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Abstract. We consider the aggregation equation with an attractive-
repulsive force law. Recent studies [T. Kolokolnikov et.al, PRE 015203R(2011);
J.von Brecht et.al, M3AS to appear; D. Balague et.al., preprint] have demon-
strated that this system exhibits a very rich solution structure, including
steady states consisting of rings, spots, annuli, N-fold symmetries, soccer-ball
patterns etc. We show that many of these patterns can be understood as sin-
gular perturbations off lower-dimensional equilibrium states. For example, an
annulus is a bifurcation from a ring; soccer-ball patterns bifurcate off solutions
that consist of delta-point concentrations. We apply asymptotic methods to
classify the form and stability of many of these patterns. To characterize spot
solutions, a class of “semi-linear” aggregation problems is derived, where the
repulsion is described by a nonlinear term and the attraction is linear but non-
symmetric. For a special class of perturbations that consists of a Newtonial
repulsion, the spot shape is shown to be an ellipse whose precise dimensions
are determined via a complex variable methods. For annular shapes, their
width and radial density profile are described using perturbation techniques.

1 Introduction

Collective group behaviour is a fascinating natural phenomenon that is observed at
all levels of the animal kingdom, from beautiful bacterial colonies, insect swarms, fish
schools and flocks of birds, to complex human population patterns. The emergence of
very complex behaviour is often a consequence of individuals following very simple rules,
without any external coordination. In recent years, many models of group behaviour
have been proposed that involve nonlocal interactions between the species [2, 10, 11, 23,
24, 26]. Related models also arise in other important applications such as self-assembly
of nanoparticles [19, 20], theory of granular gases [27], invasion models [13], chemotaxic
motion [14, 18], and molecular dynamics simulations of matter [17].
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One of the simplest models of insect swarming was proposed in [24]. In this model, each
individual is represented by a particle moving in space. Every particle A “feels” every
other particle B through a force whose magnitude F (r) depends only on the pairwise
distance between the two particles and which acts in the direction from A to B. Each
particle then moves in the direction of the average force acting upon it. These simple
assumptions lead to an aggregation model for a system of particles located at {x1, . . . , xN},

d

dt
xk =

1

N

∑

j 6=k

F (|xk − xj |)
xk − xj
|xk − xj |

, k = 1, . . . , N. (1)

The force law F (r) is assumed to repulsive at short distances (i.e. F (r) > 0 for small r)
and attractive at large distances (i.e. F (r) < 0 for sufficiently large r). For convenience,
we will often use the notation

d

dt
xk =

1

N

∑

j 6=k

f(|xk − xj |) (xk − xj) , k = 1, . . . , N, (2)

where f(r) = F (r)/r. The continuum limit N → ∞ of (2) yields the system [4],

ρt +∇ · (vρ) = 0; v =

∫

Rd

f(|x− y|)(x− y)dy. (3)

The aggregation model (3) and its discrete analogue (2) have been intensively studied
over the past decade and by now a vast literature exists on this topic; see for example
[1, 4, 5, 6, 7, 8, 15, 16, 21, 24, 26, 28, 29] and references therein. There are also many studies
of related second-order models that incorporate acceleration of self-propelled particles; see
for instance [9, 12, 22] and references therein.

In a series of papers [21, 28, 29, 1], the authors have investigated a very rich solution
structure for a family of such attractive-repulsive force laws. A particularly simple solution
in two dimensions consists of a ring, where the particles align themselves along a circular
ring uniformly. Another type of a simple solution consists of clusters of particles, whereby
the equilibrium state consists of K “holes”, with each particle belonging to one of such
holes. The stability of cluster solutions in one dimension was characterized in [15]; we
will extend this analysis to higher dimensions in §2 below.

To illustrate the large variety of possible steady states, consider the “piecewise-linear”
force

F (r) = min (ar + b, 1− r) , 0 ≤ b ≤ 1. (4)

As shown on Figure 1, this family generates a rich equilibrium structure that is very sensi-
tive to the choice of parameters a and b. Note in particular the presence of “spot”solutions,
such as when (a, b) = (0.8, 0.05); and the annulus solutions such as when (a, b) =
(0.4, 0.15). Such solutions are prevalent in numerical simulations, and typically bifur-
cate from simpler ring or cluster solutions1. The main goal of this paper is to study these
more complex solutions including annuli, spots, and “soccer balls”.

1In [21], the family F (r) = b + tanh ((1 − r)a) was shown to also generate a wide variety of steady
states, many similar to what is shown in Figure 1.
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Figure 1: Steady states of (1) with F (r) = min (ar + b, 1− r) , using N = 1000 particles
and with a, b as indicated. A snapshot at t = 10, 000 is shown. Integration was performed
using forward Euler method with stepsize 0.5.

Let us now summarize our findings. We start by extending the work of [15] on point
clusters to two and higher dimensions in §2. Such clusters can occur when the repulsion
near the origin is weak, F (0) = 0. On the other hand, when the repulsion at small
distances is small but positive, 0 < F (0) � 1, the holes “degenerate” into small spots. In
§3 we derive the reduced canonical problem (30) that describes the shape of a single spot.
This reduced problem depends only on two parameters and is analysed in §3. There are
two basic steady states of the reduced problem (30): the simplest steady state consists of
particles along a line; such steady states appear for in Figure 1 with (a, b) = (0.2, 0.025). A
more complex shape is a fully-two dimensional steady state such as e.g. (a, b) = (0.8, 0.05).
We fully characterize the stability of the former in terms of Harmonic numbers (see
Theorem 3.2). Using the results of [8] also shows that the steady states are bounded in
the continuum limit. In §3.2 we extend the analysis for the case where a small amount of
Newtonian repulsion is added to the kernel. The resulting spots have a constant density
and their shape is an ellipse whose axes are completely characterized in terms of the
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Figure 2: Snapshots of solution to (2) with N = 500, f(r) = min(a, 1 − r) and with a
and t as indicated, starting with random initial conditions inside a unit square. Left pane
shows computations in R

2; right pane is the same computation in R
3.

original kernel (see Theorem 3.3 for details).

