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A model of cross-diffusion
• Cross-diffusion model of Shigesada, Kawasaki and Teramoto (1979):







ut = ∆ [(d1 + ρ12v) u] + u(a1 − b1u− c1v)
vt = ∆ [(d2 + ρ21u) v] + v(a2 − b1u− c1v)

Neumann B.C. on [a, b]
(1)

• Kinetics are just the classic Lotka-Volterra model; d1, d2 represent self-diffusion

• Cross-diffusion (ρ12, ρ21) represent inter-species avoidance: abundance of v will
cause u to diffuse faster and vice-versa.

• Without cross-diffusion, only constant solution is stable [Kishimoto, 1981].

• A well-studied sub-regime [Ni, Wu, Xu] is [after scaling]:
{

ut = ρ (vu)xx + u(a1 − b1u− c1v)
vt = dvxx + v(a2 − b1u− c1v)

(2)

with the following assumptions:

d� 1; ρ� 1; all other parameters are positive and of O(1). (3)

• Biologically, when ρ is large, v acts as an inhibitor on u, so that u diffuses quickly in
the regions of high concentration of v. This effect is beleived to be resposible for the
segregation of the two species.
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Construction of steady state in 1D

• Lou, Ni, Yotsutani, 2004: Constructed a steady state in the form of a spike for u, and
in the form of an inverted spike for v.

• More explicit computations [spike height] by Wu, Xu, 2010.

• Define
τ = uv

so that

0 = dvxx + a2v − b2τ − c2v
2; 0 = ρτxx + τ

(a1
v
− b1

τ

v2
− c1

)

; (4)

• In the limit ρ→ ∞ the shadow system is:

0 = dvxx + a2v − b2τ + c2v
2; (5)

Lc1 =

∫ L

0

(a1
v
− b1

τ

v2

)

. (6)
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• Asymptotic solution is:

v(x) ∼ a2
2c2

[

3

2
tanh2

( x

2ε

)

+ δ
(

2− 3 tanh2
( x

2ε

))

]

;

u ∼ τ0
v(x)

where

ε :=

√

2d

a2
[spike width scaling]

δ := (ε/L)2/3
3

4

(

b1
b2

π

2

)2/3(

4
a1
a2

− b1
b2

− 3
c1
c2

)−2/3

[spike height scaling]

τ0 :=
3

16

a22
b2c2

;

• Note that v(0) ∼ a2
c2
δ = O(ε2/3); u(0) ∼ O(ε−2/3).

• This construction works as long as
(

4
a1
a2

− b1
b2

− 3
c1
c2

)

> 0.
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Stability of multi-spikes
• Very intricate stability properties are observed. Four examples:

(a) (b) (c) (d)

(a) Two stable spikes. Parameter values are d = 10−3, ρ = 200, (a1, b1, c1) =
(5, 1, 1), (a2, b2, c2) = (5, 1, 5) and L = 1.5, K = 2.

(b) Slow instability: two spikes persist as a transient state until t ∼ 1.2× 104. Parameter
values are the same as (a) except that L = 1.

(c) Fast instability of two boundary spikes: Parameter values are the same as (b).

(d) Fast instability of three spikes (note log time scale): the middle spike dissapears at t ∼
20. The remaining two spikes slowly drift towards a symmetric equilibrium. Parameter
values are the same as (b) except K = 3.
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Principal stability result

Define

ρK,small := d−1/3L8/3c2
2

(

b1
b2

π

2

)−2/3
a
1/3
2

21/3

(

4
a1
a2

− b1
b2

− 3
c1
c2

)5/3

; (7)

ρb := 0.747ρK,small; (8)

ρK,large := ρK,small
2× 0.747

1− cos [π (1− 1/K)]
. (9)

Then:

• A single boundary spike is stable for all ρ (not exponentially large in ε).

• A double-boundary steady state is stable if ρ < ρb and is unstable otherwise. The
instability is due to a large eigenvalue.

• AK-interior spike steady state with K ≥ 2 is stable if ρ < min (ρK,small, ρK,large) and
is unstable otherwise. When K = 1, it is stable provided that ρ is not exponentially
large in ε.

• The critical scaling is
ρ = O(d−1/3) = O(ε−2/3) � 1.
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Stability: small vs. large eigenvalues

• K spikes are always stable whenever 1 � ρ � d−1/3 and unstable when K ≥ 2
and ρ� d−1/3.

