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In the limit of a large mass M À 1, and on a finite interval of length 2L, an equilibrium spike solution to the classical

Keller-Segel chemotaxis model with a linear chemotactic function is constructed asymptotically. By calculating an

asymptotic formula for the translational eigenvalue for M À 1, it is shown that the equilibrium spike solution is

unstable to translations of the spike profile. If in addition L À 1, the equilibrium spike is shown to be metastable

as a result of an asymptotically exponentially small eigenvalue. For M À 1 and L À 1, an asymptotic ODE for

the metastable spike motion is derived that shows that the spike drifts exponentially slowly towards one of the

boundaries of the domain. For a certain reduced Keller-Segel model, corresponding to a domain of small length, a

solution with a spike at each of the two boundaries is constructed. This solution is found to be metastable, and it

is shown that there is an exponentially slow exchange of mass between the two spikes that occurs over very long

time scales. For arbitrary initial conditions, energy methods are used to show the global existence of solutions. The

relationship between this reduced Keller-Segel model and a Burgers-type equation modeling the upward propagation

of a flame-front in a finite channel is emphasized. Full numerical computations are used to confirm the asymptotic

results.

1 Introduction

The Keller-Segel model was first introduced in [8] to describe the process of cellular aggregation due to chemotaxis.

This model is a PDE system of the

ut = ∇ · (D∇u− u∇Φ(v)) , vt = κ4v − γv + αu , (1.1)

in a domain Ω with Neumann boundary conditions for v and u on the boundary ∂Ω of Ω. The function Φ(v) is

called the chemotactic function. We will assume a linear such function so that Φ(v) = βv. Here D, β, κ, γ, and α,

are all positive constants. In this paper we will analyze a singularly perturbed limit of (1.1) in a one-dimensional

spatial domain. In dimensionless variables the system (1.1) can be written as (see Appendix A)

ut = uxx − (uvx)x , τvt = vxx − v + u , −L < x < L , t > 0 . (1.2 a)

The three parameters are the domain half-length L, the time-constant τ , and the total mass M defined by

M =
∫ L

−L

u dx , (1.2 b)
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which is preserved in time.

There is large body of literature dedicated to (1.2) and its variants in one, two, and higher dimensions. See [6]

for an excellent overview. In particular, the two-dimensional version of (1.2) can exhibit a chemotactic collapse

phenomenon whereby the solution develops a singularity corresponding to a single point blowup at certain points

of the domain in finite time. This collapse process, together with either formal asymptotic or rigorous constructions

of the local blowup profile, has been studied by many authors (see [3], [4], [7], [9], and many references in [6]). A

certain regularization of the Keller-Segel model, which appears to prohibit blow-up and leads to localized islands

of high concentration, was studied in [15] and [16].

In contrast, for the one-dimensional Keller-Segel model (1.2), it has been shown in [9], [11] and [5] that the

solution to (1.2) exists globally for all time. In [5] a steady-state solution that consists of a spike at the boundary

was also constructed asymptotically. Moreover, numerical experiments in [5] indicate that if an initial condition

consists of a spike at some point in the interior of the domain then it will drift towards the boundary.

The first goal of this paper is to study the stability and dynamics of an interior spike in the asymptotic limit of a

large mass M À 1. In this limit, a spike with spatial support of O(1/M) can be constructed asymptotically, as was

done in [5]. For the equilibrium problem, the location x0 of the center of the spike is at the center of the domain

so that x0 = 0. We then study the translational stability of the equilibrium solution by deriving an asymptotic

formula for the principal eigenvalue of the linearization. We show that this eigenvalue is positive, and consequently

the equilibrium spike is unstable to translations. This result for the eigenvalue supports numerical observations,

such as those made in §5 of [5], that a spike that is initially centered near the midpoint of a one-dimensional

domain will drift towards the boundary of that domain.

Furthermore, in the dual asymptotic limit of a large mass M À 1 together with a large domain L À 1, we

show that this translational eigenvalue is positive, but is asymptotically exponentially small. This suggests that

a quasi-equilibrium spike solution exhibits metastable behaviour in this limit. We characterize this metastability

for M À 1 and L À 1 by deriving the following asymptotic ODE for the spike location x0 associated with a

quasi-equilibrium solution of (1.2),

x′0 (t) ∼ exp (−2L)
[
τ

4
+

1
M

]−1

sinh (2x0) . (1.3)

This result shows that the spike drifts towards one of the boundaries of the domain with an asymptotically

exponentially small speed. The analysis of metastability for (1.2) is in the same spirit as previous metastability

analyzes for other problems (see [17] for a survey), but is rather more intricate owing to the different spatial

scales of v and u. More specifically, since u decays rapidly away from a spike for M À 1, whereas v has a global

variation across the domain [−L,L], a straightforward application of a limiting solvability condition, such as was

used for related problems in [17], cannot be used here to derive the asymptotic speed of the spike.

The metastable behaviour of localized structures has recently been analyzed for several variants of the Keller-

Segel model (1.1). In [12], the effect of volume-filling was analyzed in one spatial dimension whereby the coefficient

of the chemotaxis term vanishes at a sufficiently high population density for u. With this model, the chemotaxis
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term (uvx)x in (1.2) is replaced by (u(1 − u)vx)x. In a certain asymptotic limit, this volume-filling Keller-Segel

model, which has localized solutions for u in the form of front-back plateau solutions, was shown formally in [12]

to exhibit metastable behaviour. In [13] the Keller-Segel model (1.1), under a logarithmic sensitivity function

Φ(v) = log(vp), was modified to include a finite rate of increase of v for u À 1. In a certain asymptotic limit, the

resulting model exhibits metastable spike behaviour in both one and two spatial dimensions.

The second goal of this paper is to study the stability of an equilibrium solution, having a boundary spike

at each endpoint, of the Keller-Segel model (1.2) in the limit L ¿ 1 and ML À 1. We find that this two

boundary-spike solution is marginally unstable, and a certain exponentially small eigenvalue is shown to initiate

a metastable competition instability whereby the mass in the two boundary spikes is exchanged exponentially

slowly in time until only one of the boundary spikes remain. The study of this phenomena is based on the analysis

of a certain reduced Keller-Segel model, which is obtained by taking the limit L ¿ 1 with ML À 1 in (1.2).

The resulting limiting model was first studied in [7] where a certain non-local transformation was used to prove

the existence of blowup solutions in two spatial dimensions from a comparison principle. For the corresponding

one-dimensional problem we use an analog of this non-local transformation to asymptotically reduce the model

(1.2) for ε ≡ 2/(ML) ¿ 1 to

ut = εuxx − (ux + 1) vxx , τvt = vxx + u , 0 < x < 2 , t > 0 ; u = v = 0 , at x = 0, 2 . (1.4)

We remark that the variables u, v, and τ , in (1.4) are not the same as in (1.2) (see §3). For the case τ = 0,

(1.2) yields a single equation for u. The resulting equation is of Burgers’ type and, rather curiously, also arises

in the analysis of [1], [2], [14], and [10], for the upward propagation of a flame-front in a vertical channel. In our

context, an asymptotic solution of (1.4) for ε ¿ 1 with boundary layers at both endpoints corresponds to the two

boundary-spike solution for the Keller-Segel model (1.2) when L ¿ 1 and ML À 1. For this class of solutions, we

extend the metastability analysis of [14] and [10] to the case of the system (1.4) where τ > 0. Our analysis shows

that a two boundary-layer solution to (1.4) is unstable due to the presence of an exponentially small positive

eigenvalue. This eigenvalue can be interpreted as the initial instability mechanism for the slow mass exchange

between two boundary spikes of the Keller-Segel model (1.2) for L ¿ 1 with ML À 1.

The final goal of this paper is to give a rigorous proof of the global existence of solutions to (1.4) using energy

methods. This analysis complements the analysis of [5] and [9] for the global existence of solutions to the full

Keller-Segel model (1.2) in one spatial dimension.