In §4 we turn our attention annular solutions such as in Figure 1 with (a, b) =
(0.4, 0.15). These arise as singular perturbations of the ring solutions, when the ring
solution is ill-posed, in the sense that it is unstable to very high modes (see [21] for more
details). In the Main Result 4.1 we describe the radial density profile within the annulus,
as well as its width. We show that in the continuum limit the density blows up at the
edges of the annulus; see Figure 5 for an illustration. In §4.1 we examine the annulus that
results when a small Newtonian repulsion is added. In this case, the resulting annulus has
uniform density and we explicitly compute its dimensions; see Figure 6 for an example.
We conclude the paper with discussion and open problems in §5.

2 Solutions consisting of point concentrations

When the repulsion force F (r) is sufficiently weak near the origin, the particles may
coalesce as t → ∞, so that in the large particle limit, a steady state can emerge which
consist of K points, where K is independent of the number of particles N → ∞. An
example of such evolution is illustrated in Figure 2; such steady state also occurs in
Figure 1 with b = 0. This behaviour can occur when F (r) → 0+ as r → 0+. In terms of
the function f(r) = F (r)/r in (2), we will assume that

f(0) = a; f(r) is continuous for r ≥ 0. (5)
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A simple such function which we will study in detail below is given by

f(r) = min (a, 1− r) . (6)

From (2), the boundedness of f(r) at the origin implies that the repulsion is small at
small distances; this can cause the particles to collide to form “black holes” as t→ ∞. In
the limit N → ∞, the steady state then consists of a union of point delta-concentrations.
In one dimension, such solutions and their stability were studied in detail in [15] using
the continuum formulation. In this section, we start by extending their theory to two
and higher dimensions. When a > 0, in dimension d, the minimum possibly stable
configuration is K = d+ 1 such holes2.

For notational simplicity, we will consider a solution consisting of K equal holes, so
that each hole contains precisely n = N/K particles. We then rewrite (2) as

x′k,l =
1

N

∑

g,j

f (|xk,l − xg,j |) (xk,l − xg,j) , k, g ∈ {1, 2, . . .K} ; l, j ∈ {1, 2, . . . n} . (7)

The first index refers to the hole number while the second index refers to the particle
number inside that hole. The steady state of (7) is simply

xk,l = xk, k = 1 . . .K, l = 1 . . . n (8)

with xk satisfying

0 =
∑

j

f(|xk − xj |) (xk − xj) , k = 1 . . .K. (9)

We now study the local stability of K holes. Linearization around the steady state
takes the form

xk,l(t) = xk + φk,l(t); |φk,l| � 1, k = 1, . . . , K, l = 1, . . . , n,

leading to

d

dt
φk,l =

1

N

∑

g,j

f ′ (|xk − xg|) (xk − xg) · (φk,l − φg,j)

|xk − xg|
(xk − xg)

+
1

N

∑

g,j

f (|xk − xg|) (φk,l − φg,j) . (10)

In R
d, this is dN dimensional linear system. To study the stability of this system, its

solution space is decoupled into two subspaces:

Subspace A:
∑

l

φk,l = 0, k = 1 . . .K;

Subspace B: φk,l = φk, k = 1 . . .K; l = 1 . . . n.

2For example in two dimensions, two holes are necessary unstable, as there is nothing to counteract
the weak repulsion in the direction perpendicular to the line through the two holes.
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Note that these two subspaces have zero intersection. Moreover, dimension of subspace A
is dN − dK whereas the dimension of subspace B is dK; so together they span the entire
solution space of dimension dN . Subspace A leads to a self-consistent system

d

dt
φk,l =

1

K
Mkφk,l (11)

where Mk is a d× d matrix given by

Mk := aI +
∑

g 6=k

[

f ′ (|xk − xg|)
|xk − xg|

(xk − xg)⊗ (xk − xg) + f (|xk − xg|) I
]

. (12)

where a = f(0), I is the d × d identity matrix, and ⊗ is the vector tensor product, i.e.
v ⊗ w = vwT is the matrix whose i, j-th entry is viwj.

The subspace B leads to the system

d

dt
φk =

1

K

∑

g 6=k

(

f ′ (|xk − xg|) (xk − xg) · (φk − φg)

|xk − xg|
(xk − xg) + f (|xk − xg|) (φk − φg)

)

.

(13)
The problem corresponding to subspace B is equivalent to the stability of K holes when
each hole has only one particle inside. We can thus state the following result.

Proposition 2.1 Suppose that f(r) is bounded near the origin and consider a steady
state of (7) consisting of K holes as given by (9). It is stable if and only if the following
two conditions are satisfied:

(i) The steady state is stable when each of the holes contains only one particle (i.e.
n = 1, N = K);

(ii) The K matrices Mk ∈ R
d×d defined by (12) are all negative semidefinite.

An important special case in R
2 for which a fully explicit computation is possible is

when xk are uniformly located along a ring of some radius r; that is

xk = r0 exp (2πik/K) , k = 1, 2, . . . , K.