• Recall that ρK,large := ρK,small
2×0.747

1−cos[π(1−1/K)] and

2× 0.747

1− cos [π (1− 1/K)]
=







1.494 > 1, K = 2
0.996 < 1, K = 3
0.875 < 1, K = 4

• ρK,large > ρK,small ifK = 2 but ρK,large < ρK,small ifK ≥ 3. It follows that the primary
instability is due to small eigenvalues if K = 2 but is due to large eigenvalues
if K ≥ 3. This is in agreement with numerical simulations.
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Linearized problem
• Linearized equations are

λφ = dφxx + a2φ− b2ψ − c22vφ;

λ

(

1

v
ψ − τ

v2
φ

)

= ρψxx +
(a1
v
− b12

τ

v2
− c1

)

ψ +

(

−a1τ
v2

+ 2b1
τ 2

v3

)

φ.

• Possible boundary conditions:

Config type Boundary conditions for φ

Single interior spike on [−L,L]
even eigenvalue

φ′(0) = 0 = φ′(L)

Single interior spike on [−L,L]
odd eigenvalue

φ(0) = 0 = φ′(L)

Two half-spikes at [0, L] φ′(0) = 0 = φ(L)
K spikes on [−L, (2K − 1)L],

Periodic BC
φ(L) = zφ(−L), φ′(L) = zφ′(−L),
z = exp (2πik/K) , k = 0 . . .K − 1

K spikes on [−L, (2K − 1)L],
Neumann BC

φ(L) = zφ(−L), φ′(L) = zφ′(−L),
z = exp (πik/K) , k = 0 . . .K − 1

(same BC for ψ)
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Reduced problem, large eigenvalues

• Using asymptotic matching, eventually we get a new point-weight eigenvalue
problem (PWEP):

{

λΦ = Φyy − Φ + 2wΦ− χΦ(0)
Φ is even and is bounded as |y| → ∞ (PWEP)

where w(y) = 3
2 sech

2
(

y
2

)

satisfies

wyy − w + w2 = 0; w → 0 as |y| → ∞, w′(0) = 0.

- For double-boundary spike,

χ = χb :=
ε−2/3

4ρ

(

4
a1
a2

− b1
b2

− 3
c1
c2

)5/3

c2

(

b1
b2

π

2

)−2/3

L8/3.

- For K spikes, Neumann BC, there are K choices for χ, namely

χ =
2

1− cos πkK
χb, k = 0 . . . K − 1 and χ = very large positive.
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Analysis of PWEP λΦ = Φyy−Φ+2wΦ−χΦ(0)
• λ = 0, Φ = wy is a solution [corresponds to translation invariance]

• If χ = 0 then there is an unstable eigenvalue λ1 > 0 and another eigenvalue λ3 < 0.

• Decompose:
Φ(y) = Φ? + Φ0(y); where Φ? = lim

y→±∞
Φ(y).

Then
λΦ? = −Φ? − χ (Φ0(0) + Φ?)

and Φ0 satisfies
λΦ0 = Φ0yy − Φ0 + 2wΦ0 + 2wΦ?

so the PWEP becomes

λΦ0 = Φ0yy − Φ0 + 2wΦ0 −
2χ

χ + λ + 1
Φ0(0)w (10)

• Anzatz: if Φ0 = w, λ = 0 then χ = 1
2
.

• Rigorous result: there is an unstable eigenvalue λ > 0 for all χ < 1
2

• In the limit χ→ ∞, the limiting problem is

λΦ0 = Φ0yy − Φ0 + 2wΦ0 − 2Φ0(0)w (11)
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Numerics: Hypergeometric reduction

Theorem: the eigenvalues of λΦ = Φyy − Φ + 2wΦ− χΦ(0) are given implicitly by:

λ = −1− χ + 2χΦ0(0)

where

Φ0(0) =
6πλ (λ + 1)

sin (πα) (4λ− 5) (4λ + 3)
− 3

2

1

λ
3F2

(

1, 3,−1/2
2 + α, 2− α

; 1

)

; α =
√
1 + λ

• Numerical result: all λ < 0 whenever χ > 0.669; stabilization is via a hopf
bifurcation.
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Small eigenvalues

• Construct asymmetric spike steady states

• These bifurcate from the symmetric branch

• The instability thresholds for the small eigenvalues correspond precisely to this
bifurcation point!

• Main result: For 2 spikes, small eigenvalues is the dominant instability. For 3 or more,
large eigenvalues dominate.
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Radial equilibrium in two dimensions

Consider Ω ∈ R
2. Let w be the ground state in 2D:

∆w − w + w2 = 0; w → 0 as |y| → ∞, maxw = w(0)

and define
m := maxw(y) = w(0) ≈ 2.39195.

