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A model of cross-diffusion

e Cross-diffusion model of Shigesada, Kawasaki and Teramoto (1979):

ur = A[(dy + p1av) u] + ula; — byu — c1v)
v = Al(dy + poru) v] +v(ag — byu — o) (1)
Neumann B.C. on [a, b

e Kinetics are just the classic Lotka-Volterra model; d;, dy represent self-diffusion

e Cross-diffusion (pi12, p21) represent inter-species avoidance: abundance of v will
cause u to diffuse faster and vice-versa.

e \Without cross-diffusion, only constant solution is stable [Kishimoto, 1981].

e A well-studied sub-regime [Ni, Wu, Xu] is [after scaling]:

u = p(vu),, +ula; — bju — c1v) )
vy = dvg, +v(az — biu — c1v)
with the following assumptions:
d < 1; p>1; allother parameters are positive and of O(1). (3)

e Biologically, when p is large, v acts as an inhibitor on u, so that u diffuses quickly in
the regions of high concentration of v. This effect is beleived to be resposible for the
segregation of the two species.



Construction of steady state in 1D

e Lou, Ni, Yotsutani, 2004: Constructed a steady state in the form of a spike for u, and
in the form of an inverted spike for v.

e More explicit computations [spike height] by Wu, Xu, 2010.

e Define
T = Uv
so that
a T
0= dvg, + agv — byT — 0% 0= prop + 7 (—1—51—2—61> @
v v
e In the limit p — o0 the shadow system is:
0 = dvgy + asv — boT + v (5)

Ley — /OL (% _ b%) | (6)



e Asymptotic solution is:

v(x) ~ ;_022 B tanh” (%) +0 (2 — 3tanh? (%))] :
U(.Of)

where

2d o .
€ =4/ — [spike width scaling]
a3

5 /b 2/3 ! —2/3
= (5/L)2/3— (—11) (4ﬂ — L 32> [spike height scaling]

4 \ by 2 az by C2

3 a3
o .

T
e Note that v(0) ~ 25 = O(e%%); u(0) ~ O(c2/3).

e This construction works as long as
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Stability of multi-spikes

e \ery intricate stability properties are observed. Four examples:
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(a) Two stable spikes. Parameter values are d = 107%, p = 200, (ay,by,c1) =
(5, 1, 1), (CLQ, bg, CQ) = (5, 1, 5) and L = 15, K =2.

(b) Slow instability: two spikes persist as a transient state until £ ~ 1.2 x 10*. Parameter
values are the same as (a) except that L = 1.

(c) Fast instability of two boundary spikes: Parameter values are the same as (b).

(d) Fast instability of three spikes (note log time scale): the middle spike dissapears att ~
20. The remaining two spikes slowly drift towards a symmetric equilibrium. Parameter
values are the same as (b) except K = 3.



Principal stability result

Define o s s, , s
PK small -— d- 1/3L8/3 = (b; ) 2%/3 (4;; o b_; - 302> ; (7)
Py = 0'747pK,small; (8)
2 x 0.747
PK large -— pK,smaII1 " cos [7_‘_ (1 — 1/K>] (9)
Then:

e A single boundary spike is stable for all p (not exponentially large in €).

e A double-boundary steady state is stable if p < p, and is unstable otherwise. The
instability is due to a large eigenvalue.

e A K-interior spike steady state with K’ > 2 is stable if p < min (pK,sman, pK,Iarge) and
is unstable otherwise. When K = 1, it is stable provided that p is not exponentially
large in €.

e The critical scaling is
p=0(d?) =0 > 1.



Stability: small vs. large eigenvalues

e [ spikes are always stable whenever 1 < p < d~1/3 and unstable when K > 2
and p > d~1/3,

2x0.74
e Recall that pi jarge ‘= /OK,smalu—cos[jr(gl?—I/K)] and

1494 > 1, K =2
2 % 0.74 7
< 0.7 0 0996 <1, K=3
L—cos[r(1=1/K)] | gg5<1, K =4

® VK jlarge > PK.small if I = 2bUt prcjarge < Prc.sman if /£ > 3. It follows that the primary
instability is due to small eigenvalues if K = 2 but is due to large eigenvalues
if ' > 3. This is in agreement with numerical simulations.



