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Spike Dynamics in the Presence of Noise\ast 

Chunyi Gai\dagger , David Iron\dagger , Theodore Kolokolnikov\dagger , and John Rumsey\dagger 

Abstract. We study the effect of noise on dynamics of a single spike for the classical Gierer--Meinhardt model
on a finite interval. When spatio-temporal noise is introduced in the equation for the activator,
we derive a stochastic ODE that describes the motion of a single spike on a slow time scale. The
steady state is described by a density distribution for spike positions, obtained via the corresponding
Fokker--Planck PDE. For sufficiently small noise level, the spike performs random fluctuations near
the center of the domain. As noise level is increased, the spike can deviate from the domain center but
remains effectively ``trapped"" within a certain subinterval that includes the center. For even larger
noise levels, the spike starts to undergo large excursions that eventually collide with the domain
boundary and temporarily trap the spike there. By reformulating this problem in terms of mean
first passage time, we derive the expected time for the spike to collide with the boundary. Several
new open problems are also presented.
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1. Introduction. The goal of this paper is to study the effect of noise on spike dynamics
in reaction-diffusion systems. We concentrate on dynamics of a single spike for the Gierer--
Meinhardt (GM) model, which is among the simplest reaction-diffusion systems that manifests
complex patterns. It was first introduced in [3] to describe biological morphogenesis. One of
the simplest versions the GM model---which still admits rich pattern-formation structure---is
[3, 6, 20],

ut = \varepsilon 2uxx  - u+ u2/v, 0 = vxx  - v +
u2

\varepsilon 
.(1.1)

We impose Neumann boundary conditions on an interval x \in [ - L,L]: ux = vx = 0 at x = \pm L.
Here, u and v represent activator and inhibitor concentrations, respectively, and we make the
standard assumption that the inhibitor diffuses much faster than the activator, that is, \varepsilon \ll 1.

A key feature of (1.1) is that in the limit of small activator diffusivity \varepsilon \rightarrow 0, the model can
produce localized spike patterns [3, 4]. These spiky patterns have been subject to intensive
study over the last two decades, and by now there is a large literature on formation and
stability of these patterns. We refer the reader to books [14, 20] and references therein. More
relevant to this work, once spikes form, they typically exhibit a slow motion which can be
effectively characterized by a system of ODEs for spike positions coupled to an algebraic
system describing spike heights [6, 5].
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While spike pattern formation and various instabilities for the deterministic GM model
are by now well understood, much less is known about behavior of spike solutions in the
corresponding stochastic mathematical model. Several recent studies have looked at the effect
of noise on Turing bifurcations [16, 1] as well as phenomenological/numerical investigations
[13, 18, 7, 9]. The effect of stochastic diffusivity in the GM model was analyzed in [21]. More
recently, existence of solutions for stochastic a shadow GM system was established in [12, 22].

There are many ways to introduce noise. In this paper, we study the effect of introducing
the noise in an equation for the activator. As we will show, this has a direct effect on the
motion of spikes. For concreteness, let us assume that only the decay rate of the activator u is
stochastic, although similar analysis works for other types of noise, some of which we discuss
in section 5. By introducing the noise in the decay of u, (1.1) then becomes

ut = \varepsilon 2uxx  - u+ u2/v + \sigma uW

\surd 
dt

dt
, 0 = vxx  - v +

u2

\varepsilon 
, ux = vx = 0 at x = \pm L.

(1.2)

Here, W (x, t) is the spatio-temporal Gaussian white noise chosen to be consistent with nu-
merics. We chose this type of noise because it is easy to implement numerically using finite
differences: one simply adds an appropriate amount of noise at each meshpoint and at each
timestep. A drawback is that the noise magnitude is related to the number of meshpoints N
used, so that it needs to be normalized appropriately. Here, we define W to be

W (x, t) = \psi 0(t) +
\surd 
2

(N - 1)/2\sum 

m=1

\Bigl( 
\psi m(t) cos

\Bigl( m\pi 
L

x
\Bigr) 
+ \phi m(t) sin

\Bigl( m\pi 
L

x
\Bigr) \Bigr) 

,(1.3)

where \psi m, \phi m are independent standard normal distributions of mean zero and variance one.
This definition is motivated in part as follows. When discretizing (1.3) using finite differences
on a uniform mesh \{ xk\} of size N , one obtains thatW (xk, t) are independent normal variables,
all with variance N. See Appendix A for detailed explanations as well as the MATLAB code
for simulating (1.2).

Let us summarize our main findings, which are illustrated in Figure 1. As is well known
[6, 5], in the absence of noise, the spike center x0 drifts toward a center of the domain x = 0
on a slow time (O(\varepsilon 2)) scale. The reduced equation for the motion of a single spike consists
of an ODE for the spike position. When the noise is turned on in the activator equation,
it manifests as noise at the level of reduced equation for the spike motion. As a result, the
reduced equation becomes a stochastic ODE (SODE). In section 2 we derive the following
SODE which describes the motion for the spike center x0:

dx0 \sim  - 2 sinh (2x0)

cosh (2x0) + cosh (2L)
ds+ \sigma \ast \xi 

\surd 
ds; s = \varepsilon 2t,(1.4a)

Here, \xi (s) = \scrN (0, 1) is a normal random variable and \sigma \ast is the standard deviation, indepen-
dent of space, given by

\sigma \ast = \sigma 

\biggl( 
L

\varepsilon 

\biggr) 1/2
\sqrt{} 

10

7
.(1.4b)
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Figure 1. Top row and left column: simulation of the full PDE (1.2), parameters as indicated. Dashed
lines correspond to the simulation of the SODE (1.4) for the reduced dynamics of the center of the spike. Right
column, last three rows: histogram shows probability distribution of spike position over time, as extracted from
the corresponding figure to its left. Dashed line denotes the analytical prediction (1.5). For larger \sigma (bottom
right), the spike can hit the boundary and get ``stuck"" there for some time as indicated by red bars, then drift
back to the middle.
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2786 C. GAI, D. IRON, T. KOLOKOLNIKOV, AND J. RUMSEY