The outline of the paper is as follows. In §2 we construct an equilibrium and a quasi-equilibrium spike solution

to (1.2) in limit M À 1 with ML À 1. The result is summarized in the (formal) Proposition 1. In this limit, an

asymptotic formula for the translational eigenvalue of the equilibrium solution is derived in §2 and summarized

in Proposition 2. For L À 1, this eigenvalue is positive but exponentially small. In Proposition 3 of §2.3 we

formally characterize the metastable dynamics of a quasi-equilibrium spike solution by deriving an asymptotic

formula for the speed of the spike when M À 1 and L À 1. Numerical results are given to confirm both the

eigenvalue estimates and the slow spike motion. In §3 we study the metastability of boundary-layer solutions for
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the reduced Keller-Segel model (1.4). In §4 we prove the global existence of smooth solutions to (1.4). Finally, in

§5 we conclude with a brief discussion, and we list a few open problems.

2 Analysis of the Motion of a Spike Solution

In this section we consider a single interior spike solution to (1.2). In §2.1 we begin by formally deriving the

asymptotic representation of the spike profile for a quasi-equilibrium spike solution. We then determine the

spike location for a true equilibrium solution. The asymptotic result for the quasi-equilibrium solution is given in

Proposition 1. For the true equilibrium solution, in Proposition 2 we formally derive an asymptotic formula for the

eigenvalue corresponding to an odd eigenfunction. For a large domain length L, this is the eigenvalue associated

with a near translation invariance. Since this eigenvalue is positive, the interior equilibrium spike solution is

unstable. Finally, in Proposition 3 of §2.3 we derive an equation of motion for the center of the spike in the special

case where the domain length L is asymptotically large.

2.1 The Quasi-Equilibrium Spike Solution

We now summarize the main result of this section in the following formal statement:

Proposition 1 Consider a one-spike quasi-equilibrium solution of (1.2) with spike location at x0 ∈ (−L,L). The

spike location corresponds to the maximum value of u in (−L,L). Then, for M À 1 and ML À 1, the profile for

u has the asymptotic form

u ∼ M2

8
sech2

(
M(x− x0)

4

)
+ MU1 + · · · . (2.1)

For x− x0 ≤ O( 1
M ), the corresponding inner solution for v is

v ∼ MG(x0, x0)− ln
[
4 cosh2

(
M(x− x0)

4

)]
+

V1

M
+ · · · . (2.2)

Alternatively, the outer approximation for v, valid for x− x0 À O(1/M), is

v ∼ MG(x, x0) . (2.3)

Here G(x, x0) is the Green’s function satisfying Gxx −G = −δ(x− x0) with Gx(±L, x0) = 0, given explicitly by

G(x, x0) =
1

sinh (2L)

{
cosh (x0 + L) cosh (x− L) , x0 < x < L ,

cosh (x + L) cosh (x0 − L) , −L < x < x0 .
(2.4)

A leading-order composite expansion vc for v, which is uniformly valid on −L ≤ x ≤ L, is

vc ∼ − ln
[
4 cosh2

(
M(x− x0)

4

)]
+ MG(x, x0) +

M

2
|x− x0| . (2.5)

Finally, the true equilibrium solution is obtained when the spike is centered at x0 = 0.
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We now derive this result. We assume that u has a spike located at some point x0 ∈ (−L,L). In the inner

region, where x− x0 = O (1/M), we introduce the change of variables

y = M(x− x0) u = M2U , v = V . (2.6)

Substituting (2.6) into the steady-state problem for (1.2) we obtain

U ′′ − (UV ′)′ = 0 , V ′′ − V

M2
+ U = 0 . (2.7)

Here the primes indicate derivatives with respect to y. We then expand

U = U0 +
1
M

U1 + · · · , V = MVc + V0 +
1
M

V1 + · · · , (2.8)

where Vc is a constant independent of y to be found. Substituting (2.8) into (2.7), we obtain

U ′′
0 − (U0V

′
0)′ = 0 , V ′′

0 + U0 = 0 , (2.9 a)

U ′′
1 − (U0V

′
1 + V ′

0U1)
′ = 0 , V ′′

1 + U1 = Vc . (2.9 b)

We assume that all of the mass is concentrated in the inner region and so M =
∫ L

−L
u dx is transformed to∫∞

−∞ U dy = 1. Therefore, we have
∫∞
−∞ U0 dy = 1 and

∫∞
−∞ Uj dy = 0 for j ≥ 1.

We integrate the leading-order equation for U0 in (2.9 a) and we impose U0 → 0 as |y| → ∞. This yields

U ′
0 = U0V

′
0 . (2.10)

Therefore, since
∫∞
−∞ U0 dy = 1, we get

U0 =
1
I0

eV0 , I0 =
∫ ∞

−∞
eV0 dy . (2.11)

Then, from the equation (2.9 a) for V0, we get

V ′′
0 +

1
I0

eV0 = 0 , V ′
0(0) = 0 . (2.12)

In terms of an undetermined constant A, the solution to (2.12) is

V0(y) = − ln
[
A cosh2(By)

]
, B = (2AI0)

−1/2
. (2.13)

Then, by using I0 =
∫∞
−∞ eV0 dy, we readily derive that I0 = 2

AB . By combining this relation with (2.13), we get

B =
1
4

, I0 =
8
A

. (2.14)

Therefore, at this stage of the analysis we have

V0(y) = − ln
[
A cosh2

(y

4

)]
, U0(y) =

1
8
sech2

(y

4

)
. (2.15)

The constants A, and Vc in (2.8), will be found by matching V0 to the outer solution for v.

Higher-order correction terms in the inner region can also be calculated. The solution to (2.9 b) with U1 → 0

as |y| → ∞ and
∫∞
−∞ U1 dy = 0 is simply U1 = U0V1 − U0

∫∞
−∞ U0V1 dy. Therefore, we get

U1 =
1
8
sech2

(y

4

)
V1 − 1

64
sech2

(y

4

) ∫ ∞

−∞
sech2

(η

4

)
V1 dη , (2.16)



6 K. KANG, T. KOLOKOLNIKOV and M. J. WARD

where V1 is the solution to

V ′′
1 +

1
8
sech2

(y

4

)
V1 − 1

64
sech2

(y

4

) ∫ ∞

−∞
sech2

(η

4

)
V1 dη = Vc . (2.17)

From our analysis of the inner solution, it is clear that U0 decays exponentially to zero as |y| → ∞ whereas

V0 is linear as |y| → ∞. Hence, U and V are the fast and slow variables, respectively. Therefore, in the sense of

distributions, we can replace the effect of u in the outer region, where x− x0 À O (1/M), by

u →
(∫ 1

−1

u dx

)
δ(x− x0) =

1
M

(∫ ∞

−∞
M2

(
U0 +

1
M

U1 + · · ·
)

dy

)
δ(x− x0) = Mδ(x− x0) . (2.18)

In this way, we find that the outer solution for v satisfies

vxx − v = −Mδ (x− x0) , vx(±L) = 0 . (2.19)

In terms of the Green’s function G(x, x0), given explicitly in (2.4), the solution to (2.19) is

v = MG(x, x0) . (2.20)

The matching condition for the inner and outer approximations for v is that the far-field behaviour of V as

y → ±∞ agrees asymptotically with the behaviour of G(x, x0) as x → x±0 . Therefore, we must have

MVc + V0 +
1
M

V1 + · · · ∼ MG(x0, x0) + Gx(x±0 , x0)y + Gxx(x0, x0)
y2

2M
+ · · · . (2.21)

Since V0 ∼ − ln (A/4) ∓ y/2 as y → ±∞, as obtained from (2.15), the matching condition (2.21) determines Vc

and A as Vc = G(x0, x0) and A = 4. In addition, from this matching condition, we also obtain that the equilibrium

location of the spike is the root of Gx(x+
0 , x0) = −Gx(x−0 , x0). A simple calculation using (2.4) shows that

Gx(x+
0 , x0) =

cosh(x0 + L) sinh(x0 − L)
sinh(2L)

Gx(x−0 , x0) =
cosh(x0 − L) sinh(x0 + L)

sinh(2L)
. (2.22)

Therefore, for the true equilibrium solution we must have x0 = 0.

As a remark, we notice that for L À 1, we have Gx(x±0 , x0) = ∓ 1
2 + O

(
e−γL

)
for some γ that depends on x0.

