫ y

0

zU2
0 ),

∫ ∞

0

U0U1odd = −
1

t
(−

9

4
+

∫ ∞

0

zU2
0 ).

Then, we define

ρ(y) :=
1

ξ

∫ y

0

(y − z)U2
0 , φ1 = L−1

0 (U2
0 ρ), C0 := a+

1

ξ

∫ ∞

0

zU2
0 +

2

ξ

∫ ∞

0

U0φ1.

Summarizing our results, which are the following

U1even = C0U0 − φ1, U1odd = −
1

t
(2U ′

0 + yU0),

V1even = C0 − ρ(y), V1odd = −
y

t
,

V2y,even = a−
C0

t
+

1

t

(

2ρ(y) +
3

ξ

∫ ∞

0

zU2
0 −

2

ξ

∫ y

0

zU2
0 −

2

ξ
U2
0

)

. (7.9)

8. Appendix B

In this appendix we compute explicitly the expressions (6.13) and (6.15). We
claim

I1 − I2 −
t

6
I3 = −

57

100
−

3

5
ta, (8.1)

−
t

2
(I5 + I6 − 2I4) =

177

175
−

3

10
a. (8.2)

Let’s define

J(p) :=

∫ ∞

0

wpρ, K(p) :=

∫ ∞

−∞

wpρy, M(p) :=

∫ ∞

0

wp,

where ρ = 1
3

∫ y

0 (z − y)w2(z)dz. Using the equations

w′′ − w + w2 = 0, w′2 − w2 +
2

3
w3 = 0, ρyy =

1

3
w2,
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we derive the following recursion identities

J(p) =
3(p− 1)

2p− 1
J(p− 1)−

1

(p− 1)(2p− 1)
M(p+ 1), p > 1, (8.3)

K(p) =
3(p− 1)

2p− 1
K(p− 1)−

2p

(p+ 1)(p− 1)(2p− 1)
M(p+ 1), p > 1, (8.4)

M(p) =
3(p− 1)

2p− 1
M(p− 1), p > 1. (8.5)

The proof of (8.3)-(8.5) are directly and we omit the details. Using (8.3)-(8.5), we
obtain the following table

i 1 2 3 4 5

M(i) 3 3 18
5

162
35

216
35

K(i) 7
2

19
10

111
70

J(i) 13
2 − 6 ln(2) 53

10 − 6 ln(2) 1032
175 − 36

5 ln(2) 8928
1225 − 324

35 ln(2)
In addition we evaluate

∫ ∞

0

zw2 = −
3

2
+ 6 ln(2),

∫ ∞

0

w3(

∫ y

0

zw2dz) = −
4527

350
+

108

5
ln(2). (8.6)

We now compute

∫ ∞

0

φ1w
2 =

∫ ∞

0

w3ρ = J(3) =
1032

175
−

36

5
ln(2) (8.7)

∫ ∞

0

φ1w =

∫ ∞

0

w2ρ(w +
1

2
yw′) =

∫ ∞

0

w3ρ+
1

6

∫ ∞

0

y(w3)′ρ

=

∫ ∞

0

5

6
w3ρ−

∫ ∞

0

1

6
w3yρ′ =

5

6
J(3)−

1

6
K(3)

=
93

20
− 6 ln(2). (8.8)

To evaluate
∫∞

0
w′2φ1, we note

L0w
2 = 2w′′w + 2w′2 − w2 + 2w3 = 2w′2 + w2,

so that L−1
0 w′2 = 1

2 (w
2 − w). Thus

−

∫ ∞

0

2w′2φ1 = −

∫ ∞

0

(w2 − w)ρ =

∫ ∞

0

w′′ρ =
1

3

∫ ∞

0

w3 =
6

5
. (8.9)

Finally, we get

C0 = a+
1

3

∫ ∞

0

zw2 +
2

3

∫ ∞

0

wφ1 = a+
13

5
− 2 ln(2), (8.10)

∫ ∞

0

yww′(1− w) =

∫ ∞

0

yw′′w′ = −
1

2

∫ ∞

0

w′2 = −
3

10
, (8.11)
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∫ ∞

0

ww′(2w′ + yw − y)ρ =

∫ ∞

0

2w′2wρ− yw′w′′ρ

=

∫ ∞

0

(2(w2 −
2

3
w3)wρ+

1

2
w′2(ρ+ yρy))

=

∫ ∞

0

(2w3 −
4

3
w4)ρ+

∫ ∞

0

(
1

2
w2 −

1

3
w3)(ρ+ yρy)

=
1

2
J(2) +

5

3
J(3)−

4

3
J(4) +

1

2
K(2)−

1

3
K(3)

=
7797

2450
−

93

35
ln(2). (8.12)

Then, using (8.3)-(8.12), we get the claim proved.
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