Linearized problem

e Linearized equations are

AQ =A@y + a2 — bo) — c2209;

2
A<3¢—%¢)—wm(@—blz——q)w( L )cb
v v v v

e Possible boundary conditions:

Config type

Boundary conditions for ¢

even eigenvalue

Single interior spike on [— L, L]

#(0) = 0= /(L)

Single interior spike on [— L, L]

odd eigenvalue $(0)=0=4¢'(L)
Two half-spikes at [0, L] @' (0)=0=¢(L)
K spikeson [—L,(2K — 1)L], | ¢(L) =z¢(—L), ¢ (L) = z¢'(—L),
Periodic BC z=-exp(2mik/K), k=0...K —1
K spikeson [—L,(2K — 1)L], | ¢(L) =z¢(—L), ¢ (L) = z¢'(—L),
Neumann BC z=-exp(mk/K), k=0...K —1

(same BC for )




Reduced problem, large eigenvalues

e Using asymptotic matching, eventually we get a new point-weight eigenvalue
problem (PWEP):

A=, — D+ 20wd — xD(0)
{ ® is even and is bounded as |y| — oo (PWEP)
where w(y) = 2 sech?® (4) satisfies
wy, —w+w?=0; w—0as |y = oo, w'(0)=0.
- For double-boundary spike,
e ar b o o by o 8/3
X = Xb -— 4— — — —3— Co | ——= L°°.
4p as by Co b 2
- For K spikes, Neumann BC, there are K choices for 'y, namely
2
X = 1—7%)@7 k=0...K—1 and x = very large positive.
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Analysis of PWEP A0 = &y —d+2wd — xd(0)

e A\ =0, & = w, is a solution [corresponds to translation invariance]
e If Y = 0 then there is an unstable eigenvalue A1 > (0 and another eigenvalue \3 < 0.

e Decompose:
P(y) = P* + Py(y); where &* = lim P(y).

yYy—r=F00
Then
AD* = —d* — y (Dy(0) + D)

and ® satisfies
APy = D,y — Dy + 2wP + 2w D™

so the PWEP becomes

2
)\(I)O = q)Oyy - (I)() + QUJCI)O — X

————Pp(0)w 10
N 0(0) (10)
e Anzatz: if &) = w, A = 0 then y = %

e Rigorous result: there is an unstable eigenvalue A > 0 for all Y < %

e In the limit x — o0, the limiting problem is
)\CI)O = (I)Oyy - (I)() + 2’LU(I)0 - 2@0(0)’(1} (11)

11



Numerics: Hypergeometric reduction

Theorem: the eigenvalues of AP = ¢, — & + 2wd — xP(0) are given implicitly by:
A=—1— X + 2X(I)0(O>

6N (A + 1) 31 1,3,-1/2
Dy(0) = — ——F 7 1) — 14+ )\
ol0) sin (mar) (4X —5) (4 +3) 2\ 2(24-0472—047 )7 “ "

e Numerical result: all A < 0 whenever Y > 0.669; stabilization is via a hopf
bifurcation.
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Small eigenvalues

e Construct asymmetric spike steady states
e These bifurcate from the symmetric branch

e The instability thresholds for the small eigenvalues correspond precisely to this
bifurcation point!

e Main result: For 2 spikes, small eigenvalues is the dominant instability. For 3 or more,
large eigenvalues dominate.