Therefore, for L À 1, it is the exponentially small terms in the equilibrium condition Gx(x+
0 , x0) = −Gx(x−0 , x0)

that enforce x0 = 0. This exponential ill-conditioning of the equilibrium problem for L À 1 suggests that the

linearization of the true equilibrium solution will have an exponentially small eigenvalue in this limit. Finally,

setting x0 = 0 for the true equilibrium solution we calculate that

Vc = G(0, 0) =
1
2

coth (L) , Gxx(0, 0) =
1
2

coth(L) . (2.23)

Therefore, for the true equilibrium solution, the matching condition (2.21) shows that the solution V1 to (2.17) has

the far-field behaviour V1 ∼ coth(L)y2/4 as |y| → ∞. The solution to (2.17) can then be reduced to quadrature.

This completes the formal derivation of Proposition 1.

For M = 100 and L = 1, in Fig. 1(a) and Fig. 1(b) we use the asymptotic result in Proposition 1 to plot u and

v, respectively, for x0 = 0 and x0 = 1/2. In plotting v in Fig. 1(b) we used the composite expansion vc given in

(2.5). The dashed curves in Fig. 1(b) correspond to the outer solution v ∼ MG(x, x0). Notice that since the inner
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Figure 1. The equilibrium and the quasi-equilibrium solution for M = 100 and L = 1. Left figure: u versus x for x0 = 0
(heavy solid curve) and for x0 = 1/2 (solid curve). Right figure: the composite approximation vc versus x for x0 = 0 (heavy
solid curve) and for x0 = 1/2 (solid curve). The dashed curves in this figure are the outer solutions v ∼ MG(x, x0).

approximation for v serves only to round a corner layer in the derivative of G(x, x0) at x = x0, the pointwise

values for the outer solution for v and the composite expansion agree rather well over the entire interval.

Finally, we make three remarks. Firstly, since the width of the domain is O(L) while the width of the spike

region is O (1/M), the formal analysis above is valid provided that ML À 1. Secondly, we note that it is possible to

change the equilibrium spike location from x0 = 0 to another value by adding a spatially variable term of the form

vxx−a(x)v+u, for some a(x) > 0, in (1.2). For this modification, the leading-order inner solution for u and v are the

same as when a(x) ≡ 1, except that now the equilibrium spike location would satisfy Gx(x+
0 , x0) = −Gx(x−0 , x0),

where G(x, x0) is the Green’s function for Gxx − a(x)G = −δ(x − x0) with Gx(±L, x0) = 0. For this problem

x0 6= 0 in general. Finally, we remark that in §5.1 of [5] a spike profile is constructed asymptotically in a different

asymptotic limit of the classical Keller-Segel model (1.2). However, formal asymptotic matching was not used in

[5] to uniquely determine certain constants in the inner solution.

2.2 Eigenvalue problem

We now study the eigenvalue problem determining the stability of the equilibrium spike solution centered at

x0 = 0 constructed in §2.1. The equilibrium solution ue, ve satisfies

uxx − (uvx)x = 0 , vxx − v + u = 0 , |x| < L ; ux(±L) = vx(±L) = 0 . (2.24)

From (2.24), a key relation between u and v is that

ux = uvx . (2.25)

We analyze the stability of this solution by setting

u = ue + eλtφ(x) , v = ve + eλtψ(x) . (2.26)
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By substituting (2.26) into (1.2 a) we obtain the eigenvalue problem

φxx − (φvx + uψx)x = λφ ; |x| < L ; φx(±L) = 0 , (2.27 a)

ψxx − (1 + τλ) ψ = −φ , |x| < L ; ψx(±L) = 0 . (2.27 b)

In this section we formally derive an asymptotic formula for the eigenvalue λ of translation in the limit M À 1

with ML À 1 and λ ¿ M2. This eigenvalue is found to be positive, and leads to the translational instability of

the spike profile. Our main result is summarized as follows:

Proposition 2 Consider the one-spike equilibrium solution, centered at x0 = 0, constructed in Proposition 1 in

the limit M À 1 with ML À 1. In this limit, and assuming that λ ¿ M2, the translational eigenvalue λ satisfies

the transcendental relation

λ ∼ M

2
coth L− Mµ

2
tanh(µL) , µ ≡

√
1 + τλ . (2.28)

For τ = 0, (2.28) reduces to

λ ∼ M

sinh(2L)
. (2.29)

In the limit L À 1, the solution to (2.28) satisfies

λ ∼ 2M

(Mτ/4) + 1
exp(−2L) , L À 1 . (2.30)

Alternatively, in the limit L ¿ 1, with ML À 1 and τML ¿ 1, we have that

λ ∼ M

2L

[
1 +

MLτ

2

]−1

, L ¿ 1 , ML À 1 , τML ¿ 1 . (2.31)

We now derive (2.28). The limiting results (2.30) and (2.31) follow readily from (2.28). We begin by conveniently

re-writing (2.27 b) in operator form as

Lψ ≡ ψxx − ψ + uψ = τλψ − φ + uψ . (2.32)

By using ux = uvx from (2.25), we obtain upon differentiating the equation for v in (2.24) that Lvx = 0. Then,

by using Green’s identity on (2.32), together with vx = 0 on x = ±L, we get

τλ

∫ L

−L

vxψ dx = −
∫ L

−L

(uxψ − φvx) dx− ψvxx|L−L . (2.33)

We now calculate each of the terms in (2.33). The analysis below shows that φ is localized near the spike,

whereas ψ has a significant variation in both the inner region near the spike and in the outer region away from

the spike. Therefore, since u is localized near the spike, the dominant contribution to the integral on the right-

hand side of (2.33) arises from the spike region where x = O
(
M−1

)
. In contrast, the dominant contribution to

the integral on the left-hand side of (2.33) arises from the outer region away from the spike core.
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In the inner region where x = O
(
M−1

)
, we introduce the inner variables y, U , V , Φ, and Ψ, defined by

y = Mx , u(x) = M2U(Mx) , v(x) = V (Mx) , φ(x) = M2Φ(Mx) , ψ(x) = Ψ(Mx) . (2.34)

By substituting (2.34) into (2.27), we obtain that Φ(y) and Ψ(y) satisfy

Φ′′ − (ΦV ′ + UΨ′)′ =
λ

M2
Φ , Ψ′′ − Ψ

M2
+ Φ =

τλ

M2
Ψ . (2.35)

Here the primes indicate derivatives with respect to y. We assume that λ/M2 ¿ 1, and we expand

Φ = Φ0 +
λ

M2
Φ1 + · · · , Ψ = Ψ0 +

λ

M2
Ψ1 + · · · . (2.36)

By substituting (2.36) into (2.35), we obtain

Φ′′0 − (Φ0V
′ + UΨ′0)

′ = 0 , Ψ′′0 −
Ψ0

M2
+ Φ0 = 0 , (2.37 a)

Φ′′1 − (Φ1V
′ + UΨ′1)

′ = Φ0 , Ψ′′1 −
Ψ1

M2
+ Φ1 = τΨ0 . (2.37 b)

Here U(y) and V (y) satisfy (2.7).

We integrate (2.37 a) for Φ0 and impose Φ′0(±∞) = Φ0(±∞) = 0. Then, upon using V
′
= U

′
/U , we get

Φ′0 −
U ′

U
Φ0 = UΨ′0 . (2.38)

The solution to (2.38) is

Φ0 = UΨ0 . (2.39)

Therefore, from (2.37 a), Ψ0 satisfies

Ψ′′0 −
Ψ0

M2
+ UΨ0 = 0 . (2.40)

Since U ′ = UV ′, we obtain from differentiating (2.7) for V that Ψ0 = V ′. Hence, from (2.39), we get

Φ0 = UV ′ = U ′ , Ψ0 = V ′ . (2.41)

Next, we integrate (2.37 b) for Φ1 and impose Φ′1(±∞) = Φ1(±∞) = 0. By using V ′ = U ′/U , we get (Φ1/U)′ =

Ψ′1 + 1. Upon integrating this expression and substituting the result into (2.37 b) for Ψ1, we get

Φ1 = U (Ψ1 + y) , (2.42)

where Ψ1 satisfies

Ψ′′1 −
Ψ1

M2
+ UΨ1 = τV

′ − Uy . (2.43)