The ODE (1.4a) is valid only as long as x0 remains away from the boundaries \pm L, more
specifically, as long as | x0 \pm L| \gg O(\varepsilon ). In the absence of noise (\sigma \ast = 0), the deterministic
part pushes the spike toward its equilibrium at the center, while the noise can push it away
from the center. If \sigma \ast is relatively small, the deterministic part dominates, and the spike
remains near the center of the domain. In this case, using the Fokker--Planck equation, and
for sufficiently small \sigma \ast , we show in section 3 that the stationary distribution of spike positions
has the density given explicitly by

\rho (x0) = C exp

\biggl\{ 
 - 2

(\sigma \ast )2
log

\biggl( 
cosh (2x0) + cosh (2L)

1 + cosh (2L)

\biggr) \biggr\} 
,(1.5)

where C is a constant chosen so that
\int 
\rho (x0)dx0 = 1.

Figure 1 shows an excellent agreement of the direct simulations of (1.2) and the spike
distribution density given by (1.5), (1.4b), as long as \sigma is not too big. Since the spike motion
is restricted to the domain [ - L,L], formula (1.5) is restricted to those parameter values for
which \rho is vanishingly small outside x \in [ - L,L].1

On the other hand, when \sigma becomes too big, the density (1.5) does not ``fit"" into the
domain [ - L,L] and there is a nonvanishing chance that a spike ``hits"" the boundary. While
the SODE cannot predict what happens when the spike collides with the boundary, it can
predict how long it takes (on average) before such collision occurs. Numerically, we observe
that following the collision, the spike can remain at the boundary for some time, until the
noise eventually kicks it off the boundary. This is illustrated in the bottom row of Figure 1;
red bars correspond to the spike being temporarily ``stuck"" near the boundary. The expected
time for the spike to ``hit"" the boundary can be formulated in terms of the mean first passage
time (MFPT) problem. This is done in section 4.

We now summarize the paper. We derive the SODE (1.4) in section 2. The spike position
distribution is analyzed in section 3; in the case of large L, we also derive the ``trapping region""
of size 2l such that the spike remains ``trapped"" within a region | x| < l \leq L. The hitting time
to the boundary is studied in seciton 4. We conclude in section 5, where we discuss some
generalizations and propose several open problems.

2. Derivation of reduced SODE for spike motion. We now derive the equations of motion
(1.4) starting with the PDE system (1.2). In fact, we will generalize this slightly, by replacing

uW \rightarrow upW(2.1)

in (1.2) and considering both the cases p = 1 and p = 0. A typical snapshot of solutions for
the two cases is shown in Figure 2. The case p = 0 is discussed in section 5. When p = 1, the
noise is mostly occuring inside a spike but does not affect the background due to exponential
decay of u. On the other hand when p = 0, the noise affects the background and can lead to
many other phenomena as discussed in section 5.

1Here, ``vanishing"" is used loosely to mean exponentially small, meaning in practical terms that it is not
expected to be observed numerically within a reasonable timeframe (say, a week of running on a standard
laptop). For example, for parameters in row 2 of Figure 1, one finds \rho (\pm L)/\rho (0) \approx 1.3 \times 10 - 10. The precise
measure is clarified in section 4 in terms of MFPT.D
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SPIKE DYNAMICS IN THE PRESENCE OF NOISE 2787

Figure 2. Spike in the presence of noise. Here, \varepsilon = 0.05. Left: when p = 1, the noise affects the inside of
the spike only. Right: p = 0, the whole spike including the background is affected.

We use by-now-standard techniques to reduce the full PDE solution to an ODE system
for spike center position x0. The derivation is rather standard; see, for example, [8, 6, 5, 11,
10, 19, 20]. In particular the deterministic part in (1.4) is well known, although we rederive
it here in full for convenience. The main novelty here is to derive the reduced noise level \sigma \ast 

(1.4b) from the original system.
Let x0(t) denote the position of the spike. In the inner region near x0 we expand (1.2) as

follows:

x = x0(s) + \varepsilon y, s = \varepsilon 2t,

u(x, t) = U0(y) + \varepsilon U1(y) + . . . ,

v(x, t) = V0(y) + \varepsilon V1(y) + . . . .

To leading order in \varepsilon we have

0 = U0yy  - U0 +
U2
0

V0
, 0 = V0yy,(2.2)

and at the next order, after collecting O(\varepsilon ) terms, we obtain

 - x\prime 0(s)U0y = U1yy  - U1 + 2
U0U1

V0
 - U2

0

V 2
0

V1 + \sigma Up
0W

\surd 
ds

ds
,(2.3)

0 = V1yy + U2
0 .(2.4)

Then V0 is a constant and therefore U0 can be written as

U0(y) = w(y)V0,(2.5)

where w is the well-known ground state satisfying

wyy  - w + w2 = 0, w \rightarrow 0 as | y| \rightarrow \infty , w\prime (0) = 0,(2.6)

with the explicit solution given byD
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2788 C. GAI, D. IRON, T. KOLOKOLNIKOV, AND J. RUMSEY

w(y) =
3

2
sech2(y/2).(2.7)

In the outer region, we write

v \sim SG(x, x0),(2.8)

where G is the Green's function satisfying

Gxx  - G+ \delta (x - x0) = 0, Gx (\pm L) = 0,(2.9)

given by

G(x;x0) =
1

sinh(2L)

\biggl\{ 
cosh (x+ L) cosh (x0  - L) ,  - L < x < x0,
cosh (x0 + L) cosh (x - L) , x0 < x < L,

(2.10)

and S is computed as

S =

\int x+
0

x - 
0

u2(x)

\varepsilon 
dx \sim 

\int \infty 

 - \infty 
(w(y)V0)

2 dy = 6V 2
0 .