1



Radial equilibrium in two dimensions

Consider §2 € R?. Let w be the ground state in 2D:
Aw—w+w’=0; w—0as |y — oo, maxw = w(0)
and define
m = maxw(y) = w(0) ~ 2.39195.
Suppose that
a1

a2(2m—1)—(m—1)b—2—mc—2>0 (12)

and consider the asymptotic limit
d<1l;, p>1. (13)

If () is radially symmetric, there is a steady state at x = 0, in the form of an inverted spike
for v. More precisely, we have

v(@) ~ 1 2 (1 25) (m—w(1_6w>+(2m—1)(5>;

2m — 1 ¢y €
70

v(x)

14



L \/(Zm —ld o & dmbm 1 |
. an |Q|bz(2m_1)<ﬂ(2m—1)—<m_1)b_l_mﬂ>7
ag b2

2

(m —1)m a3

Ty = :
' (2m — 1)* bacy
In particular,
as (m—1)mayl 1
W0~ 2ol w0~ B0 (5]
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Nice patterns: p=0(1)

e Spike insertion, spatio-temporal chaos
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Sensitivity to initial conditions. The left and right figure differ only in the initial
conditions. On the left, symmetric initial conditions result in an intricate a time-periodic
solution. On the right, the initial condition is the same as on the left, except for a shift of
0.1 units to the right. dynamics eventually settle to a 5-spike stable pattern. Parameter
values for both figures are p = 7, dy = 0.0005, (a1, b1,¢1) = (5,1, 1); (ag, be, c2) =
(1,1,2).
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t=0.124 t=1.05 t=2.65 t=3.05

0

t=0.25 t=2.45 t=3.03 1=3.52

t=0.288 t=5.01 t=9.78 t=16.1

/I
\

t=43.5 t=43.7

p:50, (al,b1,61)2(5,1,1), (a27b2702 (7 )

Row 1: p = 2. Spot splits into three spots. Row 2: p = 4. Initially, spot splits into two,
final steady state consists of two boundary and one center spot. Row 3: p = 6. Row 4:
p = 500. The interior spike is unstable and slowly drifts to the boundary. Once it reaches
the boundary, it starts to oscillate indefinitely.

t=0.164 t=42.8 t=42.9
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UCLA Model of hot-spots in crime

e Recently proposed by Short Brantingham, Bertozzi et.al [2008].
e \ery "sexy” math: e.g. The New York Times, Dec 2010

e Crime is ubiquious but not uniformly distributed

- some neigbourhoods are worse than others, leading to crime "hot spots”

- Crime hotspots can persist for long time.

Fig. 1. Dywynamic changes in residential burglary hotspots for two consecutive three-month periods
beginning June 2001 in Long Beach, CA. These density maps were created using ArcGIS,

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.
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e Crime is temporaly correlated:

- Criminals often return to the spot of previous crime

- If a home was broken into in the past, the likelyhood of subsequent breakin
increases

- Example: graffitti "tagging”
e Two-component model
Ay =e*A,, — A+ pA+ A

=D (po—254,) —pa+A- 2y

- p(x,t) = density of criminals;

- A(x,t) = "attractiveness” of area to crime

- Ay = O(1) = "baseline attractiveness”

- D(—Q%Ax)x models the motion of criminals towards higher attractiveness areas
- A — Ay > 0is the baseline criminal “feed rate”

- We assume here:
2«1, D>1.
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Hot-spot steady state

0=c’Ay, — A+ pA+ Ap; 0:D<px—2%Ax> — pA+ A — A

e Key trick: p, — 25 A, = A (pA_Q)I. This suggests the change of variables:

_ P
= 3

(%

so that

0=c*4,, —A+vA°+ Ay 0=D (Azfux)x — AP+ A — A,.
e “Shadow limit’ Large D :  v(x) ~ vy;

L
82Axx — A + ’UA3 + AO = O, ?}0/ Agd:c = (A - Ao) L.
0
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e Anzatz: vy < 1, A~ vo_l/zw(y), y = x /¢ where w is the ground state,
Wy, —w+w =0, w(0)=0, w—0as |y — oo;

then

Y

(f—oooo w3dy)2 82'
AL (A—Ag)"

2L(A — Ay) B
Alz) ~ =T w(x/e), x =0 (e

Ao, xr > O<€)
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Main stability result (1D)

e Main result: Consider K spikes on the domain of size 2K L. Then small eigenvalues
become unstable if D > D. gma; large eigenvalues become unstable if D > D, sma
where

- 3
L p(a-a)
c,small 62 A%T(z
Dc,large ~ Dc,small (1—7r) > Dc,small
— COS e

e Small eigenvalues become unstable before the large eigenvalues.

e Example: Take L = 1,A = 2,4y = 1, K = 2, ¢ = 0.07. Then D, gpai =
20.67, D jarge = 41.33.