Then, we substitute (2.41) and (2.42) into (2.36), to conclude that

φ = M2Φ , Φ = UΨ +
λ

M2
Uy + · · · = U ′ +

λ

M2
U (Ψ1 + y) + · · · . (2.44)

Next, we substitute the inner variables (2.34) into the integral on the right-hand side of (2.33). Then, using
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(2.44), U ′ = UV ′, and upon integrating by parts, we obtain

J ≡
∫ L

−L

(uxψ − φvx) dx = M2

∫ ML

−ML

(U ′Ψ− ΦV ′) dy ,

∼ M2

∫ ML

−ML

(
U ′Ψ− UV ′Ψ− λ

M2
UV ′y

)
dy ,

∼ −λ

∫ ML

−ML

yU ′ dy = −λ

[
yU |ML

−ML −
∫ ML

−ML

U dy

]
. (2.45)

Since ML À 1, and U(±∞) = 0 with
∫∞
−∞ U dy = 1 from §2.1, we obtain from (2.45) that

J ∼ λ . (2.46)

By substituting (2.46) into (2.33), we get

λ (τI + 1) ∼ −ψvxx|L−L , I ≡
∫ L

−L

vxψ dx . (2.47)

In (2.47) we use the outer approximation for v, which satisfies (2.19) with x0 = 0. Therefore, from (2.20) and

(2.4), we obtain that vxx = v at x = ±L and

v(±L) ∼ M

2 sinh L
, vx ∼ M

2 sinh L

{
sinh(x− L) , 0 < x < L ,

sinh(x + L) , −L < x < 0 .
(2.48)

To calculate the outer solution for ψ, we must first represent φ in (2.32) in the sense of distributions. A simple

calculation shows that for M → ∞, a localized and odd function of the form g(Mx) can be represented as the

dipole distribution g(Mx) → −M−2
(∫∞
−∞ yg(y) dy

)
δ
′
(x). Therefore, from (2.44), we have

φ(x) = M2Φ(Mx) →
(
−

∫ ∞

−∞
yU

′
dy − λ

M2

∫ ∞

−∞
yU (Ψ1 + y) dy

)
δ
′
(x) . (2.49)

Since λ/M2 ¿ 1, we can neglect the second term in (2.49). Then, upon integrating the first term in (2.49)

by parts, and using
∫∞
−∞ U dy = 1, we obtain that φ → δ

′
(x). Therefore, from (2.32), the leading-order outer

approximation for ψ satisfies

ψxx − µ2ψ = −δ
′
(x) , |x| < L ; ψx(±L) = 0 ; µ ≡

√
1 + τλ . (2.50)

The solution to (2.50) is readily calculated as

ψ(±L) ∼ ∓ 1
2 cosh(µL)

, ψ(x) ∼ − 1
2 cosh(µL)

{
cosh(µ(x− L)) , 0 < x < L ,

− cosh(µ(x + L)) , −L < x < 0 .
(2.51)

Finally, we substitute (2.48) and (2.51) into (2.47). This yields that

λ (1 + τI) ∼ M

2 cosh(µL) sinh(L)
, (2.52)

where the integral I in (2.47) is given by

I =
M

2 sinh L cosh(µL)

∫ L

0

sinh z cosh(µz) dz =
M [µ sinh(µL) sinh L− cosh(µL) cosh L + 1]

2(µ2 − 1) sinh L cosh(µL)
, (2.53)
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Substituting (2.53), (2.48), and (2.51) into (2.47), and using µ2 − 1 = τλ, we obtain (2.28). This completes the

derivation of the formal Proposition 2.

We now show that λ > 0 from (2.28). To do so, we write (2.28) in the form F (λ) = 0, where F (λ) is defined by

F (λ) ≡ λ +
Mµ

2
tanh(µL)− M

2
cothL , µ ≡

√
1 + τλ . (2.54)

For any L > 0 and M > 0, a simple calculation shows that F (0) < 0, F (λ) → +∞ as λ → ∞, and F ′(λ) > 0.

Therefore, for any L > 0 and M > 0, the eigenvalue of translation is unstable. For M = 100, and for three values

of τ , In Fig. 2(a) we plot the numerical solution to (2.28) as a function of L. For τ = 1, in Fig. 2(b) we plot λ

versus L for two values of M . It is easy to show from (2.28) that λ is a decreasing function of τ , a decreasing

function of L, and an increasing function of M . In Table 1 we show a largely favorable comparison between the

asymptotic result (2.28) for λ and the corresponding full numerical result computed from (2.24) and (2.27). The

rather poor agreement for the case τ ≥ 1, L = 0.5, and M = 50, is improved by increasing M to concentrate the

spike near x = 0.

From (2.30) we note that the classical Keller-Segel model is exponentially ill-conditioned in the limit L À 1

and M À 1. Hence, we expect that the corresponding time-dependent problem will exhibit the phenomena of

dynamic metastability in this limit. This is studied in §2.3. Although the eigenvalue estimate (2.28) was done

only for the equilibrium solution where x0 = 0, a similar analysis shows that the quasi-equilibrium solution with

x0 6= 0 is also exponentially ill-conditioned when L À 1 and M À 1.

10.0

8.0

6.0

4.0

2.0

0.0

3.02.52.01.51.00.5

λ

L

(a) Different τ values

5.0

4.0

3.0

2.0

1.0

0.0

3.02.52.01.51.00.5

λ

L

(b) Different M values

Figure 2. Left figure: λ versus L computed numerically with M = 100 from (2.28) (solid curves) for τ = 0.5, τ = 1.0,
τ = 3.0, and τ = 5.0. At each fixed L, λ increases as τ decreases, and hence the top curve is for τ = 0.5. Right figure: λ
versus L computed with τ = 1.0 from (2.28) for M = 50 (lower solid curve) and M = 400 (upper solid curve). In these
figures the dotted curves are the approximations to λ given in (2.30), which are valid for L À 1.
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L M τ λ(full numerics) λ(asymptotics)

0.5 50 0 42.123 42.546
0.5 50 1 7.9095 4.6665
0.5 50 10 1.0997 0.53416
0.5 100 0 85.258 85.092
0.5 100 1 6.0818 5.0144
0.5 100 10 0.66925 0.53862
0.5 100 100 0.067625 0.054271
0.5 400 100 0.056779 0.054306
1 50 0 13.907 13.786
1 50 1 1.3077 1.0364
1 50 5 0.28919 0.22313
1 50 10 0.14658 0.11266
1 50 100 0.014842 0.011366
1 100 0 27.617 27.572
1 100 100 0.012717 0.011371
2 100 1 0.14416 0.13289
3 100 1 0.020318 0.018719
4 100 1 0.0027924 0.0025705
5 50 0 0.0045732 0.00454
5 50 1 0.00040012 0.00033607
5 100 0 0.0090939 0.00908
5 100 1 0.00037919 0.00034899
5 100 100 3.9552e-006 3.6279e-006

Table 1. Comparison of the asymptotic solution for the translation eigenvalue λ given in (2.28) with the
corresponding full numerical result computed from (2.24) and (2.27).

2.3 Dynamics

In this section we derive an equation of motion for the center x0 of the spike that is valid for M À 1 and for

long domains where L À 1. In this limit, where the eigenvalue was found in §2.2 to be exponentially small, the

spike motion is metastable and the spike is found to drift exponentially slowly towards one of the boundaries of

the domain.

Proposition 3 Consider the one-spike quasi-equilibrium solution of Proposition 1 and suppose that M À 1 and

L À 1. Let x0(t) be the location of the maximum height of the spike for u at a given time t with |x0| < L. Then,

x0 satisfies the asymptotic ODE

x′0 (t) ∼ exp (−2L)
[
τ

4
+

1
M

]−1

sinh (2x0) . (2.55)

We now derive this result. As in the derivation of the quasi-equilibrium solution of §2.1, we introduce the

following scalings

y = M(x− x0(t)) , u = M2U , v = V , (2.56)
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where U = U(y) and V = V (y). We then define σ by

σ ≡ x′0(t) . (2.57)

Substituting (2.56) and (2.57) into (1.2), we readily derive that

U ′′ − (UV ′)′ = − σ

M
U ′ , V ′′ − V

M2
+ U = −τσ

M
V ′ . (2.58)

Recall from the construction of the equilibrium solution in §2.1 that U is localized near the spike, but that the

solution to the leading order approximation for V , given by V ′′ + U = 0, does not decay as y → ±∞. Therefore,

we shall retain the term 1
M2 V in (2.58) to ensure that V decays as |y| → ∞ when L À 1. This allows us to impose

a limiting solvability condition to determine the ODE for x0(t).