In this case the radius r0 satisfies (9)

K−1
∑

g=1

f (2r0 sin(πg/K)) sin2(πg/K) = 0. (14)

When n = 1, i.e. case (i) of Proposition 2.1, the stability of K particles was fully
characterised in [21]. It was shown that n = 1 case is stable provided that a sequence of
matrices M(m), m = 0, . . . , K − 1 are negative semidefinite, where
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M(m) :=

K−1
∑

g=0

(

G2

(

gπ
K

) [

1− e2πi(m+1)g/K
]

G1

(

gπ
K

) [

e2πi(m+1)g/K − e4πig/K
]

G1

(

gπ
K

) [

e2πi(m+1)g/K − e4πig/K
]

G2

(

gπ
K

) [

1− e2πi(−m+1)g/K
]

)

(15)

where we define

G1(θ) := r0f
′ (2r0 |sin θ|) |sin θ| ; G2(θ) := G1(θ) + f (2r0 |sin θ|) . (16)

For the subspace A, we note that (11) is a sequence of K decoupled problems, each of
them a d-dimensional linear system. Moreover, in the case of a ring of holes, by symmetry,
the K problems (11) are identical and we write Mk = M̂ where after some computations
we find that

M̂ =

(

−α 0
0 −β

)

;

where

α := −a−
K−1
∑

g=1

(

2G1(πg/K) sin2(πg/K) + f(2r0 sin(πg/K))
)

, (17)

β := −a−
K−1
∑

g=1

(

2G1(πg/K) cos2(πg/K) + f(2r0 sin(πg/K))
)

, (18)

with a = f(0). We summarize the results as follows:

Theorem 2.2 (K equal holes on a ring) Suppose that f(r) is bounded for small r.
Consider the steady state consisting of K delta point concentrations along a ring of radius
r0 given by (14), each containing n = N/K particles. Such state is locally stable if and
only α ≥ 0, β ≥ 0 and the matricesM(m), m = 0, . . . , K−1 given by (15) are all negative
semidefinite.

We now specialize this theorem further. For the case of three holes we have the follow-
ing.

Corollary 2.3 Let F (r) be a C1 repulsive-attractive force with F (0) = 0, F (d) =
0, F (r) ≷ 0 for r ≶ d. Consider a steady state consisting of three equal holes K = 3 that
form an equilateral triangle in R

2 of size d. Such steady state is locally stable if and only
if 2F ′(0) ≤ −F ′(d).

Proof. We have d =
√
3r0. Recalling that f(r) = F (r)/r we compute α = −F ′(0)−

3
2
F ′(d); β = −F ′(0)− 1

2
F ′(d). Thus the subspace A is stable when 2F ′(0) ≤ −F ′(d) with

the borderline case 2F ′(0) = −F ′(d) corresponding to β = 0. On the other hand, the
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subspace B is always stable as can be seen by the following energy argument. Consider
the energy

E =
3
∑

k=1

3
∑

g=1

P (|xk − xg|)

where P ′(r) = −F (r). Since F (r) has a root at r = d, it immediately follows that the
triangle whose vertices are at a distance d from each-other is a (local) minimum of E.
Since the system (1) with N = 3 is the gradient flow of E, it follows that the triangle is
a locally stable configuration which proves the stability of the subspace B. �

Example. Take f(r) as in (6); the numerical simulations for various values of a of (2)
are shown in Figure 2. We now show that the K hole solution is guaranteed to be stable
if a ∈ (a1, a2) whose values are summarized in the following table:

K r0 a1 a2
3 0.577350 0 0.5
4 0.585786 0.171573 0.656851
5 0.587785 0.309017 0.736067
6 0.588457 0.411543 0.788636
7 0.588735 0.489115 0.819194

� 1 3
16
π 1− 3π2

8K
1− π2

8K

(19)

The value a1 given in the table corresponds to the minimum possible value of a for
which f(d) = 1 − d = a, where d is the minimum distance between the two holes,
d = 2r0 sin π/K :

a1 = 1− 2r sin π/K. (20)

The matrices M(m) are all negative semidefinite as was shown in [21]. Using identities

K−1
∑

g=1

sin(πg/K) =
sin π/K

1− cosπ/K
;

K−1
∑

g=1

sin3(πg/K) =
(1 + cos π/K)2

sin π/K (1 + 2 cosπ/K)
(21)

and (14) we compute

r0 =
K

4

sin π/K (1 + 2 cosπ/K)

(1 + cosπ/K)2
; (22)

α = −a + 2r
sin π/K

1− cosπ/K
− K

2
+ 1; β = −a + 4r

sin π/K

1− cosπ/K
− 3

2
K + 1. (23)

The threshold a2 for K holes corresponds to β = 0 :

a2 = 4r0
sin π/K

1− cosπ/K
− 3

2
K + 1; (24)

direct computation shows that α > 0 whenever a ∈ (a1, a2). For large K and with a > a1,
we have the asymptotics

r0 ∼
3π

16
, a1 ∼ 1− 3π2

8K
, a2 ∼ 1− π2

8K
as K → ∞. (25)
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For example, Figure 2, column 4 shows the numerical simulation with a = 0.6, starting
with random initial conditions, leading to a steady state consisting of 6 holes. This is
consistent with our theory: from (19) we surmise that K holes are locally stable where K
is any number from 4 to 9.

Pyramid in R
3. Our last example is a pyramid in three dimensions. The pyramid

consists of K = 4 holes located such that the distance between any two holes is d with
F (d) = 0. In particular we take xk = p (cos(2πk/3), sin(2πk/3), 0) ; k = 1 . . . 3 and x4 =
(0, 0, q) ; with p |(exp(2πi/3)− 1)| = d; p2 + q2 = d2 so that p =

√

1/3d; q =
√

2/3d.
We then compute

M4 = F ′(0) + F ′(d)





1/2 0 0
0 1/2 0
0 0 2



 .

By symmetry, eigenvalues of the matrices Mk are the same for all k = 1 . . . 4. This shows
that the subspace A is stable if and only if 2F ′(0) ≤ −F ′(d). On the other hand, the
subspace B is always stable for the pyramid as seen using the energy argument in the
proof of Corollary 2.3. We summarize:

Corollary 2.4 Let F (r) be a C1 repulsive-attractive force with F (0) = 0, F (d) =
0, F (r) ≷ 0 for r ≶ d. Consider a steady state consisting of four equal holes K = 4 that
form a pyramid in R

3 whose vertices are all distance d apart. Such steady state is locally
stable if and only if 2F ′(0) ≤ −F ′(d).

