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We consider the following Gray-Scott model in BR(0) = {x : |x| < R} ⊂ R
N , N = 2, 3:











vt = ε2∆v − v + Av2u in BR(0),

τut = ∆u + 1 − u − v2u in BR(0),

u, v > 0; ∂u
∂ν

= ∂v
∂ν

= 0 on ∂BR(0)

where ε > 0 is a small parameter. We assume that A = Âε
1

2 . For each Â < +∞ and R < ∞, we construct ring-like

solutions which concentrate on an (N − 1)−dimensional sphere for the stationary system for all sufficiently small ε.

More precisely, it is proved the above problem has a radially symmetric steady state solution (vε,R, uε,R) with the

property that vε,R(r) → 0 in R
N\{r 6= r0} for some r0 ∈ (0, R). Then we show that for N = 2 such solutions are

unstable with respect to angular fluctuations of the type Φ(r)e
√
−1mθ for some m. A relation between Â and the

minimal mode m is given. Similar results are also obtained when Ω = R
N or Ω = BR2

(0)\BR1
(0) or Ω = R

N\BR(0).

Keywords: Ring-like Solutions, Gray-Scott Model, Pattern Formation, Singular Perturbations.

1 Introduction and Main Results

The Gray-Scott model [16], [17] models an irreversible reaction involving two reactants in a gel reactor, where

the reactor is maintained in contact with a reservoir of one of the two chemicals in the reaction. In dimensionless

units it can be written as






Vt = DV ∆V − (F + k)V + UV 2 in Ω,

Ut = DU∆U + F (1 − U) − UV 2 in Ω,
∂U
∂ν = ∂V

∂ν = 0 on ∂Ω,

(1.1)

where the unknowns U = U(x, t) and V = V (x, t) represent the concentrations of the two biochemicals at a point

x ∈ Ω ⊂ R
N , N ≤ 3 and at a time t > 0, respectively; ∆ :=

∑N
j=1

∂2

∂x2

j

is the Laplace operator in R
N ; Ω is a

bounded and smooth domain in R
N ; ν(x) is the outer normal at x ∈ ∂Ω; DU , DV are the diffusion coefficients

of U and V respectively. F denotes the rate at which U is fed from the reservoir into the reactor, and k is a

reaction-time constant.

For various ranges of these parameters, (1.1) are known to admit a rich solution structure involving pulses or
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spots, rings, stripes, traveling waves, self-replication spots, and spatio-temporal chaos. See [11], [38], [40], [41],

[25], [26], [34], [35], [36], [37] for numerical simulations and experimental observations.

In one-dimesnional case, the first rigorous result in constructing single pulse solution is given in [11] for (1.1)

in the case DU = 1, DV = δ2 � 1. In [11], it is assumed that F ∼ δ2, F + k ∼ δ2α/3, where α ∈ [0, 3
2 ). Later the

stability of single and multi-pulse solutions in 1-D are obtained in [10]. Periodic patterns are constructed in [13].

In [40], a formal matched asymptotic analysis is used to study the dynamics of self-replicating pulses. The case

DU = DV and the existence and stability of single and multiple pulse solutions are established in [19] and [20]. In

[34], a skeleton structure of self-replicating dynamics is proposed, while in [35], [36], [37], spatio-temporal chaos

is observed and analyzed. In all of the above four papers, it is assumed that the diffusivity ratio Dv/Du = O(1).

In such a case, the results are largely numerical. A more detailed analysis is possible when Dv/Du � O(1).

In [23], the equilibria, Hopf bifurcations, and pulse-splitting dynamics for (1.1) in a finite interval are studied

under the small diffusivity ratio assumption. Some related results on the existence and stability of solutions to

the Gray-Scott model in 1-D can also be found in [14], [29], [30] and the references therein.

In higher-dimensional case, some formal asymptotic analysis on the construction and stability of spotty solution

in R
2 and R

3 is given in [29] and [30]. In [44], the second author studied (1.1) in a bounded domain for the

shadow system case which can be reduced to a single equation. For spotty solutions for single equations, please

see [5], [6], [18],[47], [48], and the references therein. A good review can be found in [32].

The first rigorous result on the existence and stability of spotty solutions in R2 was given in [45]. To state the

result, it is important to introduce a suitable scaling.

Let us first transform the system (1.1). We follow the notations in [29]. Set

ε2 =
DV F

DU (F + k)
, A =

√
F

F + k
, τ =

F + k

F
,

x =

√

DU

F
x̄, t =

1

F + k
t̄,

V (x, t) =
√
Fv(x̄, t̄), U(x, t) = u(x̄, t̄).

Let us drop the bar from now on. It is easy to see that (1.1) is equivalent to the following system






vt = ε2∆v − v +Auv2, in Ω,

τut = ∆u− uv2 + (1 − u), in Ω,
∂v
∂ν = ∂u

∂ν = 0 on ∂Ω.

(1.2)

Note that there are three parameters (ε, A, τ) in equation (1.2). Throughout this paper, we always assume that

0 < ε� 1. (1.3)

To study (1.2), we first consider the stationary equation of (1.2):






ε2∆v − v +Auv2 = 0, x ∈ Ω,

∆u− uv2 + (1 − u) = 0, x ∈ Ω,

u > 0, v > 0 in Ω, ∂v
∂ν = ∂u

∂ν = 0 on ∂Ω.

(1.4)
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In [45], under the condition that

Ω = R
2, τ ∼ O(1), A ∼ ε(log

1

ε
)

1

2 (1.5)

it is proved that Problem (1.2) has two branches of single spotty steady-state solutions in R
2, with one of them

being stable and the other one being unstable. The existence and stability of symmetric and asymmetric multiple

spotty solutions in a bounded two-dimensional domain are studied in [49] and [50].

As far as the authors know, there has been no rigorous result in R
N , N ≥ 3. Since the physical space is R

3, it

is natural to study the Gray-Scott model in R
3.

In this paper, we take a different regime of A: we assume that

A =
√

6Âε
1

2 (1.6)

where Â is independent of ε. We are concerned with the existence of solutions which concentrates on an (N − 1)-

sphere. This kind of solution is called a ring-like solution. In particular, we can prove the existence of a ring-like

solution for all N ≥ 2, which is of independent interest.

A recent work by Morgan and Kaper [28] also examines such solutions (a preliminary report of [28] was

announced in 2001 [21]; and was also reported in Morgan’s PhD thesis [27]). The differences and similarities

between [28] and this paper are discussed in Section 11.

By suitable scaling, we shall study the existence of ring-like solutions for the following Gray-Scott model in a

ball BR(0):














ε2∆v − v + Âuv2 = 0, in BR(0),

∆u− (6ε)−1uv2 + (1 − u) = 0, in BR(0),

u > 0, v > 0 in BR(0),
∂v
∂ν = ∂u

∂ν = 0 on ∂BR(0),

(1.7)

and the stability of the ring-like solutions for the corresponding Gray-Scott model














vt = ε2∆v − v + Âuv2, in BR(0),

τut = ∆u− (6ε)−1uv2 + (1 − u), in BR(0),

u > 0, v > 0 in BR(0),
∂v
∂ν = ∂u

∂ν = 0 on ∂BR(0).

(1.8)

Extensions to R
N or to an annulus or to the exterior of a ball will be discussed in Section 8.

2 Main Results: Existence and Stability of Ring-like Solutions

We now state our main results.

We first define two functions, to be used later: let J1(r) be the radially symmetric solution of the following

problem

J
′′

1 +
N − 1

r
J

′

1 − J1 = 0, J
′

1(0) = 0, J1(0) = 1, J1 > 0. (2.1)

The second radially symmetric function, called J2(r), satisfies

J
′′

2 +
N − 1

r
J

′

2 − J2 + δ0 = 0, J2 > 0, J2(+∞) = 0. (2.2)
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Here δ0 is the Dirac measure at 0.

In the case of N = 2, J1(r) = I0(r) and J2(r) = 1
2πK0(r) are the modified Bessel’s functions of order 0. (See

[4]). In the case of N = 3, J1, J2 can be computed explicitly:

J1 =
sinh r

r
, J2(r) =

e−r

4πr
. (2.3)

Fix R > 0. We then define a new J2,R

J2,R(r) = J2(r) −
J

′

2(R)

J
′

1(R)
J1(r) (2.4)

and a new Green’s function GR(r; r0)

G
′′

R +
N − 1

r
G

′

R −GR + δr0
= 0, G

′

R(R; r0) = 0. (2.5)

It is easy to see that

GR(r; r0) =
1

J
′

1(r0)J2,R(r0) − J1(r0)J
′

2,R(r0)

{

J2,R(r0)J1(r), for r < r0,

J1(r0)J2,R(r), for r > r0.
(2.6)

Fix a Â > 0. We suppose the following equation has a unique solution ξ = ξ(Â, r):

(1 − ξ)ξ =
GR(r; r)

Â2
, 0 < ξ <

1

2
. (2.7)

Put

MR(r) :=
(N − 1)

r
+

1 − ξ

ξ

(

J
′

1(r)

J1(r)
+
J

′

2,R(r)

J2,R(r)

)

, (2.8)

where ξ solves (2.7).