Matching inner and outer regions we obtain V0 \sim v(x0) \sim SG(x0, x0) so that

V0 =
1

6G0
; G0 = G(x0, x0) =

cosh(2x0) + cosh(2L)

2 sinh(2L)
.

Finally we formulate the solvability condition to determine x0. Multiplying (2.3) by U0y

we have

 - x\prime 0(s)
\int \infty 

 - \infty 
U2
0ydy =

\int \infty 

 - \infty 
U0y

\biggl( 
U1yy  - U1 + 2

U0U1

V0

\biggr) 
dy(2.11)

 - 
\int \infty 

 - \infty 
U0y

U2
0

V 2
0

V1dy + \sigma 

\surd 
ds

ds

\int \infty 

 - \infty 
U0yU

p
0Wdy.

We now integrate by parts using the decay of w at infinity to obtain

\int \infty 

 - \infty 
U0y

\biggl( 
U1yy  - U1 + 2

U0U1

V0

\biggr) 
dy =

\int \infty 

 - \infty 
U1

\biggl( 
U0yyy  - U0y + 2

U0yU0y

V0

\biggr) 
dy.

Note that

U0yyy  - U0y + 2
U0yU0y

V0
= (wyyy  - wy + 2wwy)V0 = 0,

since wyyy  - wy + 2wwy =
\bigl( 
wyy  - w + w2

\bigr) 
y
= 0 (see (2.6)). So (2.11) simplifies to

 - x\prime 0(s)
\int \infty 

 - \infty 
U2
0ydy =  - 

\int \infty 

 - \infty 
U0y

U2
0

V 2
0

V1dy + \sigma 

\surd 
ds

ds

\int \infty 

 - \infty 
U0yU

p
0Wdy.(2.12)
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We further evaluate

 - 
\int \infty 

 - \infty 
U0y

U2
0

V 2
0

V1dy =
V0
3

\int \infty 

 - \infty 
w3V1ydy.(2.13)

From (2.4), we have

V1y(y) =  - 
\int y

0
U2
0 (s)ds+

V1y(\infty ) + V1y( - \infty )

2
.

Since
\int y
0 U

2
0 (s)ds is an odd function and using

\int \infty 
 - \infty w3dy = 36

5 , the integral in (2.13) evaluates
to \int \infty 

 - \infty 
w3V1ydy =

V1y(\infty ) + V1y( - \infty )

2

36

5
.

We match inner and outer solutions to obtain

V1y (\pm \infty ) = SGx

\bigl( 
x\pm 0 , x0

\bigr) 
= 6V 2

0 Gx

\bigl( 
x\pm 0 , x0

\bigr) 
.

Using
\int \infty 
 - \infty w2

ydy = 6/5 we get

x\prime 0(s) =  - Gx

\bigl( 
x+0 , x0

\bigr) 
+Gx

\bigl( 
x - 0 , x0

\bigr) 

G(x0, x0)
 - \sigma 

\surd 
ds

ds
V P - 1
0

\int 
wyw

pWdy

6/5
.(2.14)

From (2.10) we compute

Gx

\bigl( 
x+0 , x0

\bigr) 
+Gx

\bigl( 
x - 0 , x0

\bigr) 

G(x0, x0)
=

2 sinh (2x0)

cosh (2x0) + cosh (2L)
.(2.15)

It remains to evaluate the integral in (2.14). Using the addition formulas cos(x) = cos(x0 +
\varepsilon y) = cos(x0) cos(\varepsilon y) - sin(x0) sin(\varepsilon y) and parity, we compute

\int \infty 

 - \infty 
wyw

p cos
\Bigl( 
x
m\pi 

L

\Bigr) 
dy =  - sin

\Bigl( 
x0
m\pi 

L

\Bigr) \int \infty 

 - \infty 
sin
\Bigl( 
\varepsilon y
m\pi 

L

\Bigr) 
wyw

pdy,

\int \infty 

 - \infty 
wyw

p sin
\Bigl( 
x
m\pi 

L

\Bigr) 
dy = cos

\Bigl( 
x0
m\pi 

L

\Bigr) \int \infty 

 - \infty 
sin
\Bigl( 
\varepsilon y
m\pi 

L

\Bigr) 
wyw

pdy.

Define

Fp(x) :=

\int \infty 

 - \infty 
sin (xy)wyw

pdy,

whose value is derived explicitly in Appendix B. In terms of Fp we have

\int 
Wwyw

pdy =
\surd 
2

(N - 1)/2\sum 

m=1

Fp

\Bigl( m\pi 
L

\varepsilon 
\Bigr) \Bigl( 

 - \psi m(t) sin
\Bigl( 
x0
m\pi 

L

\Bigr) 
+ \phi m(t) cos

\Bigl( 
x0
m\pi 

L

\Bigr) \Bigr) 
.(2.16)

Finally, we compute the variance of \sigma V P - 1
0

\int 
wywpWdy

6/5 . This is done by approximating the
summation by an integral as follows:D

ow
nl

oa
de

d 
02

/0
6/

21
 to

 1
29

.1
73

.7
2.