3 Spot solutions

As was shown in §2, cluster solutions occur when the interaction force F (r) vanishes at
the origin. In this section, we study what happens to such solutions when the force law
has a slight but strictly positive repulsion at the origin, namely

F (r) = δ with 0 < δ � 1 and a := F ′(0) > 0. (26)

In terms of f(r) = F (r)/r, this implies the near-distance singular behaviour of the form

f(r) ∼ δ

r
+ a+O(r) as r → 0. (27)

As in §2, we will use the double index notation xk,l for particle positions, with first
index indicating the spot number k = 1, . . . , K and the second index indicating the
particle inside spot k : l = 1, . . . , n. We are interested in the limit δ � 0. When δ = 0,
the spot collapses into a hole with xk,l = xk satisfying (9).

For small but positive δ, numerics indicate that the shape of the spot scales with δ
while the overall shape is preserved. For K symmetric spots along a ring, this suggests
an anzatz

xk,l(t) = xk + δ · φk,l(t), δ � 1. (28)
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In addition, we will assume the self-consistent anzatz
∑

l φk,l = 0 to focus on the k-th
spot.

To leading order, we then obtain a sequence of canonical problems

d

dt
φk,l =

1

n

∑

j 6=l

φk,l − φk,j

|φk,l − φk,j|
+Mkφk,l (29)

where Mk is the same d× d constant matrix given by (12).

Consider K spots of equal size, symmetrically distributed along a ring. Such configu-
rations are prevalent for certain force laws; an example is a force law as in Figure 1 with
(a, b) = (0.4, 0.1). In this case, since all the spots are symmetric, we fix an arbitrary
k = K with xK = (r, 0) and let φl = φK,l. Equation (29) then reduces to:

d

dt
φl =

1

n

∑

j 6=l

φl − φj

|φl − φj|
−
[

α 0
0 β

]

φl (30)

where α, β are defined in (17, 18). For the special case K = 3 we obtain

α = −a− 3

2
F ′(d); β = −a− 1

2
F ′(d)

where d is the inter-spot distance satisfying F (d) = 0.

Example. Take F (r) as in Figure 1 with b replaced by δ so that

f(r) = min(a+ δ/r, 1/r − 1) =

{

1/r − 1, r > 1−δ
1+a

a + δ/r, r < 1−δ
1+a

.

Consider the case of four holes K = 4.When δ = 0, we obtain from (14) that r = 0.62132
whenever a > 0.1381. From (17, 18) we then compute α = 1.8619 − a; β = 1.0572− a.
Using Theorem 2.2, the four-hole solution is stable when δ = 0 and a = 0.3. Next, take
a = 0.3, δ = 0.03.We then find β/α = 0.484. The resulting four-spot equilibrium is shown
in Figure 3. To validate this result, we compare this with the simulation of the reduced
system (30) with α = 1 and β = 0.484. Note how the reduced system preserves the shape
of the original spot.

3.1 Analysis of the reduced problem (30)

We now concentrate on the system (30). Here, we are guided by observations in Figure
1. Note that some of the “spots” have very elongated shape; for example when (a, b) =
(0.2, 0.025), the spots appear to degenerate into small line segments. For other parameters
such as (a, b) = (0.6, 0.1) or as in Figure 3, the spots are fully two-dimensional and
resemble ellipses. Below we show that the co-dimensionality of the spot can be understood
in terms of the ratio β/α and the number n of particles within a spot in the reduced system
(30).
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(a) (b) (c) (d)

Figure 3: (a) Steady state consisting of four spots for (2) with N = 800, f(x) =
min(a + δ/r, 1/r − 1), a = 0.3, δ = 0.05. Insert shows the blowup of the spot. (b)
Steady state of the reduced system (30) with n = 1000, α = 1, β = 0.484. (c) Steady state
consisting of four spots for (2) with f(x) = min(a+(δ/r)2 , 1/r−1), and N, a, δ as in (a).
Insert shows the blowup of the spot. (d) Steady state of the reduced system (41) with
p = 2, n = 1000, α = 1, β = 0.484. The blue curve is the ellipse (a cos θ, b sin θ) with a, b
as given by Theorem 3.3.

To illustrate this phenomenon, fix the ratio β/α = 0.25 and consider the evolution of
(30) starting with random initial conditions for various values of n. This simulation is
shown in Figure 4. For relatively small n, the steady state consists of a vertical line which
is stable for n ≤ 30. However this line is unstable when n = 40. As n is further increased,
more bands appear until eventually the steady state starts to look like an elongated ellipse
with principal axis ratio of around 0.025.

To simplify computations, we will represent vectors using complex numbers so that
(30) becomes

d

dt
φl =

1

n

∑

j 6=l

φl − φj

|φl − φj |
−
(

α + β

2
φl +

α− β

2
φ̄l

)

, (31)

where φ̄l is the complex conjugate of φl.

We start with the observation that the system (31) admits the following “one-dimensional”
solution. A straightforward check reveals that

φl =

{

2

βn
l − 1

β

(

1 +
1

n

)}

i, l = 1, 2, . . . , n
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Figure 4: Steady states of the system (30) with β/α = 0.25 and with n as indicated.
Note that the horizontal axis is stretched out about 8 times in order to show better the
structure of the steady state. The R in the caption is the ratio of the maximum horizontal
displacement over the maximum vertical displacement.

is the exact steady state of (31). We next linearize around this steady state as

φl(t) =

{

2

βn
l − 1

β

(

1 +
1

n

)}

i+ ψl(t); |ψl(t)| � 1.