Let w(y) be the unique solution for the following ODE:

w
′′ − w + w2 = 0 in R, w > 0, w(0) = max

y∈R
w(y), w(y) → 0 as |y| → ∞. (2.9)

In fact, it is easy to see that w(y) can be written explicitly

w(y) =
3

2
sech2

(y

2

)

.

Then we have the following

Theorem 2.1 Suppose that 0 < R < ∞. Then for any Â < ∞ and for ε sufficiently small, problem (1.7) has a

solution (vε,R, uε,R) with the following properties:

(1) vε,R, uε,R are radially symmetric,

(2) vε,R(r) = (1 + o(1)) 1
Âξε

w( r−rε

ε ),

(3) uε,R(r) = 1 − (1 + o(1))GR(r;rε)

Â2ξε

, where GR(r; rε) satisfies:

G
′′

R +
N − 1

r
G

′

R −GR + δrε
= 0, G

′

R(R; rε) = 0, (2.10)
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where ξε is the root of

1 − ξε =
GR(rε; rε)

Â2ξε
, 0 < ξε <

1

2
, (2.11)

and rε → r0 ∈ (0, rR) where MR(r0) = 0 and rR is such that

(J1J2,R)
′

(rR) = 0. (2.12)

From Theorem 2.1, for finite R, we see that for each Â, there exists a ring-like solution to (1.7). In fact, it is

easy to show that MR(r0) = 0 if and only if the following holds

Â2 = −GR(r; r)

(

1− r

N − 1

(J1J2,R)′

J1J2,R

)2
N − 1

r

J1J2,R

(J1J2,R)′
(2.13)

A graph of r versus Â2 for N = 2 and R = 5 is given in Figure 1.
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Figure 1. The graph of r versus Â2. Here N = 2, R = 5. The singularity occurs at rR = 3.94.

From the graph, we see that Â2 blows up as r → rR where rR < R satisfies (2.12). In fact, if rR is a zero root

of (J1J2,R)
′

(see Lemma 3.4 for the existence of rR), then from (2.13) we see that Â2 → +∞ when r → rR. (The

situation is very different for infinite R. See Section 8.)

A similar existence result for the Gierer-Meinhardt system has also been obtained in [33]. Theorem 2.1 is

also related to papers [2], [3] where solutions concentrating on a sphere are constructed for singularly perturbed

nonlinear elliptic equations.
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Next we study the stability of (vε,R, uε,R) in N = 2 with respect to perturbations in the following form:

v = vε,R + δφε(r) cos(mθ), u = uε,R + δψε(r) cos(mθ)

where δ is small and φε(r) ∼ rm, ψε(r) ∼ rm for r near 0. That is, we study the eigenvalue problem of the

following type


















ε2∆φε − ε2m2

r2 φε − φε + 2Âvε,Ruε,Rφε + Âv2
ε,Rψε = λεφε,

∆ψε − m2

r2 ψε − ψε − (6ε)−12vε,Ruε,Rφε − (6ε)−1v2
ε,Rψε = τλεψε,

φε = φε(r), ψε = ψε(r),

φ
′

ε(R) = ψ
′

ε(R) = 0.

(2.14)

We introduce the following important function

ρm,R(r) =
Im(r)Km(r) − K

′

m(R)

I′

m(R)
I2
m(r)

I0(r)K0(r) − K
′

0
(R)

I
′

0
(R)

I2
0 (r)

, (2.15)

where Im,Km are the two modified Bessel’s function of order m. See [4] for the definitions.

Now we have

Theorem 2.2 Assume that N = 2. Let (vε,R, uε,R) be the solution constructed in Theorem 2.1 and suppose

m� 1
ε . If

ρm,R(r0) <
ξ

1 − ξ
(2.16)

where ξ is given by (2.7), then the problem (2.14) has an eigenvalue with positive real part. If τ is small and

ρm,R(r0) >
ξ

1 − ξ
(2.17)

then all the eigenvalues of the problem (2.14) have negative real parts.

The mode m = 0 is stable.

Our final theorem shows that when Â = O(1), the ring solution is always unstable with respect to some wide

band of modes m, and that it is stable with respect to very large modes m.

Theorem 2.3 Assume that N = 2. Let (vε,R, uε,R) be the solution constructed in Theorem 2.1. If

1 � m < δ0
1

ε
(2.18)

for some δ0 <
√

5
2 , then the problem (2.14) has a positive eigenvalue. On the other hand, if

m >

√
5

2

r0
ε
, (2.19)

then the problem (2.14) has no large unstable eigenvalues.

Fix R = 5. The graph in Figure 2 shows the relation between r and the minimal mode m.
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Figure 2. The graph of r versus the first unstable mode m. Here N = 2, R = 5.

We observe that m→ +∞ as r → rR. However rR is precisely the value for which Â→ +∞ and so our analysis

breaks down in such a limit. A question arises naturally: are there ring-like solutions which are stable for all m?

In Section 9 we use formal asymptotics and numerical computations to study the regime Âε
1

2 = O(1). We make

the following conjecture.

Conjecture 2.1 Let rR be the root of

(J1J2,R)′(rR) = 0. (2.20)

Let

Ac = 2.694 GR(rR, rR) (2.21)

where GR is given by (2.10).

Suppose that A is just below Ac. Then there exists a ring-like solution whose radius is rR.

Suppose that A is just above Ac. Then a ring-like solution of radius r0 < rR will expand until its radius reaches

rR. It will then split into two concentric rings which will move away from each other.

Remark. Using the far field expansions I0(r) ∼ r−1/2er,K0(r) ∼ r−1/2e−r, it is easy to see that

rR ∼ R− 1

2
ln(2R) as R → ∞, (2.22)

GR(rR, rR) ∼ 1

2
+

1

2rR
as R → ∞. (2.23)

Thus for large R we have Ac ∼ 1.347, which is precisely the critical threshold for when spike splitting in 1-D

occurs (see Section 9 or also [29], [23]).
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The fate of the two resulting rings is unclear. In Section 10 we perform some numerical computations of the

full two-dimensional system. They suggest that the inner ring evenually breaks up into spots, while the outer ring

can remain stable for a long time. It is an open problem to analyse the properties of multi-ring solutions.

Acknowledgments. J.W. is supported by an Earmarked Grant from RGC of Hong Kong. T.K. is supported

by a PGS-B graduate scholarship from NSERC Canada, and is grateful for the hospitality of CUHK where this

paper was written. We would like to thank Professor A. Doelman, Professor Michael J. Ward and Dr. David Iron

for fruitful discussions, and Professor T. Kaper for informing us of [28].

3 Preliminaries: Some Properties of w and MR(r)

In this section, we consider some properties of the functions w(y) and MR(r) . We first state the following facts

for w(y).

Lemma 3.1 (1) The following identities hold
∫

R

(w
′

)2 =
1

6

∫

R

w3, (3.1)

∫

R

w3(y)(

∫ y

−∞
w2(z)dz)dy =

∫

R

w3(y)(

∫ ∞

y

w2(z)dz)dy =
1

2

∫

R

w3

∫

R

w2. (3.2)

(2) The solution to the following problem

L0φ := φ
′′ − φ+ 2w

′

φ = 0, |φ| ≤ C (3.3)

for some C > 0 is given by φ = cw
′

for some constant c.

(3) The eigenvalues of L0 can be arranged as follows:

λ1 =
5

4
, λ2 = 0, λ3 = −3

4
.

Proof: (1) can be proved by direct computations. A more general proof can be given as follows: since w satisfies

(2.9), we have (w
′

)2 = w2 − 2
3w

3. Combining this with the following identity
∫

R

((w
′

)2 + w2) =

∫

R

w3

we deduce (3.1). To prove (3.2), we observe that
∫

R

w3(y)(

∫ y

−∞
w2(z)dz −

∫ ∞

y

w2(z)dz)dy = 0

∫

R

w3(y)(

∫ y

−∞
w2(z)dz +

∫ ∞

y

w2(z)dz)dy =

∫

R

w3

∫

R

w2.

Equation (3.2) then follows.

The statement (2) follows from standard ODE theory.
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The statement (3) can be proved by using hypergeometric function. See [10].

�

The following lemma characterizes the eigenvalues of Nonlocal Eigenvalue Problem (NLEP)

Lφ := φ
′′ − φ+ 2wφ− µ

∫

R
wφ

∫

R
w2

w2 = λφ, φ ∈ H2(R). (3.4)

Lemma 3.2 (1) If µ 6= 1 and

Lφ = 0, φ ∈ H2(R)

then φ = cw
′

for some constant c.

(2) If µ < 1, then there exists a positive eigenvalue λ0 > 0 to (3.4).

(3) If µ > 1, then there exists a constant C > 0 such that Re(λ) < −C < 0, where λ 6= 0 is an eigenvalue of

(3.4).

Proof:

(1) In fact, let Lφ = 0. Then we have

L0(φ− 2

∫

R
wφ

∫

R w
2
w) = 0

where

L0φ := φ
′′ − φ+ 2wφ. (3.5)

Since φ ∈ H2(R), by (2) of Lemma 2.1, we have

φ− 2

∫

R
wφ

∫

R w
2
w = cw

′

(3.6)

for some c. Multiplying (3.6) by wm−1 and integrating over R, we obtain that
∫

R

wm−1φ = 0

which implies that φ = cw
′

.