Since there is an asymptotically small eigenvalue when L ¿ 1, we expect that the speed σ of the spike is slow

so that σ ¿ 1. Therefore, we expand U and V in terms of σ ¿ 1 as

U = U0 + σU1 + · · · , V = V0 + σV1 + · · · . (2.59)

Substituting (2.59) into (2.58) we obtain the following leading-order problem for U0 and V0

U ′′
0 − (U0V

′
0)′ = 0 , V ′′

0 − V0

M2
+ U0 = 0 . (2.60)

The system for U1 and V1 is

U ′′
1 − (U0V

′
1 + U1V

′
0)′ = −U ′

0

M
, (2.61 a)

V ′′
1 − V1

M2
+ U1 = −τV ′

0

M
. (2.61 b)

By integrating the equation for U0 we obtain U ′
0 = U0V

′
0 . Then, we can integrate the equation for U1 once to get

U ′
1 − V ′

0U1 = U0

(
V ′

1 −
1
M

)
. (2.62)

By using U ′
0 = U0V

′
0 , the solution to (2.62) is readily found to be

U1 = U0

(
V1 − y

M

)
. (2.63)

By substituting (2.63) into (2.61 b), the equation for V1 becomes

LV1 ≡ V ′′
1 + U0V1 − V1

M2
=

(
U0y

M
− τV ′

0

M

)
. (2.64)

We shall consider (2.64) on the interval y− < y < y+, where y− ≡ −M(L + x0) and y+ ≡ M(L− x0). This range

corresponds to the entire domain −L < x < L.

Although the solution V0 to (2.60) is exponentially small near y = y± when L À 1, we must include this

exponentially small effect in order to derive an accurate ODE for the metastable dynamics. Similar weak boundary

effects are essential for a metastability analysis of other problems (cf. [13], [14], [10], and [17]). Therefore, in

terms of V0 and V1, the Neumann boundary condition vx(±L) = 0 is transformed to the following boundary
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condition for (2.64):

V ′
1(y±) = − 1

σ
V ′

0(y±) . (2.65)

Now as was shown in §2.2, the eigenvalue problem LΨ = λΨ with Ψ′ = 0 at y = y± has an exponentially small

eigenvalue when L À 1 and x0 = 0. As remarked in §2.2 this is also true when x0 6= 0. We then use Green’s

identity with Ψ and V1 on (2.64) and (2.65) to obtain that

λ

∫ y+

y−
Ψv1 dy −

∫ y+

y−
Ψ

(
U0y

M
− τV ′

0

M

)
dy =

1
σ

ΨV ′
0 |y+

y− . (2.66)

From (2.60) it follows that U0 ∼ ce−|y|/2 as y → ∞. Therefore, in the outer region where y À 1, V0 satisfies

V ′′
0 −M−2V0 ∼ 0, which yields V0 ∼ ke−|y|/M . To obtain the constant k in this outer region, we must calculate

the effect of U0 in the equation for V0 in (2.60) in the sense of distributions. We recall from §2.1 that u → Mδ(x)

in the outer region. Therefore, M2U0 → Mδ(x) = Mδ (y/M) = M2δ(y), which yields U0 → δ(y). Thus, in the

outer region, the equation for V0 becomes V ′′
0 − V0

M2 ∼ −δ(y). The solution is readily found to be

V0 ∼ M

2
e−|y|/M . (2.67)

As a remark, near y = y± = O(ML), we have that V0 is exponentially small when L À 1. Therefore, a boundary

layer of exponentially small height is required in order for V0 to satisfy the boundary conditions V ′
0(y±) = 0

exactly. However, this calculation is not needed in our metastability analysis.

Next, we differentiate (2.60) for V0 with respect to y, and use U ′
0 = U0V

′
0 . By comparing the resulting equation

with (2.64) we conclude that LV ′
0 = 0. Therefore, except in a thin boundary layer near the endpoints y±, we have

Ψ ∼ V ′
0 . We use this result together with (2.67) to calculate the second term on the left-hand side of (2.66) as

1
M

∫ y+

y−
τΨV ′

0 dy ∼ τ

M

∫ y+

y−

(
V
′
0

)2

dy ∼ τ

4M

∫ ∞

−∞
e−2|y|/M dy =

τ

4
, (2.68 a)

1
M

∫ y+

y−
ΨyU0 dy ∼ 1

M

∫ y+

y−
yV

′
0U0 dy ∼ 1

M

∫ ∞

−∞
yU

′
0 dy = − 1

M
. (2.68 b)

In obtaining the last expression in (2.68 b) we used
∫∞
−∞ U0 dy = 1 after integrating by parts. Upon substituting

(2.68) into (2.66), we obtain

λσ

∫ y+

y−
Ψv1 dy + σ

(
1
M

+
τ

4

)
∼ ΨV ′

0 |y+
y− . (2.69)

Finally, we must calculate Ψ(y±). Since Ψ ∼ V ′
0 fails to satisfy the boundary condition Ψ′(y±) = 0 by expo-

nentially small terms, we must add a boundary layer of exponentially small height year y = y± in order to ensure

that Ψ′(y±) = 0. Near y = y−, we have Ψ′′ − 1
M2 Ψ ∼ 0. The solution of this equation that satisfies the Neumann

condition is

Ψ ∼ B
(
e−(y−y−)/M + e(y−y−)/M

)
, (2.70)

for some constant B. To determine B we must have that the growing exponential term in (2.70) agree with

Ψ ∼ V
′
0 ∼ 1

2ey/M . This determines B as B = 1
2ey−/M . Therefore, we have Ψ(y−) ∼ 2B. A similar boundary layer
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Figure 3. Motion of the center of the spike with M = 100, L = 3, τ = 1. The dotted curve shows the position of the
spike as obtained from the full numerical simulation of (1.2). The solid curve is the result obtained from the asymptotic
ODE (2.72).

analysis determines Ψ(y+). In this way, we obtain for L À 1 that

Ψ(y−) ∼ ey−/M ¿ 1 , y− ≡ −M(L + x0) ; Ψ(y+) ∼ −e−y+/M ¿ 1 , y+ ≡ M(L− x0) . (2.71)

Finally, we use (2.71) and (2.67) to calculate the boundary contribution term in (2.69). Since λ1 is exponentially

small, the integral on the left-hand side of (2.69) is asymptotically smaller than the second term on the left-hand

side of (2.69). In this way, we obtain that σ = x′0 satisfies the asymptotic ODE

dx0

dt
∼ F (x0) ≡ e−2L

[
τ

4
+

1
M

]−1

sinh(2x0) . (2.72)

This completes the derivation of the formal Proposition 3.

From (2.72) we notice that the equilibrium x0 = 0 is unstable but with an asymptotically exponentially small

growth rate F
′
(0) given by

F
′
(0) = 2e−2L

[
τ

4
+

1
M

]−1

. (2.73)

This value is precisely the formula for the exponentially small eigenvalue of Proposition 2 when L À 1.