After a lengthy computation we obtain

d

dt
ψl =

∑

j 6=l

β

4 |l − j|
[

ψ̄l − ψ̄j + ψl − ψj

]

−
(

α + β

2
ψl +

α− β

2
ψ̄l

)

. (32)

The solution space to (32) factors into a direct product of the two subspaces: Im(ψl) = 0
for all l or Re(ψl) = 0 for all l. This corresponds to perturbations in purely horizontal
or vertical directions, respectively. For the vertical perturbations, substitute ψl = icle

λt

where cl is a real number. This yields an eigenvalue λ = −β of multiplicity n. Thus the
perturbation in the vertical direction is stable provided that β > 0. For the horizontal
perturbation, we obtain the system

d

dt
ψl =

∑

j 6=l

β

2 |l − j| [ψl − ψj]− αψl. (33)

The stability of this system follows from the following key lemma:
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Lemma 3.1 Consider the eigenvalue problem

λψl =
∑

j=1...n
j 6=l

ψl − ψj

|l − j| , l = 1 . . . n. (34)

The n eigenvalues are given by λk = 2Sk, k = 0 . . . n− 1 where Sk =
∑k

j=1
1
j
is the k-th

harmonic number, with the convention that S0 = 0.

The proof of this lemma is given below; it immediately follows that the eigenspace
corresponding to (33) is given by

λk = (βSk − α), k = 0 . . . n− 1. (35)

Since Sk is an increasing positive sequence, the horizontal perturbations are stable if and
only if

βSn−1 − α < 0.

We summarize our funding as follows.

Theorem 3.2 Consider the reduced system (30), and suppose that α, β > 0. It admits
the steady state consisting of particles located uniformly along a vertical line of length 2/β,
centered at the origin. Such steady state is stable provided that

n−1
∑

j=1

1

j
<
α

β
, (36)

and is unstable if the inequality is reversed. In the limit of large n, the inequality (36) is
asymptotically equivalent to

n < exp(α/β − γ) ≈ 0.5614 exp(α/β) (37)

where γ ≈ 0.5772 is the Euler constant.

From this theorem, it is clear that a line is an unstable equilibrium of (30) for sufficiently
large n. On the other hand, if α/β is sufficiently large, such a line can still be stable even
with very large n. For example, in Figure 4 we have exp(α/β − γ) = 30.65, so a single
line is stable with n ≤ 30 but is unstable otherwise. This is indeed confirmed by direct
simulations as Figure 4 demonstrates. It also helps to explain why the spots in the shape of
a line is commonly observed in numerical simulations. In addition, even when the vertical
line is unstable, when β/α is small, the resulting spot has the form of a very skinny ellipse
which appears to “inherit” the dimensions of the unstable line as is illustrated in Figure
4.
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Proof of Lemma 3.1. First, consider the following continuum limit version of the
problem (34):

λψ(x) =

∫ 1

0

ψ(x)− ψ(y)

|x− y| dy (38)

We compute for any integer p:
∫ 1

0

xp − yp

|x− y| dy =
∫ x

0

xp − yp

x− y
−
∫ 1

x

xp − yp

x− y

= xp

(

∫ 1

0

1− tp

1− t
dt−

∫ 1/x

1

1− tp

1− t
dt

)

= xp

(

{

t +
t2

2
+ . . .+

tp

p

∣

∣

∣

∣

1

0

−
{

t+
t2

2
+ . . .+

tp

p

∣

∣

∣

∣

1/x

1

)

= 2

(

1 +
1

2
+ . . .

1

p

)

xp +Qp−1(x)

where Qp−1(x) = −
∑p−1

j=0
xj

p−j
is a polynomial of degree p − 1. Thus there exists some

polynomial Rp−1(x) of degree p− 1 such that

ψp = xp +Rp−1(x); λp = 2

(

1 +
1

2
+ . . .

1

p

)

is an eigenfunction/eigenvalue pair.

This shows that λp are also the eigenvalues of the discrete problem (34), at least in the
limit n → ∞. In fact, λ0 . . . λn−1 are exactly the eigenvalues of the problem (34). This
follows by the same argument as for the continuous problem, along with the fact that
∑n

1 i
p = np+1/(p+ 1) +Qp(n) where Qp(n) is some polynomial of degree p. �

A direct application of the results from [8] shows that the steady state of the reduced
system (30) is confined in the limit n → ∞, whenever α, β > 0 : that is, the density
of the steady state has compact support. However the precise shape of the steady state
remains an open problem. Recently, Bernoff et.al. [3] have studied a class of aggregation
models of the form (1) for the general case where F (r) is smooth with 0 < F (0) < ∞.
Their analysis includes, as a special case, the reduced problem (30) when α = β, which
corresponds to F (r) = 1 − r. They found that near the edge of the swarm, the density
has a profile of the form ρ(x) = O(1/

√
d) where d is the distance from the swarm’s edge.

We expect that their analysis can be generalized when α 6= β.

3.2 Elliptical spots of uniform density

We now extend the analysis of §3 to more general singularly perturbed repulsion. We
suppose that (27) is replaced by

f(r) ∼ δr−p + a + o(1), 0 < r � 1, 0 < δ � 1, p > 0; (39)
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so that (27) corresponds to the special case p = 1 of (39). As before, we assume that a
steady state consisting of K holes located at {x1, . . . , xK} is stable when δ = 0. Then we
replace (28) by

xk,l(t) = xk + δ1/pφk,l(t), δ � 1. (40)

For K equal holes along a ring, the reduced problem (30) then generalizes to

d

dt
φl =

1

n

∑

j 6=l

φl − φj

|φl − φj|p
−
[

α 0
0 β

]

φl, l = 1 . . . n (41)

where as before, n = N/K and α, β are defined as before in (17, 18). The case p = 2
corresponds to Newtonian repulsion in two dimensions; when α = β, this problem was
analysed in detail in [16, 6]. The continuum limit n→ ∞ of (41) with p = 2 is

ρt(x, t) +∇x · (v(x)ρ(x, t)) = 0; (42)

v =

∫

R2

{∇x ln |x− y| − A (x− y)} ρ (y) dy, A =

[

α 0
0 β

]

.

Here, ρ(x, t) represents the density of the particles and v(x, t) is the velocity field. The
following theorem describes a basic steady state of (42).