(2) and (3) follows from Theorem 1.4 of [46].

�

Our next lemma concern again a nonlocal eigenvalue problem in which the coefficient µ depends on τλ. We

consider the following nonlocal eigenvalue problem

φ
′′ − φ+ 2wφ− χ(τλ)

∫

R
wφ

∫

R w
2
w2 = λφ (3.7)

Lemma 3.3 Suppose χ(z) is a continuous function of z. Then

(1) if χ(0) < 1, there exists a positive eigenvalue λ > 0 to (3.7).
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(2) If χ(0) > 1, and the following condition holds for τ :

Re

[

λ̄χ(τλ) − λ

]

+ 6|χ(τλ) − 1|2 ≥ 0 (3.8)

then there exists a positive constant C > 0 such that for all nonzero eigenvalue λ of (3.7) we have Re(λ) ≤ −C < 0.

Proof:

Suppose χ(0) < 1. We can solve (3.7) explicitly. We may assume that φ is even. We look for a positive eigenvalue

λ0 in (0, λ1) where λ1 is the first eigenvalue of L0φ = φ
′′ − φ + 2wφ. (See Lemma 3.1.) Then (3.7) is equivalent

to the following algebraic equation:

ρ(λ) =

∫

R

w(L0 − λ)−1w2 −
∫

R
w2

χ(τλ)
=

(

1− 1

χ(τλ)

)
∫

R

w2 + λ

∫

R

w(L0 − λ)−1w. (3.9)

Then

ρ(0) < 0, ρ(t) → +∞ as t → λ1, t < λ1.

Thus ρ(t) has a zero λ0 in (0, λ1). This proves (1).

(2) is proved in (2.28) of [42].

�

Finally we state the following important properties of MR, defined in (2.8), which will be used in the proof of

Theorem 2.1.

Lemma 3.4 (1) For each fixed R > 0, there exists a rR > 0 such that

(J1J2,R)
′

> 0, for r ∈ (0, rR), and (J1J2,R)
′

(rR) = 0 (3.10)

and

MR(rR) > 0. (3.11)

(2) For each fixed Â < +∞, it holds that

MR(r) < 0, for rsmall. (3.12)

Proof: (1) Observe that

(J1J2,R)
′

(R) = J
′

1(R)J2(R) − J
′

2(R)J1(R) < 0,

(J1J2,R)
′

(r) → +∞ as r → 0.

By continuity, (3.10) is thus proved. This then yields that MR(rR) > 0, recalling

MR(r) =
N − 1

r
+

1 − ξ

ξ

(J1J2,R)
′

J1J2,R
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where ξ satisfies

ξ(1 − ξ) =
J1J2,R

Â2(J
′

1J2 − J1J
′

2)
, 0 < ξ <

1

2
. (3.13)

(2) For r small and N ≥ 3

J1J2,R

Â2(J
′

1J2 − J1J
′

2)
∼ r, 0 < ξ <

1

2
, ξ ∼ r,

(J1J2,R)
′

J1J2,R
= −(N − 2)

1

r
+O(1)

and hence

MR(r) ∼ N − 1

r
−O(

1

r2
) < 0

For N = 2, we obtain similarly that for r small

MR(r) ∼ N − 1

r
−O(

1

r2(log 1
r )2

) < 0.

This proves (2) of the lemma.

�

4 A linear Problem

Fixing a point t > 0, we set

Iε := (− t

ε
,
R− t

ε
). (4.1)

Let η(s) be a function such that η(s) = 1 for |s| ≤ δ
4 and η(s) = 0 for |s| ≥ δ

2 , where δ > 0 is a fixed small

constant. Set

wε,t(y) = w(y)η(1 +
εy

t
). (4.2)

Let ξε(t) be such that

1 − ξε =
1

Â2ξε
GR(t; t), 0 < ξε <

1

2
. (4.3)

We rescale

r = t+ εy, v =
1

Âξε
v̂. (4.4)

Dropping the hat, we see that (1.7) is equivalent to















ε2∆v − v + u
ξε
v2 = 0, in BR(0),

∆u− cεuv
2 + (1 − u) = 0, in BR(0),

u > 0, v > 0 in BR(0),
∂u
∂ν = ∂u

∂ν = 0 on ∂BR(0),

(4.5)

where

cε = (6εÂ2ξ2ε )−1. (4.6)

From now on, we shall work with (4.5) instead.
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In the sequel, we denote by T [h] the unique solution of the equation
{

∆u+ 1 − u− cεh
2u = 0 in BR(0),

u(x) = u(|x|), u
′

(R) = 0,
(4.7)

for h ∈ L∞(BR(0)).

The equation (4.7) can be solved by using the Green’s function GR(r, r0) defined in (2.10) of Theorem 2.1. In

fact, the operator T can be written in the following way:

1 − T [h](r0) = cε

∫ R

0

GR(r; r0)(
r

r0
)N−1h2(r)T [h](r)dr. (4.8)

In this section, we study the operator T [h], where we choose h to be

h =

(

wε,t(
r − t

ε
) + φ(

r − t

ε
)

)2

, φ = O(εσ), (4.9)

for a fixed 0 < σ < 1.

Let

T [h](r
′

) = vε(r
′

).

By definition, we then have

1 − T [h](r
′

) = cε

∫ R

0

GR(r; r
′

)(
r

r′
)N−1h2vε(r)dr,

and hence

1 − vε(t) =
1

Â2ξ2ε
GR(t; t)vε(t) +O(εσ). (4.10)

Here we have used the fact that
∫

R

w2 = 6. (4.11)

From (4.3) and (4.10), we arrive at the following

vε(t) = ξε +O(εσ). (4.12)

Let r
′

= t+ εy. Then we have

1 − vε(t+ εy) = cε

∫ R

0

GR(z; t+ εy)
zN−1

(t+ εy)N−1
(wε,t(

z − t

ε
) + φ(

z − t

ε
))2vε(z)dz

= εcε

∫
R−t

ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
(wε,t(z) + φ(z))2vε(t+ εz)dz

= E1 +E2

where

E1 = εcε

∫
R−t

ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
w2

ε,tvε(t+ εy)dz,
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E2 = εcε

∫
R−t

ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1

[

(wε,t(z) + φ(z))2 − (wε,t(z))
2

]

vε(t+ εz)dz.

Observe that GR(r; r
′

) can be expanded as follows: for z̄ < ȳ, we have

GR(t+ z̄; t+ ȳ) = GR(t; t)

(

1 + (
J

′

2,R(t)

J2,R(t)
+
N − 1

t
)ȳ +

J
′

1(t)

J1(t)
z̄ +O(|ȳ|2 + |z̄|2)

)

. (4.13)

For ȳ < z̄, there is another expansion

GR(t+ z̄; t+ ȳ) = GR(t; t)

(

1 + (
J

′

1(t)

J1(t)
+
N − 1

t
)ȳ +

J
′

2,R(t)

J2,R(t)
z̄ +O(|ȳ|2 + |z̄|2)

)

. (4.14)

Then we have, using (4.12) and (4.13)-(4.14),

E1 = εcε

∫ ∞

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
w2vε(t+ εz)dz

= εcε

∫

R

GR(t+ εz; t+ εy)

(

1 +
ε(N − 1)(z − y)

t
+O(ε2)

)

w2vε(t+ εz)dz

= αε + ερ(y) +O(ε2|y|2) (4.15)

where

αε = εcεGR(t; t)

∫

R

w2vε(t+ εz) =
GR(t, t)vε(t)

Â2ξ2ε
+O(ε) = 1 − ξε +O(εσ) (4.16)

and ρ(y) is defined by

ρ(y) =
αε
∫

R w
2

[

J
′

2,R(t)

J2,R(t)
(y

∫ y

−∞
w2 +

∫ ∞

y

zw2(z)dz) +
J

′

1(t)

J1(t)
(y

∫ ∞

y

wm +

∫ y

−∞
zw2(z)dz)

]

. (4.17)

For E2, we have

E2 = 2εcε

∫
R−t

ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
[wφ]vε(t+ εz)dz +O(ε2σ)

=
2αε
∫

Iε
w2

ε,t

∫

Iε

wε,tφ+O(ε2σ).

Summarizing all of these estimates, we have obtained the following lemma:

Lemma 4.1 For r
′

= t+ εy, we have

T [(wε,t + φ)2](t+ εy) = 1 − αε − ερ(y) − 2αε
∫

Iε
w2

∫

Iε

wε,tφ+O(ε2|y|2 + ε2σ). (4.18)

5 A Nonlinear Problem: Finite dimensional Reduction

In this section, we perform a Liapunov-Schmidt reduction procedure. Such a reduction method has been introduced

and used in many previous studies of spike and layered solutions. See [1], [5], [6], [7], [15], [18], [47], [48] and

the references therein.
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For u, v ∈ H1(BR
ε
(0)), we equip it with the following scalar product:

(u, v)ε =

∫

Iε

(u
′

v
′

+ uv)(t+ εy)N−1dy (5.1)

(which is equivalent to the norm ‖u‖H1(B R
ε

(0))).