87
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2790 C. GAI, D. IRON, T. KOLOKOLNIKOV, AND J. RUMSEY

(\sigma \ast )2 =

\Biggl( 
\sigma V P - 1

0

6/5

\Biggr) 2

2

(N - 1)/2\sum 

m=1

F 2
p

\Bigl( m\pi 
L

\varepsilon 
\Bigr) 

\sim 
\Biggl( 
\sigma V P - 1

0

6/5

\Biggr) 2

2

\int N/2

0
F 2
p

\Bigl( m\pi 
L

\varepsilon 
\Bigr) 
dm

\sim 
\Bigl( 
\sigma G1 - p

0 5 \cdot 6 - p
\Bigr) 2

2
L

\pi \varepsilon 

\int \infty 

0
F 2
p (z) dz.

The latter integral is computed in Appendix B with the result

\int \infty 

 - \infty 
F 2
p (x)dx =

\Biggl\{ 
6
5\pi , p = 0,

36
35\pi , p = 1.

To summarize, we obtain

\sigma \ast = \sigma 

\sqrt{} 
L

\varepsilon 
G1 - p

0 Cp,(2.17)

where

Cp =

\sqrt{} 
(5 \cdot 6 - p)2

2

\pi 

\int \infty 

0
F 2
p (z) dz =

\Biggl\{ \surd 
60, p = 0,\sqrt{} 
10
7 , p = 1.

In particular,

p = 0 : \sigma \ast = \sigma 

\sqrt{} 
15L

\varepsilon 

cosh(2x0) + cosh(2L)

sinh(2L)
,(2.18)

p = 1 : \sigma \ast = \sigma 

\sqrt{} 
L

\varepsilon 

\sqrt{} 
10

7
.(2.19)

This yields (1.4) when p = 1. The case p = 0 is discussed in section 5.
A similar derivation is possible if we impose periodic boundary conditions on (1.2) instead

of Neumann. Then the resulting ODE for spike motion is simply (1.4) but without the drift,
dx0 \sim \sigma \ast \xi 

\surd 
ds, and with x0 \in [ - L,L] taken mod 2L (so that the spike that crosses through a

left boundary reemerges on the right and vice versa). This corresponds to a simple Brownian
motion with periodic boundary conditions.

3. Spike position distribution. For a general SODE

dx = f(x)ds+ \sigma (x)\xi 
\surd 
ds,(3.1)

subject to initial condition x(0) = a, the probability density \rho (x, t) for x to be at a given
location at time t satisfies the Fokker--Planck PDE

\rho t =

\biggl( 
\sigma 2

2
\rho 

\biggr) 

xx

 - (f\rho )xD
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subject to initial conditions \rho (x, 0) = \delta (x - a). See, for example, [2, 15] for the derivation, or
the appendix of [17] for an alternative derivation using integral master equation. The long-

time equilibrium density distribution \rho (x, t) = \rho (x) then satisfies (\sigma 
2

2 \rho )x+ f\rho = K. Assuming
the density is finite and decays at x = \pm \infty , we must have K = 0 so that the equilibirum
density is explicitly given by

\rho =
2

\sigma 2
C exp

\biggl( \int 
2

\sigma 2
f

\biggr) 
,(3.2)

where C is a constant of integration chosen so that
\int 
\rho = 1. Here, we specialize to SODE

(1.4). For convenience we relabel x0 = x. We evaluate
\int x
0 f =  - log( \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(2x)+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(2L)

1+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(2L) ) and

\sigma (x) = \sigma \ast is a constant. This leads to (1.5) for the density. In the context of a bounded
domain x \in [ - L,L], this formula implicitly assumes that \rho is vanishingly small near x = \pm L.
Figure 3 shows the graph of \rho (x) for several values of L and \sigma \ast . In the limit of small \sigma \ast , the
density is nearly Gaussian. By Taylor-expanding (1.5) for small x we obtain

\rho (x0) \sim C exp

\biggl\{ 
 - 1

(\sigma \ast )2
4x2

1 + cosh(2L)

\biggr\} 
,(3.3)

where C =
\sqrt{} 

1
\pi 

1
(\sigma \ast )2

4
1+\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}(2L) .

On the other hand, when L\gg 1, (1.5) simplifies to

\rho (x) = C exp

\biggl\{ 
 - 2

(\sigma \ast )2
e2(| x|  - L)

\biggr\} 
.(3.4)

As shown in Figure 3, this is well-approximated by a piecewise-constant density. \rho \sim 1
2l\chi [ - l,l],

where \chi is the characteristic function. The length l of the box can be computed by setting
\rho (l) = a\rho (0), where 0 < a < 1 is an arbitrarily chosen constant. Solving for l then yields

l \sim L - log

\biggl( 
1

\sigma \ast 

\sqrt{} 
2

log a - 1

\biggr) 
.
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Figure 3. Spike density distribution \rho (x) for several values of \sigma \ast and L. Left: L = 1 and \sigma \ast =
0.1, 0.2, 0.3, 0.5 (from highest to lowest). Solid line is the exact formula (1.5), whereas dashed line is the
formula (3.3). Right: L = 5 and \sigma \ast = 0.1, 0.2, 0.3, 0.5 (from highest to lowest). Solid line is the exact formula
(1.5), whereas dashed line is the formula (3.4).D
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2792 C. GAI, D. IRON, T. KOLOKOLNIKOV, AND J. RUMSEY

The choice of a is somewhat subjective. For sufficiently small \sigma \ast (with (\sigma \ast )2 \ll O(log a - 1)),
to leading order we get

l \sim L - log
1

\sigma \ast 
.(3.5)

This formula is shown in Figure 3 (right); it also corresponds to choosing a = e - 2.
When 1 \ll l \ll L, \rho (x) exhibits a sharp transition near x \sim l: for | x| \ll l, we find \rho (x) \sim C

so that \rho (x) is nearly constant in this case. For l \ll | x| \leq L, \rho (x) is exponentially small so
that \rho (x) is nearly zero in that region. On the other hand, when l is near L, the density is
nonnegligible near x = L and the spike is no longer confined away from the boundaries \pm L.
In this case it will hit the boundary within a realistic timeframe (i.e., observable numerically
on a computer for runtimes less than, e.g., a week). In the next section, we use MFPT to
quantify this transition more precisely.