Suppose that
a1
a2

(2m− 1)− (m− 1)
b1
b2

−m
c1
c2
> 0 (12)

and consider the asymptotic limit

d� 1; ρ� 1. (13)

If Ω is radially symmetric, there is a steady state at x = 0, in the form of an inverted spike
for v. More precisely, we have

v(x) ∼ 1

2m− 1

a2
c2

(1− 2δ)

(

m− w

(

1− δ

ε
x

)

+ (2m− 1) δ

)

;

u ∼ τ0
v(x)
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where

ε :=

√

(2m− 1)d

a2
; δ ∼ ε2

|Ω|
4πb1m

b2 (2m− 1)

1
(

a1
a2
(2m− 1)− (m− 1) b1b2 −mc1

c2

);

τ0 :=
(m− 1)m

(2m− 1)2
a22
b2c2

.

In particular,

v(0) ∼ a2
c2
δ = O(d); u(0) ∼ (m− 1)m

(2m− 1)2
a2
b2

1

δ
= O

(

1

d

)

. (14)
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Nice patterns: ρ = O(1)

• Spike insertion, spatio-temporal chaos

Sensitivity to initial conditions. The left and right figure differ only in the initial
conditions. On the left, symmetric initial conditions result in an intricate a time-periodic
solution. On the right, the initial condition is the same as on the left, except for a shift of
0.1 units to the right. dynamics eventually settle to a 5-spike stable pattern. Parameter
values for both figures are ρ = 7, d2 = 0.0005, (a1, b1, c1) = (5, 1, 1); (a2, b2, c2) =
(1, 1, 2).
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ρ = 50, (a1, b1, c1) = (5, 1, 1), (a2, b2, c2) = (5, 1, 5)

Row 1: ρ = 2. Spot splits into three spots. Row 2: ρ = 4. Initially, spot splits into two,
final steady state consists of two boundary and one center spot. Row 3: ρ = 6. Row 4:
ρ = 500. The interior spike is unstable and slowly drifts to the boundary. Once it reaches
the boundary, it starts to oscillate indefinitely.
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UCLA Model of hot-spots in crime
• Recently proposed by Short Brantingham, Bertozzi et.al [2008].

• Very ”sexy” math: e.g. The New York Times, Dec 2010

• Crime is ubiquious but not uniformly distributed

- some neigbourhoods are worse than others, leading to crime ”hot spots”

- Crime hotspots can persist for long time.

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.
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• Crime is temporaly correlated:

- Criminals often return to the spot of previous crime

- If a home was broken into in the past, the likelyhood of subsequent breakin
increases

- Example: graffitti ”tagging”

• Two-component model

At = ε2Axx − A + ρA + A0

τρt = D
(

ρx − 2
ρ

A
Ax

)

x
− ρA + Ā−A0.

- ρ(x, t) ≡ density of criminals;

- A(x, t) ≡ ”attractiveness” of area to crime

- A0 = O(1) ≡ ”baseline attractiveness”

- D(−2 ρAAx)x models the motion of criminals towards higher attractiveness areas

- Ā−A0 > 0 is the baseline criminal “feed rate”

- We assume here:
ε2 � 1, D � 1.
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Hot-spot steady state

0 = ε2Axx −A + ρA + A0; 0 = D
(

ρx − 2
ρ

A
Ax

)

x
− ρA + Ā−A0

• Key trick: ρx − 2 ρAAx = A2
(

ρA−2
)

x
. This suggests the change of variables:

v =
ρ

A2
;

so that

0 = ε2Axx −A + vA3 + A0; 0 = D
(

A2vx
)

x
− vA3 + Ā− A0.

• “Shadow limit” Large D : v(x) ∼ v0;

ε2Axx −A + vA3 + A0 = 0; v0

∫ L

0

A3dx =
(

Ā− A0

)

L.
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• Anzatz: v0 � 1, A ∼ v
−1/2
0 w(y), y = x/ε where w is the ground state,

wyy − w + w3 = 0, w′(0) = 0, w → 0 as |y| → ∞;

then

v0 ∼
(∫∞

−∞w3dy
)2

4L2
(

Ā− A0

)2ε
2;

A(x) ∼







2L(Ā− A0)

ε
∫

w3
w(x/ε), x = O (ε)

A0, x� O(ε).
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Main stability result (1D)
• Main result: Consider K spikes on the domain of size 2KL. Then small eigenvalues

become unstable if D > Dc,small; large eigenvalues become unstable if D > Dc,small

where

Dc,small ∼
L4

ε2

(

Ā− A0

)3

A2
0π

2

Dc,large ∼ Dc,small

(

2

1− cos π
K

)

> Dc,small

• Small eigenvalues become unstable before the large eigenvalues.