-if D = 15 = two spikes are stable
- if D = 30 = two spikes have very slow developing instability

- if D = 50 == two spikes have very fast developing instability
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Stability: large eigenvalues

e Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):
Mo =@ — b+ 3w — ) (/w2gb) w®  wherew” —w+w®=0. (15)

with

-1
L A2 2
P 1+52D(1—cos7T ) _OW 5
K414 (A - A)

e Step 2: Key identity: Low? = 3w?, where Ly¢ := ¢" — ¢ + 3w?@. Multiply (15) by

w? and integrate to get
5 3 3

Conclusion: (15) is stable iff y > ﬁ <= D > Dqjarge-

e This NLEP in 1D can be fully solved!!
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Stability: small eigenvalues

e Compute asymmetric spikes
e They bifurcate from symmetric branch
e The bifurcation point is precisely when D = D, gmai.

e This is “cheating”... but it gets the correct threshold!!
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Two dimensions

A =2AA— A+ 0A3 + A
T(Ab)y = DV - (A’V) —0A3+ A— Ay’
Neumann BC

x € )

e Steady-state: construction is similar to 1D

e Stability: of /& hot-spots:

- If K = 1, then a single hot-spot is stable with respect to large eigenvalues, as

long as D is not exponentially large in 1 /¢.

- If K > 2, then the steady state is stable with respect to large eigenvalues if

1 1(A- ) |0 A2
e e K3 ([, widy)”

(16)

and it is unstable otherwise.

et K3

Ine™
e Instability thresholds occur when D = O ( ) > 1.
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General remarks

e In both models, the instability thresholds occur close to the "shadow limit”, i.e. the
cross-diffusion term is very large.

e Steady-state computation is essentially a shadow system, but stability computations
require more.

e Consider a general reaction-diffusion system

{ Ut = 52uxx + f(ua w)7 Tw = Dwy, + g(ua w)

Neumann B.C. on [a, }] 3 (17)
in the singular limit e < 1.

e If we formally take an additional limit D — oo,we get a Shadow-limit PDE with an
integral constraint:

d 1
up = %y + fu, wp); Tawo(t) =7 a/& g(u, wy)dx (18)

e The PDE (18) is simpler than (17), but can preserve some of its properties:
e Equilirium of (18) is similar to (17) with D > 1.
e Stability can be dramatically different:

- Any non-monotone solution of (18) is unstable [Ni, Polacik, Yanagida, 2001].

- Can have multiple non-monotone stable solutions of (17), depending on D [e.g.
stable spikes in GM system or multile stable layers in FitzHugh-Nagumo model]
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Oscillatory layers near the shadow
limit

e FitzHuhg-Nagumo type model:

Uy = 2y + 2(u — ) + w, Tw = Dwyy —u+

Neumann BC on [0, 1]
ekLl, D>1

e Stationary steady state is an interface computed from the shadow limit

); lo:=(1+8)/2

lo—l’

w ~ 0; u~tanh<
£

e As T is increased, the interface is destabilized via a Hopf Bifurcation. The critical

scaling is:
D
T = —1y, Where 15 = O(1).
£
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e The interface position is given by
1(t) ~ lo+ A(t) cos(\/3/me D~ V?t + ¢y)
where A is the oscillation envelope that satisfies

DdA (1 1 3
——=(-(1-38) - =) A--A
e dt (4( ) 8TO> 4

e Hopf bifurcation occurs when

_ { s 1Bl <37YA
Toh = : :
o0  otherwise

-« e Im _MI ”“ I‘l |
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Concluding remarks

e Cross-diffusion (directed movement) can create stable multi-spike solutions even
in the absence of spatial heterogenuity.

e Stability thresholds for both SKT model and crime model appear very close to the
shadow regime

e Stability analysis leads to novel, interesting eigenvalue problems

e The papers can be downloaded from my website,
www.mathstat.dal.ca/"tkolokol

Thank you!
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