4. Boundary hitting time. As seen from SODE (1.4), the spike motion is driven by a
competition between the deterministic term that pushes the spike toward the center of the
domain and the noise term which can push the spike away from the center. If the noise
is sufficiently large, it can counteract the attraction toward the center, and the spike will
eventually collide with the boundary, given enough time.

We can formulate this as the MFPT, corresponding to a stochastic particle first hitting
the boundary x = \pm L. Consider the general SODE,

dx = f(x)ds+ \sigma \ast \xi 
\surd 
ds,(4.1)

and let m(x) be the average time it takes for a particle x to hit the boundary x = \pm L. Then
m(x) satisfies the following MFPT problem [15]:

(\sigma \ast )2

2
mxx + f(x)mx + 1 = 0, m (\pm L) = 0.(4.2)

An alternative derivation from first principles is given in Appendix C. For our problem,

f(x) =  - 2 sinh (2x)

cosh (2x) + cosh (2L)
(4.3)

and the solution to (4.2) is given by

mx =  - 2

(\sigma \ast )2
vh

\int x

0

1

vh(s)
ds,(4.4)

where vh satisfies (\sigma \ast )2

2 v\prime h + f(x)vh = 0, that is,

vh(x) = exp

\biggl( 
 - 2

(\sigma \ast )2

\int x

0
f(s)ds

\biggr) 
.(4.5)

Integrating (4.4) and using the boundary condition m(L) = 0 yields a semiexplicit expression
for MFPT,D
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m(x) =
2

(\sigma \ast )2

\int L

x

\biggl\{ 
vh(x)

\int x

0

1

vh(s)
ds

\biggr\} 
dx.(4.6)

Further analysis is possible for two important cases: either L is large, or \sigma is small (or both).
Case A: \bfitsigma \ast is small and \bfitL = \bfitO (1). We use Laplace's method to asymptotically

approximate m(x). Note that f(x) is a decreasing function so that
\int x
0 f has a maximum at

x = 0. Therefore we estimate, using Laplace's method, for x > 0,

\int x

0

1

vh(s)
ds \sim 

\int \infty 

0
exp

\biggl( 
2

(\sigma \ast )2

\int x

0
f(s)ds

\biggr) 
dx \sim \sigma \ast 

2

\sqrt{} 
\pi 

 - f \prime (0)

so that

m(x) \sim 1

\sigma \ast 

\sqrt{} 
\pi 

 - f \prime (0)

\int L

x
exp

\biggl( 
 - 2

(\sigma \ast )2

\int x

0
f(s)ds

\biggr) 
dx.

Note that  - 
\int x
0 f attains its maximum at | x| = L so we estimate, for x > 0,

\int L

x

exp

\Biggl( 
 - 2

(\sigma \ast )2
F (x)

\Biggr) 
dx \sim exp

\Biggl( 
 - 2

(\sigma \ast )2

\int L

0

f(s)ds

\Biggr) 
(\sigma \ast )2

2( - f(L))

\Biggl( 
1 - exp

\Biggl( 
 - 2f(L)

(\sigma \ast )2
(x - L)

\Biggr) \Biggr) 
.

(4.7)

For x < 0, we simply replace x by | x| in (4.7) since m(x) is symmetric. To summarize, we
obtain the following uniformly valid expression when \sigma \ast \ll 1:

m(x) \sim 
\biggl( 
1 - exp

\biggl( 
 - 2f(L)

(\sigma \ast )2
(| x|  - L)

\biggr) \biggr) 
m\mathrm{m}\mathrm{a}\mathrm{x}, where(4.8)

m\mathrm{m}\mathrm{a}\mathrm{x} =
\sigma \ast 

2( - f(L))

\sqrt{} 
\pi 

 - f \prime (0) exp
\biggl( 
 - 2

(\sigma \ast )2

\int L

0
f(s)ds

\biggr) 
.(4.9)

Specializing to (4.3) we obtain after some algebra,

m(x) \sim 
\biggl( 
1 - exp

\biggl( 
2 tanh(2L)

(\sigma \ast )2
(| x|  - L)

\biggr) \biggr) 
m\mathrm{m}\mathrm{a}\mathrm{x}, \sigma \ast \rightarrow 0,(4.10a)

m\mathrm{m}\mathrm{a}\mathrm{x} =
\surd 
2\pi 

cosh (2L)

8 sinh (2L)
\sigma \ast exp

\biggl\{ 
2

\sigma \ast 
log
\bigl( 
1 + tanh2 L

\bigr) \biggr\} 
.(4.10b)

As can be seen from (4.10b), m\mathrm{m}\mathrm{a}\mathrm{x} increases exponentially as \sigma \ast \rightarrow 0.
Case B: Large \bfitL . We estimate, for x > 0,

f(x) \sim  - 2

1 + e2L - 2x

and in particular f(x) \sim 0 for | x| \ll L. We then estimate

\int x

0
f(x) \sim  - log

\Bigl( 
1 + e2(x - L)

\Bigr) 
\sim 
\biggl\{ 

0, x\ll L,
 - log (2) + - (x - L) , x near L.D
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2794 C. GAI, D. IRON, T. KOLOKOLNIKOV, AND J. RUMSEY

This yields the following uniform expansion for vh:

vh = exp

\Biggl[ 
2 log

\bigl( 
1 + e2(x - L)

\bigr) 

(\sigma \ast )2

\Biggr] 
\sim 1 + exp

\biggl( 
2 log (2)

(\sigma \ast )2

\biggr) 
exp

\biggl( 
2

(\sigma \ast )2
(x - L)

\biggr) 
.