Then orthogonality to the function w
′

ε,t in that space is equivalent to, setting

Zε,t = w
′′′

ε,t +
ε(N − 1)

t+ εy
w

′′

ε,t − w
′

ε,t (5.2)

to the orthogonality in L2(Iε), equipped with the following scalar product

< u, v >ε=

∫

Iε

(uv)(t+ εy)N−1dy (5.3)

(which is equivalent to the norm ‖u‖L2(RN )).

To this end, we need to define a norm:

‖u‖∗ = ‖u(y)‖L∞(Iε). (5.4)

The following Proposition will be proved in Appendix A.

Proposition 5.1 There exists an ε0 > 0 such that for any ε < ε0, given any h ∈ L∞(Iε), there exists a unique

pair (φ, c) such that the following hold:

φ
′′

+
ε(N − 1)

t+ εy
φ

′ − φ+ 2wε,tφ− 2(1− ξ)

∫

Iε
wε,tφ

∫

Iε
w2

ε,t

= h+ cZε,t, (5.5)

φ
′

(− t

ε
) = 0, φ

′

(
R − t

ε
) = 0, < φ, Zε,t >ε= 0. (5.6)

Moreover, we have

‖φ‖∗ ≤ C‖h‖∗. (5.7)

In this section, we solve the following system of equations for (φ, β):

(wε,t + φ)
′′

+
ε(N − 1)

t+ εy
(wε,t + φ)

′ − (wε,t + φ) (5.8)

+
1

ξε
(wε,t + φ)2(T [(wε,t + φ)2](t+ εy)) = βZε,t,

φ
′

(− t

ε
) = 0, φ

′

ε(
R− t

ε
) = 0,

∫

Iε

φZε,t(t+ εy)N−1 = 0. (5.9)

The main result in this section is to show the following proposition:

Proposition 5.2 For 0 < t < R and ε sufficiently small, there exists a unique pair (φε,t, βε(t))satisfying (5.8)-

(5.9). Furthermore, (φε,t, βε(t)) is continuous in t and we have the following estimate

‖φε,t‖∗ ≤ εσ, (5.10)
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where σ ∈ ( 1
2 , 1) is a constant.

Proof: We write (5.8) in the following form:

Lε[φ] = Eε +Mε[φ] + βZε,t (5.11)

and use contraction mapping theorem. Here

Eε = −ε(N − 1)

t+ εy
w

′

ε,t +
1

ξε
w2

ε,t(T [w2
ε,t]) − w2

ε,t (5.12)

and Mε[φ] is given by

Mε[φ] =
1

ξε
(wε,t + φ)2(T [(wε,t + φ)2]) − 1

ξε
w2

ε,t(T [w2
ε,t]) − 2wε,tφ− 2(1− ξε)

∫

Iε
wε,tφ

∫

Iε
wε,t

w2
ε,t. (5.13)

By Lemma 4.1, it is easy to see that

‖Eε‖∗ ≤ Cεσ . (5.14)

For Mε, we note that

Mε[φ] = ξ−1
ε [(wε,t + φ)2 − w2

ε,t − 2wε,tφ](T [(wε,t + φ)2])

−
(

w2
ε,t(T [w2

ε,t]) − w2
ε,t(T [(wε,t + φ)2]) − 2αε

∫

Iε
wε,tφ

∫

Iε
w2

ε,t

w2
ε,t

)

−2wε,tφ

(

1 − (T [(wε,t + φ)2])

ξε

)

.

The first term in Mε[φ] can be estimated as follows

|(wε,t + φ)2 − w2
ε,t − 2wε,tφ|(T [(wε,t + φ)2])| ≤ C|φ|2.

By Lemma 4.1, it follows that second term and the last term in Mε[φ] can be bounded by O(ε‖φ‖∗ + ‖φ‖2
∗).

Therefore, we have

‖Mε[φ]‖∗ ≤ C

(

ε‖φ‖∗ + ‖φε‖2
∗

)

. (5.15)

Set B = {‖φ‖∗ < Cεσ} where C is large. Fix φ ∈ B and we consider the map Aε to be the unique solution

given by Proposition 4.2 with h = Eε +Mε[φ]. Then by Proposition 4.2, we have

‖Aε[φ]‖∗ ≤ C‖Eε +Mε[φ]‖∗∗ ≤ Cεσ + ε2σ ≤ Cεσ , (5.16)

and hence Aε[φ] ∈ B. Moreover, we also have that

‖Aε[φ1] −Aε[φ2]‖∗ ≤ C‖Mε[φ1] −Mε[φ2]‖∗ < ‖φ1 − φ2‖∗. (5.17)

(5.16) and (5.17) show that the map Aε is a contraction map from B to B. By the contraction mapping theorem,

(5.11) has a unique solution φ ∈ B, called φε,t.

The continuity of (φε,t, βε(t)) follows from the uniqueness of (φε,t, βε(t)).

�
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6 The reduced problem: Proof of Theorem 2.1

In this section we solve the reduced problem and prove our main existence result given by Theorem 2.1.

In particular, we prove that

Proposition 6.1 For ε sufficiently small, βε(t) is continuous in t and we have

βε(t) = c0ε(MR(t)) +O(ε2σ), (6.1)

for some generic constant c0 6= 0.

From Proposition 6.1, we can finish the proof of Theorem 2.1.

Proof of Theorem 2.1:

By Lemma 3.4, there exists two numbers 0 < r1 < r2 < rR such that

MR(r1)MR(r2) < 0.

Since ε−1βε(t) = c0MR(t) +O(ε2σ−1), for ε sufficiently small, we also have βε(r1)βε(r2) < 0. By the continuity

of βε(t) and the intermediate mean value theorem, a zero of βε is thus guaranteed. �

We now prove Proposition 6.1. To this end, we let vε,t = T [(wε,t + φε,t)
2]. Then φε,t satisfies

φ
′′

ε,t − φε,t + 2wε,tφε,t (6.2)

= −ε(N − 1)

t+ εy
w

′

ε,t + w2
ε,t − ξ−1

ε w2
ε,tvε,t +Nε[φε,t] + βε(t)Zε,t

where

Nε[φε,t] = −ε(N − 1)

t+ εy
φ

′

ε,t + ξ−1
ε ((wε,t + φε,t)

2 − w2
ε,t)vε,t − 2wp−1

ε,t φε,t.

Note that by Lemma 4.1

vε,t(t+ εy) = 1 − αε − ερ(y) +O(ε2|y|2) − 2αε

∫

Iε
wε,tφε,t
∫

Iε
w2

ε,t

+O(ε2σ). (6.3)

Multiplying the equation for φε,t by w
′

ε,t and integrating over Iε, we obtain that

βε(t)

∫

Iε

Zε,tw
′

ε,t =

∫

Iε

[φ
′′

ε,t − φε,t + 2wε,tφε,t]w
′

ε,t (6.4)

+

∫

Iε

ε(N − 1)

t+ εy
φ

′

ε,tw
′

ε,t +

∫

Iε

(ξ−1
ε w2

ε,tvε,t − w2
ε,t)w

′

ε,t +

∫

Iε

Nε[φε,t]w
′

ε,t.

We first estimate:
∫

Iε

[φ
′′

ε,t − φε,t + 2wε,tφε,t]w
′

ε,t = O(ε1+σ).
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Then using (6.3) we obtain
∫

Iε

w
′

ε,tNε[φε,t] = −
∫

Iε

(
ε(N − 1)

t+ εy
φ

′

ε,tw
′

ε,t) +

∫

Iε

ξ−1
ε [(wε,t + φε,t)

2 − w2
ε,t − 2wε,tφε,t]vε,tw

′

ε,t

+ 2

∫

Iε

wε,tφε,t(
vε,t

ξε
− 1)w

′

ε,t

= O(ε1+σ + ε2σ).

The main term is the following:
∫

Iε

w
′

ε,tw
2
ε,t(vε,t − ξε) = ε(

∫

R

w
′

w2ρ(y) +O(ε2σ)). (6.5)

By using (3.2) of Lemma 3.1 we calculate

∫

R

w2

∫

R

w
′

w2ρ(y) = αε

J
′

2,R(t)

J2,R(t)

∫

R

w
′

w2(y

∫ y

−∞
w2 +

∫ y

−∞
zw2(z))

+
J

′

1(t)

J1(t)

∫

R

w
′

w2(y

∫ ∞

y

w2 +

∫ ∞

y

zw2(z))

= −αε

3

J
′

2,R(t)

J2,R(t)

∫

R

w3(y)

∫ y

−∞
w2 − 1

3

J
′

1(t)

J1(t)

∫

R

w3

∫ ∞

y

w2

= −αε

6
(
J

′

2,R(t)

J2,R(t)
+
J

′

1(t)

J1(t)
)

∫

R

w3(y)

∫

R

w2. (6.6)

Combining all of these expressions, we obtain

βε(t)

∫

R

(w(w
′

)2) = ε
N − 1

t

∫

R

(w
′

)2 + ε
αε

∫

R
w2ξε

∫

R

w3(
J

′

2,R(t)

J2,R(t)
+
J

′

1(t)

J1(t)
) +O(ε2σ)

= ε

∫

R

(w
′

)2

[

MR(r) +O(ε2σ−1)

]

using (3.1) of Lemma 3.1.