Finally, in Figure 3 we compare results from the ODE (2.72) with full numerical results for the spike motion

computed from (1.2). The initial condition was a one-spike solution with the spike slightly offset from x0 = 0. In

the simulation we took M = 100, L = 3, and τ = 1. While the asymptotic ODE is theoretically valid only when

L À 1, this figure shows that it gives a decent approximation to the full numerical result even for the moderate

value of L = 3.
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3 Reduced Keller-Segel model

In this section we consider a reduced Keller-Segel model, which can be obtained by taking the limit L ¿ 1, but

with ML À 1, in (1.2). This regime was first considered in [7] in the context of the analysis of blowup solutions

in two spatial dimensions. We now give the derivation of this reduced Keller-Segel model starting from (1.2). We

first let y = x/L to obtain

L2ut = uyy − (uvy)y , τvt =
1
L2

vyy + u− v , 0 < y < 2 ;
1
2

∫ 2

0

u dy =
M

2L
, (3.1)

with vy = uy = 0 at y = 0, 2. Let va denote the average va = 1
2

∫ 2

0
v dy. Then, for L ¿ 1, it follows from (3.1)

that τv
′
a = M/(2L)− va. Therefore, for t À 1, we have va → M/(2L) as t →∞. This suggests that we make the

change of variables

v =
M

2L

(
1 + L2V)

, u =
M

2L
U , t̃ =

M

2L
t . (3.2)

By substituting (3.2) into (3.1), we obtain that U and V satisfy

Ut̃ = εUyy − (UVy)y , τ̃Vt̃ = Vyy + U − 1 + L2V , 0 < y < 2 ;
1
2

∫ 2

0

U dy = 1 , (3.3)

with Uy = Vy = 0 at y = 0, 2. Here ε and τ̃ are defined by

ε ≡ 2
ML

¿ 1 , τ̃ =
τ

ε
. (3.4)

Since L ¿ 1, we can neglect the term L2V in (3.3). Finally, we introduce the new variables ũ and ṽ by

ũ =
∫ y

0

(U − 1) ds , ṽ =
∫ y

0

V ds . (3.5)

In terms of these new variables in (3.5), and upon replacing y by x and dropping the tilde notation, we obtain

that (3.3) transforms to (1.4).

3.1 Equilibrium Boundary-Layer Solutions of the Reduced Model

We now construct certain equilibrium boundary-layer solutions to the reduced Keller-Segel model (1.4),

εuxx − (ux + 1)vxx = 0 , vxx + u = 0 . (3.6)

For ε ¿ 1, we first construct a solution to (3.6) on [0, 1] with u = v = 0 at x = 0, 1 that has a boundary layer at

x = 0. More general solutions follow by using reflection symmetry. By combining (3.6) we obtain a single equation

εuxx + (ux + 1) u = 0 , u(0) = u(1) = 0 . (3.7)

In the outer region, away from the boundary layer at x = 0, the following outer solution is an exact solution to

(3.7):

u ∼ 1− x , x À O(ε) . (3.8)
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Figure 4. The equilibrium solution to (3.7) on [0, 1] with a boundary layer at x = 0. The values of ε are as indicated.
The solid and dashed curves are the full numerical and the asymptotic solution (3.14), respectively.

In the boundary layer near x = 0, we re-scale u and x as

U(y) = u(εy) , y = ε−1x , (3.9)

so that (3.7) becomes

U ′′ + U ′U + εU = 0 . (3.10)

Here the primes indicate derivatives with respect to y. We then expand U as

U(y) = U0(y) + εU1(y) + . . . . (3.11)

Substituting (3.11) into (3.10), we obtain on 0 < y < ∞ that

U ′′
0 + U ′

0U0 = 0 , U0(0) = 0 ; U ′′
1 + U0 + (U1U0)

′ = 0 , U1(0) = 0 . (3.12)

The solution U0 to (3.12) is U0(y) = c tanh (cy/2), where the constant c is determined by an asymptotic matching

to the outer solution. This matching condition is that the outer solution u ∼ 1− x = 1− εy must agree with the

far-field behaviour of U0 + εU1 + · · · as y →∞. This yields U0(∞) = 1, so that c = 1 and

U0(y) = tanh
(y

2

)
. (3.13)

In addition, the asymptotic boundary condition for U1 in (3.12) is U
′
1 → −1 as y → ∞. In summary, a leading-

order composite solution for u over [0, 1] is simply

u ∼ tanh
( x

2ε

)
− x. (3.14)

For several values of ε, in Fig. 4 we show that the composite expansion (3.14) compares rather favorably with
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the full numerical solution to (3.7). By making an odd reflection of the single boundary-layer solution (3.14)

around x = 1, we obtain a boundary-layer solution on the domain [0, 2] with boundary layers at each endpoint.

Similarly, we can make an odd reflection of (3.14) around x = 0 to obtain an internal layer solution for (3.7) on

[−1, 1]. The formal result is summarized as follows:

Proposition 4 With homogeneous Dirichlet boundary conditions, consider the BVP

εuxx + (ux + 1) u = 0 . (3.15)

For ε → 0, the following asymptotic equilibrium states are admissible:

ub1 ∼ tanh
( x

2ε

)
− x , x ∈ [0, 1] , Single boundary-layer solution on [0, 1] , (3.16)

ui1 ∼ tanh
( x

2ε

)
− x , x ∈ [−1, 1] , Single interior layer solution on [−1, 1] , (3.17)

ub2 ∼ tanh
( x

2ε

)
+ tanh

(
x− 2
2ε

)
− x + 1 , x ∈ [0, 2] , Double boundary-layer solution on [0, 2] . (3.18)

The expressions above are uniformly valid in the regions indicated.
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Figure 5. Left figure: The equilibrium double boundary-spike solution U = ux + 1 for ε = 0.04, where u = ub2 is the
double boundary-layer solution given in (3.18). Right figure: the eigenfunction φ given in (3.28) on [0, 1] and extended to
[0, 2] to be symmetric about x = 1.

In Fig. 5(a) we plot the double boundary-spike solution for U satisfying (3.3), given by U = 1 + ux, where u is

the double boundary-layer solution ub2 for (3.7) given in (3.18).
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3.2 Metastability analysis

We now study the stability of the double boundary-layer solution ub2 of Proposition 4. We linearize around the

equilibrium solution by letting

u = ue(x) + eλtφ(x) , v = ve(x) + eλtψ(x) .

By substituting this into (1.4), and dropping the subscript, we obtain

λφ = εφxx + uφx − (ux + 1) ψxx , τλψ = ψxx + φ . (3.19)

We then combine the two equations in (3.19) to get

λ (φ + (ux + 1) τψ) = Lφ ≡ εφxx + (uφ)x + φ . (3.20)

Next, we note that for any smooth function w, and with u(0) = u(1) = 0, we have Green’s identity
∫ 1

0

wLφ dx = ε (wxφ− wφx)10 +
∫ 1

0

φL∗w dx , (3.21)

where the adjoint operator L∗ is defined by

L∗w ≡ εwxx − uwx + w . (3.22)

Here we have formed the inner product over [0, 1] rather than [0, 2], since we can exploit the symmetry of the

double boundary-layer solution. More specifically, we will look for an even eigenfunction φ on the interval [0, 2],

which satisfies φx(1) = 0. Therefore, we will consider the following boundary conditions on [0, 1]:

φ(0) = 0 = ψ(0) , φx(1) = 0 = ψx(1) . (3.23)

Let w be a solution to εwx = uw on [0, 1]. By using ub1 in (3.16) we obtain

w ∼ exp
(
−x2

2ε

)
cosh2

( x

2ε

)
. (3.24)

We then calculate

L∗w = (ux + 1) w ∼ 1
2ε

exp
(
−x2

2ε

)
. (3.25)

We note that wx(0) = 0 = wx(1). With then substitute (3.20), (3.24), (3.25), and (3.23), into (3.21), to obtain

λ

∫ 1

0

[φ + (ux + 1) τψ] w dx = −εw(0)φx(0) +
∫ 1

0

φ (ux + 1) w dx . (3.26)

We now estimate the various terms in (3.26). From (3.20), and assuming that λ ¿ 1, it follows that in the outer

region we have uφx + (ux + 1)φ = 0, which reduces to (1− x)φx = 0. Therefore, for ε ¿ 1, φ is asymptotically

a constant in this region. Without loss of generality, we can impose the normalization condition φ(1) = 1 for φ.

Hence, φ(x) ∼ 1 in the outer region. In the inner region, by rescale y = ε−1x and φ(x) = Φ (x/ε). Substituting

this together with u ∼ U0(y) into (3.20), we obtain the following leading-order equation

Φ′′ + (ΦU0)
′ = 0 . (3.27)
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Here the primes indicate derivatives with respect to y. To match to the outer approximation for φ, we require

that Φ(0) = 0 and Φ(∞) = 1. The solution to (3.27) with these boundary conditions is Φ(y) = (yU0)
′. Therefore,

we have the following leading-order uniformly valid estimate of φ:

φ ∼ d

dx

[
x tanh

( x

2ε

)]
. (3.28)

By using (3.28) together with (3.24) we obtain that

εw(0)φx(0) ∼ 1 . (3.29)

In Fig. 5(b) we plot (3.28) when it is extended to the interval [0, 2] as a symmetric function about x = 1.