Theorem 3.3 Define

a :=

√

2

α+ β

β

α
; b :=

√

2

α + β

α

β
(43)

and let D ⊂ R
2 be the ellipse of semi-axes a, b whose boundary is parameterised by

(a cos θ, b sin θ) , θ ∈ [0, 2π]. The system (42) admits an equilibrium state for which ρ(x)
is constant inside D and is zero outside D.

An example of this theorem is given in Figure 3(d), which shows the steady state of
the particle system (41). The blue curve is the corresponding ellipse of Theorem 3.3.
Excellent agreement with numerics is observed.

Proof of Theorem 3.3. As in [16, 6], we make use of the method of characteristics
to describe the evolution. The characteristics for (42) are

d

dt
x = v;

d

dt
ρ = − (∇ · v) ρ

and we compute

∇ · v =
∫

R2

{

∆x ln |x− y| − A∆x |x− y|2
}

ρ (y) dy

=

∫

R2

{2πδ(x− y)− (α + β)} ρ (y) dy

= 2πρ(x)− (α + β)M
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where M is the conserved mass

M =

∫

R2

ρ(y)dy.

Thus we have
d

dt
ρ = ((α + β)M − 2πρ) ρ (44)

so that the density evolves along characteristics independent of the specific location.
Suppose that the initial conditions are

ρ(x, 0) =

{

ρ0, x ∈ D0

0, x /∈ D0

where D0 is some closed set. Then (44) implies that

ρ(x, t) =

{

ρ(t), x ∈ D(t)
0, x /∈ D(t)

(45)

where ρ(t) is the solution to (44) subject to ρ(0) = ρ0, and with ρ(t) → (α+β)M
2π

as
t → ∞. The evolution equations transport the initial support D0 into a set D(t) and
the density remains constant inside that set, and zero outside. Thus the evolution of the
original problem reduces to computing the evolution of the domain D(t). Next we use the
divergence theorem to compute:

v(x) =

{

ρ(t)

∫

D(t)

−∇y ln |x− y| dy
}

− Ax |D(t)| ρ(t) (46)

= −ρ(t)
2

{
∫

∂D(t)

ln |x− y|2 n̂dS(y)
}

− Ax |D(t)| ρ(t). (47)

For a steady state solution, we have ρ(x) = (α+β)M
2π

for all x ∈ D, and v(x) = 0 for all
x ∈ D. Conversely, suppose that

v(x) = 0 for all x ∈ ∂D, and ρ(x) =

{

(α+β)M
2π

, x ∈ D
0, x /∈ D

. (48)

Then from (46) we obtain ∇·v = 0; it follows that v = 0 for all x ∈ ∂D.Thus the necessary
and sufficient conditions for ρ given by (45) to be a steady state are

∫

∂D(t)

ln |x− y|2 n̂dS(y) = 2Ax |D| ; for all x ∈ ∂D and (α + β)
|D|
2π

= 1. (49)

Suppose that D is an ellipse whose boundary is given by y = (a cos(θ), b sin(θ)). Write
x = (a cosφ, b cosφ) ∈ ∂D. We will now show by a direct computation that conditions
(49) are satisfied when a, b are given by (43). Using the identity

|x− y|2 = a2 (cos θ − cosφ)2 + b2 (sin θ − sinφ)

= 4a2
(

sin
θ − φ

2
sin

θ + φ

2

)2

+ 4b2
(

sin
θ − φ

2
cos

θ + φ

2

)2
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we find explicitly
∫

∂D(t)
ln |x− y|2 n̂dS(y) = (Ix, Iy) with

Ix = b

∫ 2π

0

cos θ ln

[

4a2
(

sin
θ − φ

2
sin

θ + φ

2

)2

+ 4b2
(

sin
θ − φ

2
cos

θ + φ

2

)2
]

dθ;

Iy = a

∫ 2π

0

sin θ ln

[

4a2
(

sin
θ − φ

2
sin

θ + φ

2

)2

+ 4b2
(

sin
θ − φ

2
cos

θ + φ

2

)2
]

dθ.

We separate Ix = bI1 + bI2 with

I1 =

∫ 2π

0

cos θ ln

[

4

(

sin
θ − φ

2

)2
]

dθ;

I2 =

∫ 2π

0

cos θ ln

[

a2
(

sin
θ + φ

2

)2

+ b2
(

cos
θ + φ

2

)2
]

dθ.

and simplify

I2 =

∫ 2π

0

cos θ ln
[

a2 + b2 + (b2 − a2) cos (θ + φ)
]

dθ

Now integration by parts followed by contour integration yields
∫ 2π

0

cos (θ − φ) ln(α + cos θ)dθ =

∫

sin(θ − φ)

α+ cos(θ)
dθ, |α| > 1

= 2π cosφ
α

|α|
(

|α| −
√
α2 − 1

)

and
∫ 2π

0

cos(θ) ln

[

4

(

sin
θ − φ

2

)2
]

dθ =

∫ 2π

0

cos(2θ + φ) ln
[

sin2 θ
]

dθ

= −2π cosφ

Suppose
b > a.

Then

Ix = 2πb cosφ



−1 +
b2 + a2

b2 − a2
−

√

(

b2 + a2

b2 − a2

)2

− 1



 .