We then estimate, for x > 0, \int x

0

1

vh(s)
ds \sim x

and
\int L

x

\biggl\{ 
vh(x)

\int x

0

1

vh(s)
ds

\biggr\} 
dx. \sim 

\int L

x
\{ vh(x)x\} dx

\sim 
\int L

x
xdx+

\int L

x
exp

\biggl( 
2 log(2) + 2(x - L)

(\sigma \ast )2

\biggr) 
Ldx

\sim L2  - x2

2
+ exp

\biggl( 
2 log(2)

(\sigma \ast )2

\biggr) 
(\sigma \ast )2

2
L
\Bigl\{ 
1 - exp(2(x - L)/ (\sigma \ast )2

\Bigr\} 
.

In conclusion, we obtain

m(x) \sim L2  - x2

(\sigma \ast )2
+ exp

\biggl( 
2
log(2)

(\sigma \ast )2

\biggr) 
L
\Bigl\{ 
1 - exp(2(| x|  - L)/ (\sigma \ast )2

\Bigr\} 
(4.11)

and in particular

m(0) \sim L2

(\sigma \ast )2
+ 2 exp

\biggl( 
2 log(2)

(\sigma \ast )2

\biggr) 
L, L\gg O(1).(4.12)

Formula (4.12) is shown in Figure 4 (top right). Note the parabolic shape on top of an
exponential layer, as predicted by the asymptotics (4.11).

While m(x) gives the mean of the hitting time distribution, the distribution itself does
not concentrate around the mean. Figure 4 (bottom) shows the hitting time probabil-
ity distribution obtained using Monte Carlo simulations. We simulated (1.4) 10,000 times
starting with x(0) = 0, until x collided with a boundary x = \pm L. The time of collision
for each simulation is recorded, and the resulting histogram is shown. The value of m(0)
is approximated by the average of these simulations. In Figure 4, bottom left, we used
forward Euler with ds = 10 - 3 in the simulations. The average of these simulations is
mMonte - Carlo(0) = 23.1. Exact result (4.6) gives mexact(0) = 21.97, whereas asymptotic re-
sult (4.10a) is masympt(0) = 19.48, a 13\% difference. In Figure 4, bottom right, we used
ds = 10 - 2 and obtained mMonte - Carlo(0) = 1429. Exact result (4.6) gives mexact(0) = 1203.7,
whereas asymptotic result (4.12) yields masympt(0) = 1380, a 15\% difference. Overall, a good
agreement between exact result, Monte Carlo, and asymptotics is observed.

The error betweenmexact andmMonte - Carlo depends on the number N of simulations used.
While the error analysis is outside the scope of this paper, numerics indicate that it scales like
O(1/

\surd 
N), which is typical of Monte Carlo simulations in general. The error between mexact

and mMonte - Carlo depends on both \sigma \ast and L in a complex way depending on the relative
scaling of L and \sigma \ast . Numerics indicate that with \sigma \ast fixed, formula (4.12) has a relative error
of O(1/L) as L \rightarrow \infty , whereas formula (4.10) has a relative error that decays exponentially
in \sigma \ast for fixed L and with \sigma \ast \rightarrow 0.D

ow
nl

oa
de

d 
02

/0
6/

21
 to

 1
29

.1
73

.7
2.

87
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPIKE DYNAMICS IN THE PRESENCE OF NOISE 2795

Figure 4. Top row: FPT m(x) for L = 1 and L = 10 for several \sigma \ast as shown. Note the parabolic profile
on top of an exponential layer when L = 5 and \sigma \geq 0.5. Middle row: graph of m(0) for L = 1 and L = 5
as a function of \sigma \ast . Bottom row: the full distribution of hitting times obtained by Monte Carlo simulations of
(1.4a). MC-mean refers to the average of these simulations. Exact result is m(0) given by (4.6). Asymptotic
line is given by (4.10a) for L = 1 and by (4.11) for L = 5.

5. Discussion. We have investigated the effect of noise on the motion of a single spike in
the GM model. We formulated a SODE describing the reduced spike motion, then used it to
describe the spike distribution of a spike inside the domain and the MFPT for the spike to
hit the boundary. This only scratches the surface of many novel phenomena that are possible
when noise is present, and many open problems remain. We conclude with proposing several
below.D
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Figure 5. Simulation of (1.2) for several different \sigma as indicated. As \sigma is increased, the spike collides with
the boundary. It can stay at the boundary for a long time but eventually becomes ``unglued."" The higher the \sigma ,
the shorter time it spends at the boundary. The spike still retains its shape even for larger \sigma .

When a spike hits the boundary, it gets ``stuck"" there. However, it can also get ``unglued""
from the boundary as well, as illustrated in Figure 5. While we used MFPT theory to predict
how long it takes for the spike to ``hit"" the boundary, we cannot explain why it gets ``unglued""
or how long it takes for the spike to unglue.

In this paper, we added the noise to the activator equation because it induces random
spike motion. Numerical experiments indicate that noise in the inhibitor does not affect spike
motion very much; instead, it induces spike oscillations. This is an interesting problem left
for future study.

We studied in detail multiplicative noise (1.2), where the spatiotemporal noise is premul-
tiplied by u. This type of noise ensures that the randomness affects only the spike itself and
has no effect outside the spike, since u decays exponentially away from the spike center. One
can also consider additive noise, where the noise is added to the background independent of
spike height, as follows:

\left\{ 
 
 

ut = \varepsilon 2uxx  - u+ u2/v + \sigma W

\surd 
dt

dt
, 0 = vxx  - v +

u2

\varepsilon 
,

ux = vx = 0 at x = \pm L.
(5.1)

Using the analysis of section 2, the spike position then satisfies the SODE (1.4), with \sigma \ast given
by (2.19). The resulting density distribution, as derived in (3.2), is given by

\rho =
C

(cosh(2x0) + cosh(2L))2
exp

\biggl( 
 - \varepsilon 

15L\sigma 2
sinh2(2L)

(cosh (2x0) + cosh (2L))2

\biggr) 
.