�

7 Proofs of Theorem 2.2 and Theorem 2.3

In this section, we use Lemmas 3.2 and 3.3, and apply a compactness argument of Dancer [9] to prove Theorems

2.2 and 2.3.

We consider large eigenvalues of the following problem


















ε2∆φε − ε2m2

r2 φε − φε + 2Âvε,Ruε,Rφε + Â2v2
ε,Rψε = λεφε,

∆ψε − m2

r2 ψε − ψε − 2ε−1vε,Ruε,Rφε − ε−1v2
ε,Rψε = τλεψε,

φε = φε(r), ψε = ψε(r),

φ
′

ε(R) = ψ
′

ε(R) = 0.

(7.1)

Namely we assume that λε → λ0 6= 0 where λε ∈ C-the set of complex numbers.
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We first derive the limiting eigenvalue problem. We may assume that Re(λ0) ≥ 0 as otherwise we have stability.

To this end, let Gm,R,β(r; r0) be the Green’s function satisfying

G
′′

+
N − 1

r
G

′ − (1 + β)G − m2

r
G+ δr0

= 0, for 0 < r < R, G
′

R(R; r0) = 0, (7.2)

which exists if Re(1 + β) > 0.

Assume that

φε(rε + εy) → φ0(y).

Then we have

ψε(rε) =

∫ R

0

Gm,R,τλε
(r; rε)(−2vε,Ruε,R − v2

ε,Rψε)
rN−1

(rε)N−1
dr

= Gm,R,τλε
(rε; rε)

(

− 2Â−1

∫

R

wφ0 − Â−2ξ−2

∫

R

w2ψε(rε) + o(1)

)

.

Hence we obtain

ψε(rε) = Gm,R,τλε
(rε; rε)

(

− 2Â−1

∫

R

wφ0 + o(1)

)(

1 +Gm,R,τλε
Â−2ξ−2

∫

R

w2

)

. (7.3)

Substituting (7.3) into the equation for φε, we have that φ0 satisfies

φ
′′

0 − φ0 + 2wφ0 − µ(τλ0)

∫

R
wφ0

∫

R
w2

= λ0φ0, (7.4)

where µ(τλ0) satisfies

µ(τλ0) =
(1 − ξ)Gm,R,τλ0

(r0; r0)

ξG0(r0, ; r0) + (1 − ξ)Gm,R,τλ0
(r0; r0)

. (7.5)

Recalling Lemma 3.3, we see that if µ(0) < 1, then there exists a positive eigenvalue λ0 > 0 to (7.4) for all

τ > 0. Note that µ(0) < 1 is equivalent to

Gm,R(r0; r0)

G0,R(R0; r0)
>

1 − ξ

ξ
. (7.6)

Observe that

Gm,R(r0; r0) =
Im(r0)Km(r0) − K

′

m(R)

I′

m(R)
I2
m(r0)

I ′

m(r0)Km(r0) −K ′

m(r0)Im(r0)
.

By the Wronskian property of Bessel functions (see [4]) we have

I
′

mKm −K
′

mIm =
1

r
.

Using this relation we derive,

Gm,R(r0; r0) = r0

(

Im(r0)Km(r0) −
K

′

m(R)

I ′

m(R)
I2
m(r0)

)

, (7.7)

G0,R(r0; r0) = r0

(

I0(r0)K0(r0) −
K

′

0(R)

I
′

0(R)
I2
0 (r0)

)

. (7.8)
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Substituting (7.7) and (7.8) into (7.6), we see that (7.6) is equivalent to

ρm,R(r0) <
ξ

1 − ξ
, (7.9)

where ρm,R is defined at (2.15).

To make the above arguments rigorous, we apply arguments of Dancer [9]. We write (7.1) as follows:

φε = Rε

(

2Âvε,Ruε,Rφε + Âv2
ε,RTε[φε]

)

, (7.10)

where Tε[φε] = ψε and Rε = (−ε2∆ + (1 + λε) − ε2m2

r2 )−1. We look for solutions of (7.10) with λε = λ0 + o(1).

Since λ0 > 0, we may assume that λε > 0. The operator Rε is certainly compact in the class of radially

symmetric functions. By using Dancer’s argument, for ε sufficiently small, (7.10) admits a solution (φε, λε) where

λε = λ0 + o(1) > 0.

If ρm,R(r0) <
ξ

1−ξ , then µ(0) > 1. By taking τ small and applying Lemma 3.3, we have proved Theorem 2.2.

Next we prove Theorem 2.3. Note that ρm,R = O( 1
m ) for m� 1. So if 1 � m� 1

ε , then the instability criteria

ρm,R(r) <
ξ

1 − ξ

is satisfied. The previous arguments in Theorem 2.2 can be applied here.

In the case of m = m̂
ε > c0

ε for some fixed c0 > 0, the equation for ψε becomes

ε2∆ψε −
m̂2

r20
ψε − ε2ψε − 2εvε,Ruε,Rφε − εv2

ε,Rψε = τε2λεψε.

By the scaling r = rε + εy, we see that ψε(rε + εy) → ψ0(y) which satisfies

∆ψ0 −
m̂2

r20
ψ0 = 0,

and hence ψ0 ≡ 0.

On the other hand, the equation for φε(rε + εy) = φ̂ε(y) becomes

φ̂
′′

ε +
ε

rε + εy
φ̂

′

ε −
m̂2

(rε + εy)2
φ̂ε − φ̂ε + Âvε,Ruε,Rφ̂ε + Âv2

ε,Rψε = λεφ̂ε,

and thus as ε→ 0, φ̂ε → φ0 which satisfies

φ
′′

0 − φ0 + 2wφ0 = (λ0 +
m̂2

r20
)φ0. (7.11)

Since the operator L0φ = φ
′′ − φ+ 2wφ has only one positive eigenvalue 5

4 , we then have

λ0 +
m̂2

r20
≤ 5

4
, (7.12)

which proves Theorem 2.3 if m̂ >
√

5
2 r0. If m̂ <

√
5

2 r0, then (7.11) has a positive eigenvalue λ0 = 5
4 − m̂2

r2

0

> 0 and

hence (7.1) is unstable in this case.

This finishes the proof of Theorem 2.3.

�
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8 Generalization to other radially symmetric domains

Theorem 2.1 and Theorem 2.2 can also be generalized to R
N , to the case of an annulus or to the exterior of a

ball. Namely, we consider the following problem














ε2∆v − v + Âv2u = 0 in Ω,

∆u+ 1 − u− v2u = 0 in Ω,

∂v
∂ν = ∂u

∂ν = 0 on ∂Ω,

(8.1)

where Ω = R
N , or Ω = BR2

(0)\BR1
(0) or Ω = R

N\BR(0).

We consider the general annulus case first. The R
N case can be considered as a special case of annulus with

R1 = 0, R2 = +∞ and the exterior of a ball can be considered as annulus with R1 = R and R2 = +∞. Let J1

and J2 be as defined in (2.1) and (2.2). We then define two new functions J1,R1
and J2,R2

J1,R1
(r) = J1(r) −

J
′

1(R1)

J
′

2(R1)
J2(r), J2,R2

(r) = J2(r) −
J

′

2(R2)

J
′

1(R1)
J1(r) (8.2)

and a new Green’s function GR1,R2
(r; r0)

G
′′

R1,R2
+
N − 1

r
G

′

R1,R2
−GR1,R2

+ δrε
= 0; G

′

R1,R2
(R1; r0) = 0, G

′

R1,R2
(R2; r0) = 0. (8.3)

Similar to (2.6), we have

GR1,R2
(r; r0) =

1

W

{

J2,R2
(r0)J1,R1

(r), for R1 < r < r0,

J1,R1
(r0)J2,R2

(r), for r0 < r < R2,
(8.4)

where

W = J
′

1,R1
(r0)J2,R2

(r0) − J1,R1
(r0)J

′

2,R2
(r0).

Define

MR1,R2
(r) :=

(N − 1)(p− 1)

r
+

1 − ξ

ξ

(J1,R1
J2,R2

)
′

(r)

J1,R1
(r)J2,R2

(r)
, (8.5)

where ξ satisfies

ξ(1 − ξ) =
GR1,R2

(r; r)

Â2
. (8.6)

Note that

J1,0 = J1, J2,+∞ = J2, G0,R(r; r0) = GR(r; r0), M0,R(r) = MR(r). (8.7)

Theorem 8.1 Assume that there exists two points R1 < r1 < r2 < R2 such that

MR1,R2
(r1)MR1,R2

(r2) < 0. (8.8)

Then for ε sufficiently small, problem (8.1) has a radially symmetric solution (vε,R1,R2
, uε,R1,R2

) with the following

properties:

(1) vε,R1,R2
, uε,R1,R2

are radially symmetric,

(2) vε,R1,R2
(r) = (1 + o(1))ξεw( r−rε

ε ),
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(3) vε,R1,R2
(r) = 1 − (1 + o(1))ξε(1 + o(1))(GR1,R2

(rε; rε))
−1GR1,R2

(r; rε), where GR1,R2
(r; rε) satisfies (8.3)

and ξε is defined by the following relation:

1 − ξε =
GR1,R2

(rε; rε)

Â2ξε
, 0 < ξε <

1

2
(8.9)

and rε → r0 6= 0 where MR1,R2
(r0) = 0.