A similar computation yields

Iy = 2πb sinφ



−1 +
b2 + a2

b2 − a2
−

√

(

b2 + a2

b2 − a2

)2

− 1





so that
∫

∂D(t)
ln |x− y|2 n̂dS(y) = (cosφ, sinφ)K where K is a constant. On the other

hand, Ax = (aα cos φ, bβ sinφ); so that the first equation in (49) becomes (aα cosφ, bβ sin φ) =
(cosφ, sinφ)K2 for some constant K2. This is possible iff b

a
= α

β
.The second equation in

(49) then becomes (α + β) ab = 2. Solving for (a, b) we then obtain the formula (43). �
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4 Annulus solutions

In this section we study thin annular steady states, such as shown in Figure 1 for
(a, b) = (0.2, 0.2). As was demonstrated in [21], such steady states can arise in the
neighbourhood of an ill-posed ring equilibrium. A ring equilibrium corresponds to a solu-
tion that concentrates uniformly on a circle; that is a degenerate annulus whose inner and
outer radii are the same. A ring is ill-posed if it is unstable with respect to high-mode
perturbations: that is, in the continuum limit, there are infinitely many positive (i.e.
unstable) eigenvalues of the corresponding linearized problem; it is well-posed if at most
finite number of eigenvalues are positive. The well-posedness of a ring was characterized
in [21, 28]. In particular, it was shown that F (0) = 0 is one of the necessary conditions
for the well-posedness. Here, we consider the case

f(r) = f0(r) +
δ

r
with 0 < δ � 1 (50)

where f0 is such that there is a stable ring solution when δ = 0. In particular, f0 must
is bounded so that F (0) = δ. An example of such a force is a perturbed quadratic force
F (r) = r − r2 + δ which corresponds to

f(r) = 1− r +
δ

r
; f0(r) = 1− r; (51)

when δ = 0, the stability of the ring was shown in [21].

Let R be the radius of the ill-posed ring (with δ > 0). In the continuum limit, it satisfies

0 =

∫ π/2

0

f(2R sin θ) sin2(θ)dθ. (52)

The annulus that forms will have a thin width of radius approximately R.To compute
its precise dimensions as well as its radial profile, consider the hydrodynamic limit of (2)
given by (3). We show the following asymptotic result.

Main Result 4.1 Suppose that f(r) is given by (50). Let R be the positive root of (52).
Define

K021 := 4

∫ π/2

0

f0 (2R sin θ) + 2R sin3 θf ′
0 (2R sin θ) dθ

β := 16Re−2 exp

(

K021R

2δ

)

;

Suppose that K021 < 0 and that when δ = 0, the system admits a stable ring solution
of the radius R. Then for 0 < δ � 1, the system (3) has a steady state of the form of
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Figure 5: (a) The steady state of (2) in the form of an annulus for f(r) = 1− r + δ
r
with

N = 10, 000 and δ = 0.35. Forward Euler method was used starting with random initial
conditions. Output at time t = 4000 is shown. A zoomed in figure of the blue region
reveals the non-uniform density. (b) The radial profile of the density in the continuum
limit. Dots show the result of numerical simulation using the method of characteristics
for the continuous limit. Dashed line shows the asymptotic prediction given by 53. (c)
Same as (b) but with δ = 0.2.

an annulus whose inner radius is R1 = R − β and whose outer radius is R2 = R + β.
Moreover the corresponding density inside the annulus is given to leading order by

ρ(x) ∼











c
√

β2 − (R − |x|)2
, |R− x| < β � 1

0, otherwise

(53)

Example. Consider f(r) given by (51). Then from (52), R satisfies

0 = 16R2 − 3πR− 6δ =⇒

R =
3π

32
+

3π

32

√

1 +
128δ

3π2
∼ 3π

16
+

2

π
δ +O(δ2).

We then compute

K021 = 2π − 40R

3
< 0;

β = 16Re−2 exp

(

−R
δ

(

20R

3
− π

))

∼ 3πe−5 exp

(

−3π2

64δ

)

(54)
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Taking δ = 0.35 yields β = 0.024511; the annulus has inner and outer radii (R1, R2) =
(0.73691, .78593). To validate the asymptotic results, we have used the method of char-
acteristics to numerically solve (3) for radially symmetric steady state using the method
described in [16]. This method much more precise than solving the full particle model (2)
since the radial symmetry is utilized to reduce the dimension of the problem, and allows
us to obtain accurate results even for small values of δ. We found a very good agreement
between the numerics and asymptotics as shown in Figure 5.

Derivation of Main Result 4.1. We seek a radially symmetric solution. Write
~v = v(r)(cos θ, sin θ) and we obtain

v(r) =

∫ ∞

0

K(s, r)ρ(s)sds (55)

where

K(s, r) :=

∫ 2π

0

(r − s cos θ) f
(√

r2 + s2 − 2rs cos θ
)

dθ. (56)

We assume that the annulus is very thin, so that v = 0 when r is far from R. With this
in mind, we expand (56) as

r = R + ξ, s = R + η; ξ, η � 1.

The precise scaling for ξ, η will be shown later to be exponentially small in δ. We further
split K as K = K0 + δK1 where

K0 := 2

∫ π

0

(r − s cos θ) f0

(√
r2 + s2 − 2rs cos θ

)

dθ

K1 := 2

∫ π

0

(r − s cos θ)
(

r2 + s2 − 2rs cos θ
)−1/2

dθ

We start by computing K1. Write K1(s, r) = g(r/s) where

g(t) := 2

∫ π

0

(t− cos θ)
(

1 + t2 − 2t cos θ
)−1/2

dθ.

Suppose that t = 1 + ε. Then expanding, we have

g(1 + ε) ∼ 4− 2ε ln |ε|+ ε (6 ln 2− 2) +O(ε2 ln |ε|)

Setting r = R + ξ, s = R + η; then we obtain

K1(r, s) ∼ g

(

1 +
ξ − η

R

)

∼ 4− 2
ξ − η

R
ln |η − ξ|+ ξ − η

R
(2 ln 8R− 2) .

20



Next we compute K0.We expand

r − s cos θ = 2R sin2 θ

2
+ 2η sin2 θ

2
− η + ξ

√
r2 + s2 − 2rs cos θ ∼ 2R sin

θ

2
+ (ξ + η) sin

θ

2

and expand K0 as K0 ∼ K01 +K02 where K01 is O(1) and K02 is O(ξ, η) :

K01 = 8R

∫ π/2

0

f0 (2R sin θ) sin2 θdθ;

K02 = 4

∫ π/2

0

f0 (2R sin θ)
(

2η sin2 θ − η + ξ
)

+ 2R sin2 θf ′
0 (2R sin θ) sin θ (ξ + η) dθ.