It is qualitatively similar to the multiplicative case (1.5). The difference is that adding back-
ground noise affects not just the spike motion but spike stability as well---something that
reduced SODE or density (5.1) does not capture, especially in the case of multiple spikes.
Figure 6 shows simulations for different levels of additive noise and domain size. Many new
phenomena are observed, including spike death, spike insertion, and ``switching"" behavior.
These are great open problems left for future study.D
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SPIKE DYNAMICS IN THE PRESENCE OF NOISE 2797

Figure 6. Simulation of (5.1) for two different domain sizes and various \sigma as indicated. Depending on
domain length and noise level, many interesting phenomena are observed including boundary switching (top
row, panel 3), spike death (bottom row, left), and chaotic dynamics (bottom right).

Appendix A: Numerical method. We use finite differences to solve (1.2) numerically.
Discretize in space using N gridpoints, \Delta x = 2L/N, and in time using stepsize \Delta t so that

u(xk, tj) \approx wk
j , v(x, t) \approx nkj , where xk =  - L + \Delta xk with k = 1 . . . N, tj = \Delta tj. We use a

simple implicit-explicit finite differences scheme, similar to what is described in [1]. Laplacian
is discretized implicitly, the rest explicitly. This results in

ukj+1  - ukj
\Delta t

= \varepsilon 2
uk+1
j+1 + uk - 1

j+1  - 2ukj+1

(\Delta x)2
 - ukj+1 +

\Bigl( 
ukj

\Bigr) 2

vkj
+ \sigma 

\surd 
\Delta t

\Delta t
W k

j ,

0 = \mu 2
vk+1
j+1 + vk - 1

j+1  - 2vkj+1

(\Delta x)2
 - vkj +

\Bigl( 
ukj

\Bigr) 2

\varepsilon 
.

Neumann boundary conditions are implemented by assuming uj+1 = uj - 1 when j = 1 or N ,
and similarly for v.D
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Here, W k
j is the discretization of the noise term. To compute W k

j , note that W (x, t) is
normally distributed with zero mean (since it is a sum of normal variables). Moreover, we
have

\scrE \{ W (xk, t)W (xl, t)\} =

\biggl\{ 
0 if k \not = l,
N if k = l.

This follows from the fact that \scrE \{ \phi k\phi l\} = \scrE \{ \psi k\psi l\} = \delta kl; \scrE \{ \phi k\psi l\} = 0; and identities

(N - 1)/2\sum 

m=1

cos

\biggl( 
2\pi 

N
ml

\biggr) 
cos

\biggl( 
2\pi 

N
mk

\biggr) 
=

\biggl( 
N

4
 - 1

\biggr) 
\delta l,k,

(N - 1)/2\sum 

m=1

sin

\biggl( 
2\pi 

N
ml

\biggr) 
sin

\biggl( 
2\pi 

N
mk

\biggr) 
=
N

4
\delta l,k,

(N - 1)/2\sum 

m=1

sin

\biggl( 
2\pi 

N
mj

\biggr) 
cos

\biggl( 
2\pi 

N
mk

\biggr) 
= 0.

Therefore W k
j , k = 1 . . . N , are N independent normally distributed variables with mean zero

and standard deviation
\surd 
N. In MATLAB language, such a random variable is generated using

the command sqrt(N)*randn. Figure 7 illustrates the code for this.

Appendix B: Some integrals. 1. Evaluation of \bfitF \bfitp (\bfitx ) =
\int \infty 
 - \infty sin(\bfitx \bfity )\bfitw \bfitp \bfitw \bfity \bfitd \bfity with

\bfitp = 0. Integrating by parts we have

F0(x) =  - x
\int \infty 

 - \infty 
cos(xy)w(y)dy =  - 6xRe

\Biggl( \int \infty 

 - \infty 

eixy
\bigl( 
ey/2 + e - y/2

\bigr) 2dy
\Biggr) 
.

The integrand has residues at y = i\pi (1+2n), n \in \BbbZ . A standard computation of a second-order
residue yields

Resy=i\pi 
eixy

\bigl( 
ey/2 + e - y/2

\bigr) 2 =  - ixe - \pi x.

Consider a rectangular contour C traversed counterclockwise whose base C1 is the x-axis,
whose height C2 is at y = i2\pi , and whose left and right sides go to \pm \infty . Then

\int 

C1

eixy
\bigl( 
ey/2 + e - y/2

\bigr) 2dy = I;

\int 

C2

eixy
\bigl( 
ey/2 + e - y/2

\bigr) 2dy =  - e - 2\pi xI

so that I  - e - 2\pi xI = 2\pi xe - \pi x or I = \pi x
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}(\pi x) . This yields

F0(x) =
 - 6\pi x2

sinh(\pi x)
.(5.2)

2. Evaluation of \bfitF \bfitp (\bfitx ) with \bfitp = 1. Integrating by parts we have

F1 =  - x
2

\int \infty 

 - \infty 
cos(xy)w2dy =  - x

2

\int \infty 

 - \infty 
cos(xy)

\bigl( 
w  - w\prime \prime \bigr) dy

=  - x
2

\int \infty 

 - \infty 
cos(xy)

\bigl( 
1 + x2

\bigr) 
wdy =

\bigl( 
1 + x2

\bigr) 

2
F0(x).D
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L=1; sigma =0.1; eps =0.1;
N=200; dt=0.1;
x=linspace(-L,L,N) '; dx=x(2)-x(1);