In general, it is difficult to study the function MR1,R2
(r). A graph of Â2 and r for (R1, R2) = (3, 5) is given in

Figure 3. The stability of (vε,R1,R2
, uε,R1,R2

) can also be studied. Figure 4 shows the relation between r and the

minimal m for R1 = 3, R2 = 5 by similar methods as before.
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Figure 3. A graph of r versus Â2 for (R1, R2) = (3, 5).

In the case of R
N , we have a more precise result due to the following lemma.

Lemma 8.1 There exists Âc ≥
√

2 such that the function M0,+∞(r) = 0 has a solution if and only if 0 < Â < Âc.

Remark: We conjecture that Âc = 1.460 if N = 2 and Âc =
√

2 if N ≥ 3.

Proof: Observe that M0,+∞(r) = 0 if and only if the following holds

Â2 = −G0,+∞
(1 − γ)2

γ
,

1

ξ2 − ξ
=

1

γ
− 2 + γ (8.10)

where G0,+∞ = G0,+∞(r; r) is defined in (2.5) and

γ(r) =
1

N − 1

r(J1(r)J2(r))
′

J1(r)J2(r)
. (8.11)

First, we show that Â2, as given by (8.10), is positive for all r, i.e. γ < 0 for all r > 0. This is equivalent to
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Figure 4. A graph r versus minimal m for (R1, R2) = (3, 5).

showing that u = r(J1J2)
′ is always negative. After some algebra, we obtain:

u′′(r) +
N − 1

r
u′(r) − 4u = 2NJ1J2. (8.12)

Note that J1J2 > 0, u(r) ∼ −(N − 1)C 1
rN−1 as r → ∞, and

u ∼
{

−C, N = 2

−(N − 2)Cr2−N , N > 2
as r → 0.

In the expression above, C is some positive constant that may change from line to line. Thus u is negative on the

boundary of an annulus {x : ε < |x| < R}, for any R large enough and for any ε small enough. It then follows

from the positivity of J1J2 and the comparison principle that u is negative everywhere on that annulus. Since ε

and R are arbitrary, u(r) < 0 for all r > 0.

It remains to show that

0 < ξ < 1/2 for all r. (8.13)

But this is immediate from (8.10) since γ < 0 implies that 1
γ − 2 + γ ≤ −4 which is equivalent to (8.13)

Finally, note that Â2 → 2 as r → ∞, Â2 → 0 as r → ∞, which proves the existence of Âc ≥
√

2. �

Remark. It is easy to see that ξ = 1
2 at a point rc such that γ(rc) = −1. The latter implies thatG′

0,+∞(rc; , rc) =

0. It then follows from (8.10) that d
dr Â

2|r=rc
= 0. In two dimensions, numerical simulation show that rc = 1.075

is indeed a global maximum Âc of Â with Â2
c = 4G0,+∞(1.075; 1.075) = 2.133. However in three or higher

dimensions, numerics indicate that no such rc exists, and the maximum Âc =
√

2 is achieved only at infinity. See

Figure 5. That the point rc exists in two dimensions, can be seen as follows: Simple properties of J1, J2 (see for

instance [4]) yield: γ(0) = −1 + 1
N−1 and γ(r) = −1 + N−3

4r2 +O( 1
r3 ). for r large. Hence γ > −1 for r near 0 and,
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when N = 2, γ < −1 for large r. This proves the existence of γ(rc) = −1 in two dimensions. For N ≥ 3, we have

γ > −1 near r = ∞ and so this argument no longer applies.

Combining Lemma (8.1) with Theorem (8.1) , we obtain the following existence of ground-state solution

Theorem 8.2 There exists Âc ≥
√

2 such that for ε sufficiently small and for 0 < Â < Âc, the problem (8.1)

with Ω = R
N has a radially symmetric solution (vε,0,+∞, uε,0,+∞) with the following properties:

(1) vε,0,+∞, uε,0,+∞ are radially symmetric,

(2) vε,0,+∞(r) = (1 + o(1))ξεw( r−rε

ε ),

(3) vε,0,+∞(r) = 1− (1+o(1))ξε(1+o(1))(G0,+∞(rε; rε))
−1G0,+∞(r; rε), where G0,+∞(r; rε) satisfies (8.3) and

ξε is defined by

1 − ξε =
G0,+∞(rε; rε)

Â2ξε
, 0 < ξε <

1

2
. (8.14)

In addition rε → r0 6= 0 as ε→ 0 where M0,+∞(r0) = 0. Such a solution dissapears if Â > Âc.

In Figure 5a we plot the graph of r versus Â2 for dimension N = 2, 3, 4, 5. It is clear from the graph that Â is

bounded. Note also that in the case of two dimensions only, Â has a maximum at r = 1.07 with ξ = 1
2 at that

point.
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(a) r versus Â2.
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Figure 5. (a) The graph of r versus Â2 with R = ∞ and for N = 2, 3, 4, 5, as indicated. Note that for N = 2, Â attains
a maximum at r = 1.07. For N > 2, the maximum is attained at infinity. (b) The graph of r versus ξ with R = ∞ and N

as indicated.

The stability properties for ring solutions in R
N is dramatically different from the ball case. Our numerical

computation shows that (vε,0,+∞, uε,0+∞) is always unstable with respect to large eigenvalues for all 1 ≤ m� 1
ε .

9 Self-replicating Rings Region: A = O(1).

In this section, we use matched asymptotic analysis to study the case when A = O(1).

Consider again the stability criteria given by (2.17):

ρm,R(r) >
ξ

1 − ξ
.
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Note that ρm,R = O(1/m) for large values of m, for a fixed radius r. (See [4].) But in order for the ring to be

stable, this stability criteria must hold for all m in the range 0 ≤ m � 1
ε . It follows that a stable ring can only

occur if ξ ≤ O(ε). However, from (2.11) and (1.6), this corresponds to the regime Â = O(ε−
1

2 ), A = O(1), where

our analysis breaks down. It follows that a ring is always unstable for the regime A = O(ε
1

2 ). A natural question

then, is whether it is possible for a ring to become stable when A = O(1).

When A = O(1), the corresponding one-dimensional problem for the radial profile of the ring becomes coupled as

we show below. Moreover, it was shown in [29] and [23] that this one-dimensional problem exhibits spike splitting,

where a spike may split into two spikes, if its distance from the boundary and/or adjacent spikes exceeds a certain

threshold. In two dimensions, this corresponds to a ring splitting into two rings. This phenomenon is illustrated

below in Figure 11. The mechanism here is essentially the same as the one-dimensional spike-splitting, which we

describe here briefly using matched asymptotics (see also [29] and [23]).

We assume that the ring profile has the shape

v(r) =
1

ε
W (y) , u(r) = ε

U (y)

A
, y =

r − r0
ε

,

where both W,U are of order 1. We then obtain:

W ′′ + ε
W ′

r0 + εy
−W +W 2U = 0,

1

ε2
U ′′ +

1

ε

U ′

r0 + εy
− U +

A

ε
− W 2U

ε2
= 0.

Discarding lower-order terms, the problem for the profile of the ring becomes:

W ′′ −W +W 2U = 0, (9.1)

U ′′ −W 2U = 0. (9.2)

Outside the core region of the ring, we have:

u(r0) = 1 −
∫ ∞

0

r

r0
GR(r, r0)v

2(r)u(r)dr (9.3)

= 1 − 1

A

∫ ∞

− r0

ε

r

r0
GR(r + εy, r0)W

2(y)U(y)dy,

ε
U(0)

A
∼ 1 − GR(r0, r0)

A

∫ ∞

−∞
W 2U,

where GR is the radial Green’s function on the disk of radius R, given by (2.10). Since U(0) is of order 1, we

obtain:
∫ ∞

−∞
W 2U =

A

GR(r0, r0)
.

From (9.2), this yields:

U ′(∞) − U ′(−∞) =
A

GR(r0, r0)
.

Normally, U will not be symmetric. However on a disk of radius R, it is symmetric for the special case when
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r0 = rR, i.e. when following condition holds:

(J1(r0)J2,R(r0))
′ = 0, (9.4)

as we now show.

From (9.3) we obtain:

u′(r±0 ) ∼ − 1
A

d
dr±

0

(

1
r±

0

GR(r, r±0 )
)∣

∣

∣

r=r0

r0
∫∞
−∞W 2(y)U(y)dy.

But the matching condition of the outer solution u and the inner solution U is:

U ′(±∞) = Au
′

(r±0 ).

Thus we obtain:

U ′(∞) = − 1

J
′

1(r0)J2(r0) − J1(r0)J
′

2(r0)
r0J

′

1(r0)J2,R(r0)

∫ ∞

−∞
W 2(y)U(y)dy

= − 1

J
′

1(r0)J2(r0) − J1(r0)J
′

2(r0)
r0J

′

1(r0)J2,R(r0)
A

GR(r0, r0)

= A
J

′

1(r0)J2,R(r0)

J1(r0)J2,R(r0)
,

U ′(−∞) = A
J1(r0)J

′

2,R(r0)

J1(r0)J2,R(r0)
.

For U to be symmetric, we must have U ′(∞) + U ′(−∞) = 0, which is exactly the condition (9.4).