Next, we decompose (3.26) in terms of three integrals as

λ (I1 + τI2) = −1 + I3 . (3.30)

Here we have defined

I1 ≡
∫ 1

0

φw dx , I2 ≡
∫ 1

0

(ux + 1) ψw dx , I3 ≡
∫ 1

0

φ (ux + 1) w dx . (3.31)

To evaluate these integrals, we first establish an identity for (ux + 1)w. We multiply (3.7) by w, and then use the

equation εwx = uw for w to readily obtain that [(ux + 1)w]x = 0. Hence, (ux + 1)w = (ux(0) + 1) w(0). We then

use (3.16) for u, together with w(0) = 1, to establish the identity

(ux + 1)w =
1
2ε

, x ∈ [0, 1] . (3.32)

We first evaluate I3. By using (3.31), (3.28), and (3.32), we readily calculate that

I3 =
1
2ε

∫ 1

0

d

dx

[
x tanh

( x

2ε

)]
dx =

1
2ε

. (3.33)

Next, we calculate I1. Since w is exponentially large in the outer region, we estimate

I1 ≡
∫ 1

0

φw ∼
∫ 1

0

w dx . (3.34)

By using (3.24), we calculate in the outer region that

w ∼ 1
4

exp
(

1
2ε

(
x2 − 2x

))
=

e1/(2ε)

4
exp

(
− (x− 1)2

2ε

)
. (3.35)

By substituting (3.35) into (3.34), we calculate that

I1 ∼ e1/(2ε)

4

∫ 1

0

exp
(
− (x− 1)2

2ε

)
dx ∼

√
ε

4
e1/(2ε)

∫ ∞

0

exp
(
−z2

2

)
dz =

e1/(2ε)

4

√
επ

2
. (3.36)

Finally, we calculate I2. In the outer region we have φ ∼ 1. Therefore, assuming that λτ ¿ 1, we obtain from

(3.19) that ψxx ∼ −1, with ψ (0) = 0 and ψx (1) = 0. The solution is ψ ∼ x− x2/2. Therefore, we have that

I2 ∼
∫ 1

0

1
2ε

(
x− x2

2

)
dx =

1
6ε

. (3.37)
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Upon substituting (3.33), (3.36), and (3.37), into (3.30), we obtain that

λ

(
e1/(2ε)

4

√
επ

2
+

τ

6ε

)
∼ 1

2ε
− 1 . (3.38)

Upon assuming that τ ¿ O
(√

εe1/(2ε)
)
, we can extract the dominant terms in (3.38) for ε ¿ 1 to obtain the

following main result:

Proposition 5 Suppose that τ ¿ O
(
e

1
2ε
√

ε
)

. Then the double boundary-layer solution of Proposition 4 is

unstable with respect to an even perturbation. The corresponding eigenvalue is exponentially small and is given

asymptotically for ε ¿ 1 by

λ ∼ 2 exp
(
− 1

2ε

) √
2

πε3

(
1− 2τ

3
exp

(
− 1

2ε

) √
2

πε3
+ O (ε)

)
. (3.39)
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Figure 6. Left figure: the slow dynamics of the quasi-equilibrium double boundary-spike solution U = ux + 1 in (3.41)
showing the slow exchange of mass between the two boundary spikes for ε = 0.04. Since x0(0) = 1.01 > 1, the left spike
has an initial mass slightly larger than the right spike. Right figure: the double boundary-layer solution u in (3.40). In
these figures, the heavy solid curves are for t = 0, the solid curves are for t = 3.2845 × 104 and x0 = 1.2, and the dashed
curve is for t = 3.3541× 104 and x0 = 1.4. Eventually the right spike loses all its mass to the left one.

Note that the relative error term in this expansion is O(ε) and it swamps the exponentially small correction

due to τ . The O (ε) error comes from a poor estimate of
∫ 1

0
w dx. To obtain a better estimate, it is necessary to

compute w to a higher order, which would involve the computation of U1 from (3.12). Nevertheless, Proposition

5 shows the instability of a double boundary-layer solution. As a numerical example, with ε = 0.05 we obtain

from a full numerical computation that λ = 0.007223381 when τ = 0. This compares well with the asymptotic

prediction of λ ∼ 0.006479929. Next, for τ = 1 we obtain λ = 0.00720314197261 so that λ|τ=0−λ|τ=1
λ|τ=0

= 0.0028.

This compares favorably with the theoretical prediction of 2
3 exp

(− 1
2ε

) √
2

πε3 = 0.0021.
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Remark 6 The equilibrium problem (3.7) for the reduced Keller-Segel model (1.4) also arises in the analysis of

[1], [2], [14], and [10], for the upward propagation of a metastable flame-front in a vertical channel. The time-

dependent flame-front problem is equivalent to (1.4) for the case τ = 0. The eigenvalue estimate in (3.39) for

τ = 0 agrees with the asymptotic estimate given in equation (3.29) of [10], which was derived by first transforming

(1.4) with τ = 0 to a quasi-linear problem (see §1 of [10]). The analysis here leading to an estimate of λ, corrects

an error made in the eigenvalue calculation of equation (3.27) of [14], resulting from an incorrect evaluation of

one integral.

Finally, we discuss quasi-equilibrium double boundary-layer solutions u to (3.7) given by

u = x0 tanh
(x0x

2ε

)
− (2− x0) tanh

(
(2− x0)(2− x)

2ε

)
+ (2− x0)− x . (3.40)

In the outer region, u ∼ x0 − x. The double boundary-spike solution U to (3.3), given by U = ux + 1, is

U =
x2

0

2ε
sech2

(x0x

2ε

)
+

(2− x0)2

2ε
sech2

(
(2− x0)(2− x)

2ε

)
. (3.41)

From (3.41), the left boundary spike has more mass than the right one when x0 > 1. Then, the slow dynamics of

x0 characterizes the slow mass exchange between the two spikes. For τ ¿ 1, we obtain from §3.2 of [10] (see also

Corollary 2 of [14]) that x0(t) satisfies the asymptotic ODE

x
′
0 ∼

√
2
πε

[
(2− x0)

2
e−(2−x0)

2/2ε − x2
0e
−x2

0/2ε
]

. (3.42)

In Fig. 6 we illustrate this slow mass exchange mechanism for the case where x0(0) = 1.01, for which x
′
0 > 0. In

this case, the right spike in U will disappear at some finite time.

4 Global Solution to a Reduced Model

In this section we consider the reduced Keller-Segel model (1.4) and we prove that solutions exist globally in time.

We first re-write this reduced model as follows:

ut = εu′′ − (1 + u
′
)v′′, τvt = v′′ + u , in Ω× I = [−1, 1]× [0, T ) . (4.1)

Here the primes indicate partial derivatives with respect to x. For (4.1), the following initial conditions and

Dirichlet boundary conditions are assumed

u(·, 0) = u0(x) , v(·, 0) = v0(x) ; u(·, t) = v(·, t) = 0 at x = ±1 . (4.2)

We summarize our main result as follows:

Proposition 7 Let u and v be solutions to the reduced Keller-Segel model (4.1) and (4.2). If u0(x) and v0(x)

are smooth, then u and v are smooth for all time.
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Proof Without loss of generality we can assume for simplicity that ε = 1 and τ = 1, since different values of

these parameters do not affect our analysis regarding global existence. We first note that u and v are uniformly

bounded from the formulation of the solutions in (3.5). We also note that we can use a standard estimate for a

linear parabolic equation to derive that v in (4.1) satisfies

‖vt‖Lp
x,Lq

t (Ω×I) + ‖v‖W 2,p
x ,Lq

t (Ω×I) ≤ C ‖u‖Lp
x,Lq

t (Ω×I) , (4.3)

for any 1 < p, q < ∞. Here ‖f‖Lp
x,Lq

t
indicates the mixed norm of Lp and Lq in space and time variables for a

measurable function f , namely ‖f‖q
Lp

x,Lq
t (Ω×I) =

∫
I
‖f(·, t)‖q

Lp(Ω) dt. In (4.3) we have denoted by W k,p the usual

Sobolev space for the case where all derivatives up to the kth order are in Lp. We remark that since u is uniformly

bounded and Ω is a bounded domain, the right-hand side of (4.3) is bounded by a fixed constant depending on

p, q and T . Next, we obtain u′t = u′′′ − [(u′ + 1)v′′]′, upon differentiating the first equation in (4.1) with respect

to x. Multiplying this equation by u′, and integrating the resulting equation by parts, we readily obtain

1
2

d

dt

∫

Ω

|u′|2 dx +
∫

Ω

|u′′|2 dx =
∫

Ω

(u′ + 1)v′′u′′ dx . (4.4)

Here we have used that u′′ = 0 and v′′ = 0 at the boundaries x = ±1.