Lap=-2*diag(ones(1,N))+diag(ones(1,N-1) ,1)+diag(ones(1,N-1) ,-1);
Lap(1,2)=2; Lap(N,N-1) =2; Lap=Lap/dx^2;
Id=eye(N);
M1=Id -eps ^2* Lap*dt;
M2=Id -Lap;

v=x*0+1; u=sech((x-L*0)/eps);
tout =0;
for t=0:dt :4000

noise=randn(N,1)*sqrt(N)*sigma;
rhs1=u+(-u+u.^2./v)*dt+noise.*u*sqrt(dt);
rhs2=u.^2./ eps;

u=M1\rhs1;
v=M2\rhs2;

if t>tout
tout=tout +10;
plot(x,u,x,v);
legend('u','v');xlabel('x');
title(sprintf('t=%g eps=%g',t,eps));
drawnow;

end;
end;

FIG. 7. Code for simulating (1.2). Copy and paste into matlab to run.

The integrand has residues at y = iπ(1 + 2n), n ∈ Z. A standard computation of a second-order residue yields

Resy=iπ
eixy

(
ey/2 + e−y/2

)2 = −ixe−πx.

Consider a rectangular contour C traversed counter-clockwise whose base C1 is the x-axis, whose height C2 is at
y = i2π, and whose left and right sides go to ±∞. Then

∫

C1

eixy
(
ey/2 + e−y/2

)2 dy = I;

∫

C2

eixy
(
ey/2 + e−y/2

)2 dy = −e−2πxI

so that I − e−2πxI = 2πxe−πx or I = πx
sinh(πx) . This yields

F0(x) =
−6πx2

sinh(πx)
. (5.43)

2. Evaluation of Fp(x) with p = 1. Integrating by parts we have

F1 = −x
2

∞∫

−∞

cos(xy)w2dy = −x
2

∞∫

−∞

cos(xy) (w − w′′) dy =

= −x
2

∞∫

−∞

cos(xy)
(
1 + x2

)
wdy =

(
1 + x2

)

2
F0(x)

Figure 7. Code for simulating (1.2). Copy and paste into MATLAB to run.

This yields

F1(x) =
 - 3\pi 

\bigl( 
x2 + x4

\bigr) 

sinh(\pi x)
.(5.3)

3. Evaluation of
\int \infty 
\bfzero (\bfitF \bfitp (\bfitx ))

\bftwo \bfitd \bfitx . We first evaluate the integrals

IK =

\int \infty 

0

xK

(e\pi x  - e - \pi x)2
, K = 2, 4, 6, 8.

We have

x2K

(e\pi x  - e - \pi x)2
=

xKe - 2\pi x

(1 - e - 2\pi x)2
=

\infty \sum 

n=1

xKe - 2\pi xnnD
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and recalling that
\int \infty 
0 xKe - sxdx = \Gamma (K + 1)s - K - 1 we obtain

IK = \Gamma (K + 1) (2\pi ) - K - 1
\infty \sum 

n=1

n - K .

The sum above is the zeta function whose values for even K are well known (see Wikipedia).
In particular this yields

I2 =
1

24\pi 
, I4 =

1

120\pi 
, I6 =

1

168\pi 
, I8 =

1

120\pi 
.

Finally we get

\int \infty 

0
(F0(x))

2 dx = 144\pi 2I4 =
6

5
\pi ;(5.4)

\int \infty 

0
(F1(x))

2 dx = 36\pi 2 (I8 + 2I6 + I4) =
36

35
\pi .(5.5)

Appendix C: Derivation of the MFPT equation. Here, we derive the formula for MFPT
from the first principles. Suppose we are given a SODE with variable drift and noise:

dx = f(x)dt+ \sigma (x)
\surd 
dt\xi .

The following integral equation gives MFPT:

u(x) = dt+

\int \infty 

 - \infty 

exp

\biggl( 
 - (x - y)2

2\sigma 2(x)dt

\biggr) 

\surd 
2\pi dt\sigma (x)

u(y + f(x)dt)dy.(5.6)

It states that MFPT at location x can be computed by looking at MFPT at all other loca-
tions y, taking a deterministic jump f(x)dt, then taking a stochastic jump weighted by the
probability of getting from y to x.

Perform a change of variables, y = x+ z
\sqrt{} 
2\sigma 2(x)dt, so that (5.6) becomes

u(x) = dt+

\int \infty 

 - \infty 

exp
\bigl( 
 - z2

\bigr) 
\surd 
\pi 

u
\bigl( 
x+ \varepsilon z + \varepsilon 2b

\bigr) 
dz, where \varepsilon =

\sqrt{} 
2\sigma 2(x)dt, b =

f(x)

2\sigma 2(x)
.

(5.7)

We further expand

u
\bigl( 
x+ z\varepsilon + \varepsilon 2b

\bigr) 
= u(x) + \varepsilon zux + \varepsilon 2

\biggl( 
bux +

z2

2
uxx

\biggr) 
+ . . .

and use

\int \infty 

 - \infty 

exp
\bigl( 
 - z2

\bigr) 
\surd 
\pi 

= 1,

\int \infty 

 - \infty 

z exp
\bigl( 
 - z2

\bigr) 
\surd 
\pi 

= 0,

\int \infty 

 - \infty 

z2 exp
\bigl( 
 - z2

\bigr) 
\surd 
\pi 

=
1

2
,D
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so that (5.6) becomes

0 = dt+ \varepsilon 2
\biggl( 
bux +

1

4
uxx

\biggr) 

or

1 + f(x)ux +
\sigma 2(x)

2
uxx = 0.

For a similar derivation of the Fokker--Planck equation with variable diffusivity \sigma (x), see
the appendix in [17].
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