Note that r0 given by (9.4) corresponds to the limiting case Â → ∞ (see (2.13) and the remark following it),

which agrees with the regime A = O(1) . Thus we conjecture that r0 in the case A = O(1) will satisfy (9.4).

Assuming U to be symmetric, we thus obtain the following boundary value problem for U,W :

U ′(0) = 0, U ′(∞) =
A

2GR(rR, rR)
.

In [23] and [29] it was shown that the solution to the core problem exists only if U ′(∞) is small enough.

To show this, we plot the graph of U ′(∞) versus γ = U(0)W (0) below. Numerically, it has a fold point at

U ′(∞) = 1.347, γ = 1.02. Thus if we choose U
′

(∞) just above 1.347, the ring ceases to exist. Numerically, this

corresponds the ring splitting into two rings. The mechanism responsible for this is similar to the mechanism

proposed by [34] for the case of Dv

Du
= O(1) diffusivity ratio, and is described below. We let

v =
1

ε

(

W + eimθetλΦ(y)
)

,

u =
ε

A

(

U + eimθetλΨ(y)
)

,

to obtain the following leading-order eigenvalue problem:

Φ′′ − Φ + 2WV Φ +W 2Ψ = λΦ

Ψ′′ − 2WV Φ −W 2Ψ = τλΨ (9.5)

Ψ′(±∞) = 0 = Φ(±∞).
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Figure 6. The graph of γ = W (0)U(0) versus U ′(∞). The fold point occurs at γ = 1.02, U ′(∞) = 1.347. The dashed

curves represent an asymptotic approximations, derived in [23].

Note that the leading order problem is independent of the mode m. It follows that all modes m with m� 1
ε are

stable, provided that the zero mode is stable.

At the fold point, we have dU ′(∞)
dγ = 0 and therefore we see that

λ = 0, Φ =
dU

dγ
, Ψ =

dW

dγ
,

satisfies (9.5). Solving this system numerically, we obtain a solution for Φ that has a dent, as shown in Figure 7.

This is the eigenfunction that is responsible for ring splitting.
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Figure 7. The graph of the eigenfunction Φ = dW
dγ

corresponding to λ = 0 at the fold point

U(0)W (0) = 1.02, U ′(∞) = 1.347.
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So as A is increased above the threshold where the steady-state solution dissapears, the shape of the corre-

sponding eigenfunction will deform the spike into two spikes. The resulting two spikes will then move away from

each-other. If the distance between them becomes too big, their interaction becomes small enough and the whole

process may repeat again.

10 Numerical Computations

We have performed numerical simulations of Gray-Scott model on a disk. We used a second order discretization in

space, combined with the forward Euler method in time. Matlab was used for visualization. For all the simulations

here, we chose R = 3, ε = 0.05, τ = 1, and discretized the radial and anglular direction into 60 and 30 intervals,

respectively. The time step was taken to be 0.00005. For initial conditions, we chose a ring of radius r0 = 1.5 of

width ε, and with very small, random perturbations in the angular direction.

Note that throughout this paper we have assumed that
√

6ε � 1, so that Â � A. (see (1.6)). Even assuming
√

6ε = 0.1, we would need to take much more than 600R mesh modes in the radial direction in order to resovle

the ring whose core has width O(ε). At this time, we do not have the code to accurately simulate this regime.

Thus we cannot expect our simulation to have a good quantitative agreement with the theory.

Experiment 1. Here we qualitatively verify that the first unstable mode increases rapidly as A is increased

(see Figure 2). Starting from the same initial condition of a ring of radius 1.5, Figure 8 shows the solution at

time t=30 for A = 0.8, 0.85, 0.87 and 1.0. For these values of A, we observe that the ring breaks into m spots,

where m = 8, 11, 12, 13, respectively. This agrees with our theoretical prediction that the first unstable mode is

increased as A is increased.

Experiment 2. Next, we increase A, approaching the ring-splitting regime. Figure 9 shows a simulation for

A = 2.0. The initial ring at r0 = 1.5 starts to expand until its radius reaches about 2.25. It then breaks into many

spots. This implies that all lower-modes are stable, but an instability at a very high mode is triggered. Moreover,

the spots form both at the outside and at the inside of the ring.

Theoretically, A = 2.0 corresponds to the regime Â→ ∞. Note that for R = 3, we find from theory that rR and

Ac, defined in Conjecture 2.1, are rR = 2.238 and Ac = 1.837, respectively. We cannot expect a good quantitative

agreement since the value of ε in our simulations is not small enough; nevertheless, we do find that the ring

breakup in our simulations occurs at about r = 2.25 which agrees well with the predicted value of rR = 2.238.

Experiment 3 (Figure 10). For A = 2.2, the ring again expands until its radius reaches about 2.25. This

time however, the the instability is such that the inside of the ring splits into many spots, whereas the outside

of the ring moves towards to the boundary, and remains stable for a much longer time. Eventually however, the

outside of the ring also breaks apart.

Experiment 4 (Figure 11). For A = 2.5, the ring splits into two. The two resulting rings then start travelling

apart. Some time later, the inner ring breaks up. Then much later the outer ring also breaks.

Experiment 5 (Figure 12). Our last simulation is with A = 4. As a result, a single ring eventually splits into

four. The resulting rings then lose their stability, one-by-one, starting from the innermost ring, and progressing
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A=0.8 A=0.85

A=0.87 A=1.0

Figure 8. Solution at time t = 30 with A as indicated.

towards the outermost ring. Note however that the outer ring can remain stable for a very long time, and becomes

unstable only after the adjacent ring has been broken up.

11 Conclusion and Discussion

We have performed an extensive study of the ring-like solutions for the Gray-Scott model in the regime where

the ratio of the diffusivity coefficients
D2

v

Du
is small, using both rigorous PDE theory (Section 3 to Section 8) and

matched asymptotics approach (Section 9).

In Theorems 2.1, 8.1 and 8.3, we rigorously construct ring-like solutions in a ball, R
N an annulus, or the

exterior of a ball. Our approach is a Liapunov-Schmidt reduction method, combined with asymptotic analysis.

In the sub-regime where Â = A√
6ε

is of O(1), we found that the ring-like solution on entire R
N exists only if Â

is below some threshold Âc. This behaviour is very different from that of a bounded disk. For a disk of radius

R <∞, a ring-like solution always exists, and its radius is less than rR < R, where rR is a zero of (J1J2,R)
′

(r).

In Theorems 2.2 and 2.3, we study the stability of the ring-like solutions in N = 2. We have rigorously proved
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t=20, A=2.0 t=60, A=2.0 t=70, A=2.0

t=80, A=2.0 t=290, A=2.0 t=1000, A=2.0

Figure 9. Contour plot of v for A = 2.0.

that the ring-like solutions are unstable for large modes 1 << m << 1
ε . Our approach is based on the study of

a nonlocal eigenvalue problem, using functional analysis developed in [46] and [42]. We found that the ring-like

solution on the entire space is always unstable with respect to the first mode of the angular perturbation cos(θ).

By contrast, on a bounded domain, any given number of low modes can be made stable by choosing Â big enough.

However an open question remains: can a ring be stable with respect to all angular modes?

When A = O(1), the equations for u and v cannot be decoupled at the core of the ring. In such a regime,

questions about existence and stability of the ring are reduced to a one-dimensional core problem (9.1), which we

can only solve numerically. Previous numerical studies of the core problem (see [23] and [29]) show that in one

dimension, spike splitting will occur if A is increased beyond a certain threshold. In Section 9 we have found a

similar threshold in two dimensions: if A > Ac given by (2.21) then the ring will split into two rings. Numerical

simulations confirm this result. For A just below Ac, we conjecture that there exists a ring solution whose radius

is precisely rR. The angular stability of such ring remains an open problem.

In this work we have addressed the breakup instability of a ring due to O(1) perturbations in the profile. Such

instabilities correspond to O(1) unstable eigenvalues, and are referred to as the large eigenvalues. We have not

addressed the small eigenvalues that arise due to translation invariance of the problem. An instablility of such
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t=10, A=2.2 t=40, A=2.2 t=50, A=2.2

t=130, A=2.2 t=170, A=2.2 t=1000, A=2.2

Figure 10. Contour plot of v for A = 2.2.

an eigenvalue can induce a dynamic change of the ring radius; higher mode small eigenvlaue can also lead to a

zigzag-type instability. See [24] for the study on such an instability.

An interesting open problem is to examine a connection between a ring solution and a spot solution. From

(8.10), by using the near-zero expansions of the Bessel functions, for a single ring on the entire domain with r

small, we obtain:

Â2 ∼ 9

2
r ln(r−1), r � 1

However our analysis is only valid for r � O(ε) and breaks down when r = O(ε). On the other hand, it is easy

to show that spot solutions exist in the regime Â2 = O
(

ε ln(ε−1)
)

. This suggests that a spot can bifurcate into a

ring as Â2 is slowly increased beyond O
(

ε ln(ε−1)
)

. Indeed numerical simulations suggest that this is indeed the

case. When A is large enough, an initial solution consisting of a spot tends to expand into a ring. The ring then

continues to expand until it breaks up into spots. On the other hand, for smaller values of A, a single spot may

be stable, or may undergo a self-replication, resulting in two or more spots.