• Example: Take L = 1, Ā = 2, A0 = 1, K = 2, ε = 0.07. Then Dc,small =
20.67, Dc,large = 41.33.

- if D = 15 =⇒ two spikes are stable

- if D = 30 =⇒ two spikes have very slow developing instability

- if D = 50 =⇒ two spikes have very fast developing instability
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Stability: large eigenvalues

• Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):

λφ = φ′′ − φ + 3w2φ− χ

(
∫

w2φ

)

w3 where w′′ − w + w3 = 0. (15)

with

χ ∼ 3
∫∞
−∞w3dy

(

1 + ε2D(1− cos
πk

K
)

A2
0π

2

4L4
(

Ā− A0

)3

)−1

• Step 2: Key identity : L0w
2 = 3w2, where L0φ := φ′′ − φ + 3w2φ. Multiply (15) by

w2 and integrate to get

λ = 3− χ

∫

w5 = 3− χ
3

2

∫

w3

Conclusion: (15) is stable iff χ > 2
∫

w3
⇐⇒ D > Dc,large.

• This NLEP in 1D can be fully solved!!
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Stability: small eigenvalues

• Compute asymmetric spikes

• They bifurcate from symmetric branch

• The bifurcation point is precisely when D = Dc,small.

• This is “cheating”... but it gets the correct threshold!!
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Two dimensions







At = ε2∆A−A + v̂A3 + A0

τ (Av̂)t = D∇ ·
(

A2∇v̂
)

− v̂A3 + Ā−A0
, x ∈ Ω

Neumann BC

• Steady-state: construction is similar to 1D

• Stability: of K hot-spots:

• - If K = 1, then a single hot-spot is stable with respect to large eigenvalues, as
long as D is not exponentially large in 1/ε.

- If K ≥ 2, then the steady state is stable with respect to large eigenvalues if

D <
1

ε4
ln
1

ε

(

Ā− A0

)3 |Ω|3A−2
0

4πK3
(∫

R 2 w3dy
)2

; (16)

and it is unstable otherwise.

• Instability thresholds occur when D = O

(

ln ε−1

ε4K3

)

� 1.
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General remarks
• In both models, the instability thresholds occur close to the ”shadow limit”, i.e. the

cross-diffusion term is very large.

• Steady-state computation is essentially a shadow system, but stability computations
require more.

• Consider a general reaction-diffusion system
{

ut = ε2uxx + f(u, w), τwt = Dwxx + g(u, w)
Neumann B.C. on [a, b]

; (17)

in the singular limit ε� 1.

• If we formally take an additional limit D → ∞,we get a Shadow-limit PDE with an
integral constraint:

ut = ε2uxx + f(u, w0); τ
d

dt
w0(t) =

1

b− a

∫ b

a

g(u, w0)dx (18)

• The PDE (18) is simpler than (17), but can preserve some of its properties:

• Equilirium of (18) is similar to (17) with D � 1.

• Stability can be dramatically different:

- Any non-monotone solution of (18) is unstable [Ni, Polácik, Yanagida, 2001].

- Can have multiple non-monotone stable solutions of (17), depending on D [e.g.
stable spikes in GM system or multile stable layers in FitzHugh-Nagumo model]
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Oscillatory layers near the shadow
limit

• FitzHuhg-Nagumo type model:

ut = ε2uxx + 2(u− u3) + w, τwt = Dwxx − u + β

Neumann BC on [0, 1]

ε� 1, D � 1

• Stationary steady state is an interface computed from the shadow limit

w ∼ 0; u ∼ tanh

(

l0 − x

ε

)

; l0 := (1 + β)/2

• As τ is increased, the interface is destabilized via a Hopf Bifurcation. The critical
scaling is:

τ =
D

ε
τ0, where τ0 = O(1).
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• The interface position is given by

l(t) ∼ l0 + A(t) cos(
√

3/τ0εD
−1/2t + φ0)

where A is the oscillation envelope that satisfies

D

ε

dA

dt
=

(

1

4
(1− 3β2)− 1

8τ0

)

A− 3

4
A3.

• Hopf bifurcation occurs when

τ0h =

{

1
2(1−3β2)

if |β| < 3−1/2;

∞ otherwise
.
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Concluding remarks

• Cross-diffusion (directed movement) can create stable multi-spike solutions even
in the absence of spatial heterogenuity.

• Stability thresholds for both SKT model and crime model appear very close to the
shadow regime

• Stability analysis leads to novel, interesting eigenvalue problems

• The papers can be downloaded from my website,

www.mathstat.dal.ca/˜tkolokol

Thank you!
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