We need to estimate the right-hand side in (4.4). To do so, we re-write it as follows:
∫

Ω

(u′ + 1)v′′u′′ dx =
∫

Ω

u′v′′u′′ dx +
∫

Ω

v′′u′′ dx :≡ I + II . (4.5)

Due to standard interpolations of Sobolev norms, we have the following estimates:

‖u′‖L2(Ω) ≤ C ‖u‖
1
2
L2(Ω) ‖u′′‖

1
2
L2(Ω) ,

‖u‖L4(Ω) ≤ C ‖u‖
3
4
L2(Ω) ‖u′‖

1
4
L2(Ω) ,

‖u′‖L4(Ω) ≤ C ‖u′‖
3
4
L2(Ω) ‖u′′‖

1
4
L2(Ω) .

Here we have used the facts that u = 0 on the boundary and that the average of u
′

is zero. By using these

estimates, together with the Hölder inequality, we obtain for the first term I in (4.5) that

I =
∫

Ω

u′v′′u′′ dx ≤ ‖u′‖L4(Ω) ‖v′′‖L4(Ω) ‖u′′‖L2(Ω) ≤ C ‖u‖
3
8
L2(Ω) ‖v′′‖L4(Ω) ‖u′′‖

13
8

L2(Ω) .

Then, since u is bounded and Ω is a bounded domain, we obtain

I ≤ C ‖v′′‖L4(Ω) ‖u′′‖
13
8

L2(Ω) ≤ C ‖v′′‖
16
3

L4(Ω) +
1
4
‖u′′‖2L2(Ω) .

Here we have used Young’s inequality in the last inequality above. For the second term II in (4.5), we estimate

II ≤ ‖v′′‖L2(Ω) ‖u′′‖L2(Ω) ≤ C ‖v′′‖2L2(Ω) +
1
4
‖u′′‖2L2(Ω) .

In summary, by using the estimate (4.3) together with the other estimates above, we conclude that
∫

Ω

|u′(·, T )|2 dx +
∫ T

0

∫

Ω

|u′′|2 dxdt ≤
∫

Ω

|u′(·, 0)|2 dx + C

∫ T

0

∫

Ω

|v′′|2 dxdt + C

∫ T

0

(∫

Ω

|v′′|4 dx

) 4
3

dt
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≤
∫

Ω

|u′(·, 0)|2 dx + C

∫ T

0

∫

Ω

|u|2 dxdt + C

∫ T

0

(∫

Ω

|u|4 dx

) 4
3

dt ≤
∫

Ω

|u′(·, 0)|2 dx + CT .

Here we have used that u is bounded. From this final estimate we conclude that u is continuous by the Sobolev

embedding argument. Therefore, by a standard bootstrap procedure, it follows that u and v are smooth. This

completes the proof. ¥

Remark 8 For the case τ = 0, where the chemotactic equation is of elliptic type, we can also show that solutions

to (4.1) are smooth. This case, in fact, is much simpler to treat than the case where τ > 0, and so we leave the

details to the reader. Indeed, if τ = 0, then the system (4.1) can be reduced to ut = u′′ + (1 + u
′
)u. By following

a similar procedure as for case where τ > 0, we can again show that u, and consequently v, are both smooth.

5 Conclusion

In a one-dimensional domain, and in the asymptotic limit of a large mass M À 1, a quasi-equilibrium spike

solution for the classical Keller-Segel model with a linear chemotactic function was constructed. In this limit, the

equilibrium spike solution was found to be translationally unstable, and is metastable for asymptotically large

domain lengths L. For M À 1 and L À 1, an asymptotic ODE for the metastable spike motion was derived that

showed that the spike drifts exponentially slowly towards one of the boundaries of the domain. For L À 1 and

M À 1, the existence of an exponentially small eigenvalue indicates that the solution to the classical Keller-Segel

model can be highly sensitive to small perturbations. This sensitivity for M À 1 and L À 1 suggests a strong

lack of robustness in biological modeling based on the classical Keller-Segel model, and it also suggests that severe

difficulties will be encountered in trying to numerically compute solutions. In contrast, for M À 1 and L = O(1),

the translation eigenvalue is unstable, but not exponentially small. In this parameter range, it would be interesting

to construct a traveling-wave spike solution to characterize the motion of the spike.

For a reduced Keller-Segel model (1.4) we have studied the stability of an equilibrium solution that consists

of two boundary spikes centered at the endpoints of the domain. Rather curiously, the equilibria of this reduced

Keller-Segel model are very similar to those of the model of [1], [2], [14], and [10], for the upward propagation

of a flame-front in a vertical channel. We showed that this double boundary-spike solution to the reduced Keller-

Segel model is unstable due to an asymptotically exponentially small positive eigenvalue in the spectrum of the

linearized problem. This eigenvalue is estimated precisely. The shape of the corresponding eigenfunction is shown

to initiate an exchange of mass between the two boundary spikes in such a way that after a very long time one of

the two boundary spikes fully absorbs the mass of the other. Finally, we have shown that solutions to the reduced

Keller-Segel model with arbitrary initial conditions exist globally in time.

There are several open problems related to this study. The first open problem is to extend the derivation of

the equations of motion of the center of the spike (2.55) to the case when the domain length L is not large. The

second issue concerns the stability of a homoclinic stripe solution of zero curvature to the Keller-Segel model in

a square domain under a linear chemotactic function. For this two-dimensional problem, it would be interesting
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to determine if spot-generating breakup instabilities of the stripe can occur, and if so, whether they are the

precursor to a finite-time blow-up of solutions to the Keller-Segel model. A third open problem is to analyze the

existence and stability of spike solutions to a modified Keller-Segel model in two space dimensions, where the rate

of increase of v with respect to u saturates as u → ∞. In a certain asymptotic limit, this saturation effect was

shown to lead to metastable spikes for the two-dimensional Keller-Segel model under a logarithmic chemotactic

function Φ(v) = ln vp in (1.1). It would be interesting to extend that analysis to the case of a linear chemotactic

function.
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Appendix A Nondimensionalization of the Keller-Segel Model

We consider (1.1) for U, V , with Φ(V ) = βV , in the one-dimensional domain −L < X < L given by

UT = DUXX − β (UVX)X , VT = κVXX − γV + αU . (A.1)

The total mass is given by
∫ L
−L U dX = M. We introduce the non-dimensional variables u, v, x, and t, by

T = ωt , U = U0u, V = V0v , X = Ldx . (A.2)

In terms of these variables, (A.1) becomes

L2
d

Dω
ut = uxx − βV0

D
(uvx)x ,

1
γω

vt =
κ

L2
dγ

vxx − v +
αU0

γV0
u , (A.3)

on the domain |x| < L ≡ L/Ld. This form suggests the choices

ω =
κ

Dγ
, Ld =

√
κ

γ
, V0 =

D

β
, U0 =

Dγ

αβ
. (A.4)

In addition, the mass condition
∫ L
−L U dX = M transforms to

∫ L

−L
u dx = M/(U0Ld). In this way, we obtain (1.2)

with the three nondimensional parameters τ , L, and M , defined by

τ ≡ D

κ
, L ≡ L

√
γ

κ
, M ≡ Mαβ

D
√

γκ
. (A.5)

Therefore, the limit L = O(1) and M À 1 can be interpreted as D small with κ fixed, or equivalently β is large

relative to the other parameters. The limit L À 1 and M À 1, where metastability occurs, is when both D and

κ are small relative to the other parameters.
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