We now compare the our results with those obtained by Morgan and Kaper in [28]. They used the following
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t=10, A=2.5 t=20, A=2.5 t=80, A=2.5

t=340, A=2.5 t=480, A=2.5 t=600, A=2.5

Figure 11. Contour plot of v for A = 2.5.

scaling of the Gray-Scott model:

dV (y, s)

ds
= D∆V −BV + UV 2,

dU(y, s)

ds
= ∆U +Amk(1 − U) − UV 2.

By scaling the variables as follows:

V =
√

Amkv, U = u, s =
1

B
t, y =

1√
Amk

x

we re-obtain our system (1.2) with

τ =
B

Amk
, ε =

√

DAmk

B
, A =

√
Amk

B

or

Amk =
1

τ2A2
, B =

1

τA2
, D = ε2τ.

The paper [28] obtains results for the ring location and its stability. In addition it contains a linear Turing

analysis for the radially-symmetric solutions together with full numerical simulations.

For the location of the ring, in [28] the same formula (equation (2.35) of [28]) is obtained as in Theorem 2.1.

They use a Melnikov-type calculation to obtain their results whereas we have used Lyapunov-Schmidt reduction.
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t=0, A=4.0 t=20, A=4.0 t=60, A=4.0

t=130, A=4.0 t=180, A=4.0 t=1000, A=4.0

Figure 12. Contour plot of v for A = 4.0.

However, they do not have any analytical results on the existence of solution to equation (2.35) of [28]. Indeed,

they consider only a bounded domain – in which case a ring solution exists for any choice of Â. Our result on

existence of the bound Âc on Â in case of the unbounded domain is new. In the case of the bounded domain,

we rigorously show the existence of rR < R, which has the property that the radius of the ring r0 → rR as

Â → ∞. This is also a new result. Another new result that we have obtained using the comparison principle, is

the existence of Â for any given ring radius r0 in the case of the unbounded domain. We also consider the general

N -dimensional case and examine the qualitative differences between two and higher dimensions (see the remark

after proof of Lemma 8.1). The analysis of [28] on the other hand, is restricted to two dimensions.

For the stability analysis with respect to angular perturbations, we obtain a simple sufficient condition (see

Theorem 2.2) for when the ring is unstable with respect to mode m. This condition is also necessary when τ = 0.

Our condition involves only Bessel functions of order m and the ring radius r0. Our proof is rigorous and involves

no numerical computations. By contrast, the stability criteria for the m-th mode in [28] is implicitly contained in

integrals of hypergeometric functions which is then solved by Mathematica. In both cases, the stability analysis

is reduced to a non-local eigenvalue problem. We also find that all modes 1 � m � O( 1
ε ) are unstable for any

τ ≤ O(1), and all modes m >
√

5
2

r0

ε are stable (Theorem 2.3). These results are new.

For the ring-splitting regime A = O(1), we use formal asymptotics and one-dimensional numerics to derive
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an explicit bound Ac in terms of R (see (2.21)) such that the ring-splitting occurs when A > Ac. This is a new

result. We also show that the radius of the ring for A just below Ac is precisely rR. We then use full numerical

simulation to confirm existence of the ring-splitting regime. In [28], ring splitting is observed numerically but no

analysis of this regime is performed there.

Finally, we mention related works by Muratov, Osipov and Kerner [29], [30], [31], [22]. In [29] the authors

use formal asymptotics to derive an expression for the radius of the ring in three dimensions. Their result (see

(5.12) of [29]) does not depend on Bessel functions, unlike the result obtained here. In [31] they also numerically

observe ring breakup into spots, but no rigorous analysis is provided. In [22], a general, qualitative mechanism of

ring breakup into spots for general reaction diffusion systems is also discussed (see pp. 430-433), and a scaling law

is derived, predicting the instability of some high modes m, but without giving bounds on the instability band.

Theorems 2.2, 2.3 provide these bounds in the specific case of the Gray-Scott model.

Appendix A: Proof of Proposition 5.1

We first prove that if (φ, c) satisfy (5.5) and (5.6), then for ε sufficiently small, we have

‖φ‖∗ ≤ C‖h‖∗. (A.1)

We prove it by contradiction. Suppose not. Then there exists a sequence εk → 0 and a sequence of functions

φεk
satisfying (5.5)-(5.6) such that the following holds:

‖φεk
‖∗ = 1, ‖hk‖∗ = o(1),

∫

Iεk

φεk
Zεk ,t(t+ εky)

N−1 = 0.

For simplicity of notations, we drop the dependence on k. Let

Lε[φ] = φ
′′

+
ε(N − 1)

t+ εy
φ

′ − φ+ 2wε,tφ− 2(1− ξε)

∫

Iε
wε,tφ

∫

Iε
w2

ε,t

w2
ε,t. (A.2)

Then φε satisfies

Lε[φε] = h+ cZε,t, φ
′

ε(−
t

ε
) = φ

′

ε(
R− t

ε
) = 0. (A.3)

Multiplying (A.3) by w
′

ε,t and integrating over Iε, we obtain that

c

∫

Iε

Zε,tw
′

ε,t = −
∫

Iε

hw
′

ε,t +

∫

Iε

(Lε[φε])w
′

ε,t. (A.4)

The left hand side of (A.4) is simply c(
∫

R
pwp−1(w

′

)2 + o(1)) since Zε,t = 2wε,tw
′

ε,t +O(ε). The first term on the

right hand side of (A.4) can be estimated as
∫

Iε

hw
′

ε,t = O(‖h‖∗).

The last term equals

∫

Iε

(Lε[φε])w
′

ε,t =

∫

Iε

[

φ
′′

ε +
ε

t+ εy
φ

′

ε − φε + 2wε,tφε

]

w
′

ε,t − 2(1− ξε)

∫

Iε
wε,tφε

∫

Iε
w2

ε,t

∫

Iε

w2
ε,tw

′

ε,t
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= o(‖φ‖∗).

Hence we obtain that

|c| = O(‖h‖∗) + o(‖φ‖∗), ‖h+ cZε,t‖∗ = o(1). (A.5)

Next we claim that |φε(y)| → 0 in any compact interval of R. In fact, we consider φ̄ε(y) = φεχ(εy). Then it is

easy to see that ‖φ̄ε‖H2 ≤ C and hence φ̄ε → φ0 weakly in H2(R) and φ0 satisfies

Lφ0 = 0, |φ0| ≤ Ce−µ1|y|.

By Lemma 3.1, we must have φ0 = cw
′

. On the other hand,
∫

Iε
φεZε,t(t+εy)

N−1dy = 0 and hence
∫

R φ0w
p−1w

′

=

0, which implies that c = 0. Hence, φε → 0 in any compact interval of R. This shows that

‖wε,tφε‖∗ = sup
y∈Iε

|wε,t(y)φε(y)| = o(1). (A.6)

On the other hand, by Lebesgue’s Dominated Convergence Theorem, we have that
∫

Iε

wφε(t+ εy)N−1 → 0,

which implies that

‖
∫

Iε
wε,tφε

∫

Iε
w2

ε,t

w2
ε,t‖∗ = o(1). (A.7)

Thus we have arrived at the following situation: φε satisfies

φ
′′

ε +
ε(N − 1)

t+ εy
φ

′

ε − φε = o(1), φ
′

ε(−
t

ε
) = φ

′

ε(
R − t

ε
) = 0, φε = O(1). (A.8)

We claim first that φε(0) = o(1). In fact, suppose not. There exists a sequence of εk → 0 such that φε(0) ≥ δ0

for some constant δ0 > 0. By taking a subsequence, φεk
(y) → φ0(y) in C2

loc(R) and φ0 satisfies

φ
′′

0 − φ0 = 0, φ0(0) ≥ δ0 > 0, φ0 = O(e−µ1<y>)

which is clearly impossible.

So φε(0) = o(1). Similarly we have φ
′

ε(0) = o(1). Then by the comparison principle, φε = o(1) for y ∈ Iε.

This proves (5.7).

Finally, the existence follows from the Fredholm alternative. To this end, let us set

H = {u ∈ H1(RN )|(u,w′

ε,t) = 0}.

Observe that φ solves (5.5) and (5.6) if and only if φ ∈ H1(RN ) satisfies

∫

RN

(∇φ∇ψ + φψ) − p < wp−1
ε,t φ, ψ >ε −qm

∫

Iε
wm−1

ε,t φ
∫

Iε
wm

ε,t

< wp
ε,t, ψ >ε=< h,ψ >ε, ∀ψ ∈ H1(RN )

This equation can be rewritten in the following form

φ+ S(φ) = h̄, (A.9)

where S is a linear compact operator form H to H , h̄ ∈ H and φ ∈ H.
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Using the Fredholm alternative, in order to show that equation (A.9) has a uniquely solvable solution for each

h̄, it is enough to show that the equation has a unique solution for h̄ = 0. To this end, we assume the contrary.

That is, there exists (φ, c) such that

Lε[φ] = cZε,t, (A.10)

φ
′

(− t

ε
) = 0, φ(y) → 0 as y → +∞, < φ, Zε,t >ε= 0. (A.11)

From (A.10), it is easy to see that ‖φ‖∗ < +∞. So without loss of generality, we may assume that ‖φ‖∗ = 1. But

then this contradicts to (A.1).

�
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