Further expand
K02 = K021ξ +K022η

where

K021 = 4

∫ π/2

0

f0 (2R sin θ) + 2R sin3 θf ′
0 (2R sin θ) dθ

K022 = 4

∫ π/2

0

f0 (2R sin θ)
(

2 sin2 θ − 1
)

+ 2R sin2 θf ′
0 (2R sin θ) sin θdθ.

Finally using the equation (52) for R we get

K(s, r) ∼ α1ξ + α2η − 2δ
ξ − η

R
ln |η − ξ| .

where

α1 = K021 +
δ

R
(2 ln 8R− 2) ; α2 = K022 −

δ

R
(2 ln 8R− 2) .

Changing variables s = R + η; ρ(s) = %(η), the equation (55) then becomes

v ∼
∫ ∞

−R

{

α1ξ + α2η − 2δ
ξ − η

R
ln |η − ξ|

}

%(η) (R + η) dη

We assume that the annulus has inner radius R1 and outer radius R2, so that v = 0 when
r ∈ (R1, R2). We shift the coordinates so that v = 0 for η ∈ (a, β) where we define

α = R1 − R; β = R2 − R.

In addition, we assume η � 1. Then the condition v = 0 becomes

∫ β

α

{

α1ξ + α2η − 2δ
ξ − η

R
ln |η − ξ|

}

%(η)dη ∼ 0; ξ ∈ (α, β) (57)
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Differentiating with respect to ξ, this becomes

∫ β

α

ln |η − ξ| %(η)dη =

∫ β

α

{

α1R

2δ
− 1

}

%(η)dη; ξ ∈ (α, β) (58)

This is an integral equation for ρ(ξ), with the right and side being a constant. It is a
special case of the so-called Carleman’s equation whose full solution is given as formula
3.4.2 in [25]. We first seek symmetric solution with α = −β. From [25] we find that the
only possible solution is a constant multiple of

%(η) =
1

√

β2 − η2
.

The left hand side of (58) then evaluates to

∫ β

−β

ln |η − ξ|√
1− η

dη = π ln β − π ln 2; |ξ| < β.

and for the right side of (58) we get

∫ β

−β

{

α1R

2δ
− 1

}

%(η)dη =

{

α1R

2δ
− 1

}

π

so that

β ∼ exp

(

α1R

2δ
− 1 + ln 2

)

.

It remains to show that α = −β. This is done by plugging the anzatz %(η) = 1√
(β−η)(η−α)

directly into (57) and collecting the terms in ξ. Self-consistency of the anzatz then leads
to α = −β. �

4.1 Newtonian perturbation

We now construct annular solutions which arise when a small Newtonian repulsion is
added to a force that has a stable ring as its steady state. That is, we consider (2) with
f(r) given by

f(r) = f0(r) +
δ

r2
. (59)

where f0(r) is the same as in §4; for example f0(r) = 1 − r. Let R0 be the radius of the
ring steady state with δ = 0, that is,

0 =

∫ π/2

0

f0(2R0 sin θ) sin
2(θ)dθ. (60)
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Figure 6: (a) The steady state of (2) in the form of an annulus for f(r) = 1− r+ δ
r2

with
N = 3, 000 and δ = 0.0125. Forward Euler method was used starting with random initial
conditions. Output at time t = 4000 is shown. Blue dashed lines show the asymptotic
boundaries of the annulus R1, R2 as given by (65). (b) Same as (a) except with δ =
0.00625. (c) The radial profile of the density in the continuum limit with δ = 0.00625.
Dots show the result of numerical simulation using the method of characteristics for the
continuum problem. Dashed line shows the asymptotic prediction given by (65).

As before, we expand asymptotically the vector field

v(r) =

∫ ∞

0

K(s, r)ρ(s)sds

where

K(s, r) :=

∫ 2π

0

(r − s cos θ) f
(√

r2 + s2 − 2rs cos θ
)

dθ. (61)

Split K as K = K0 + δK1 where

K0 := 2

∫ π

0

(r − s cos θ) f0

(√
r2 + s2 − 2rs cos θ

)

dθ

K1 := 2

∫ π

0

(r − s cos θ)
(

r2 + s2 − 2rs cos θ
)−1

dθ

We compute
∫ π

0

(t− cos θ)
(

1 + t2 − 2t cos θ
)−1

dθ =

{

0, 0 < t < 1
π/t, t > 1

so that

K1(s, r) =

{

0, r < s
2π

r
, r > s

.
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Next, we compute K0 by expanding around R0 as

r = R0 + ξ; s = R0 + η; ξ, η = O(δ).

As in §4 we then find

v(r) ∼
∫ ∞

0

(K021 (r − R) +K022 (s−R)) ρ(s)sds+
δ2π

r

∫ r

0

ρ(s)sds

where

K021 = 4

∫ π/2

0

f0 (2R0 sin θ) + 2R0 sin
3 θf ′

0 (2R0 sin θ) dθ

K022 = 4

∫ π/2

0

−f0 (2R0 sin θ) + 2R0 sin
3 θf ′

0 (2R0 sin θ) dθ.

Assume that R0+α,R0+β are the interior and exterior radii of the annulus, respectively,
with α, β � 1. Changing the variables r − R = ξ, s−R = η, ρ(r) = %(ξ), we obtain

0 ∼
∫ β

α

(K021ξ +K022η) %(η)R0dη + δ2π

∫ ξ

α

%(η)dη, ξ ∈ (α, β) . (62)

Differentiating (62) we then obtain

2πδ%(ξ) = −R0K021

∫ β

α

%(η)dη. (63)

This implies that % is a constant for ξ ∈ (α, β) . Without loss of generality, take % = 1 so
that (62) becomes

K021ξR0 (β − α) +
1

2
K022R0

(

β2 − α2
)

+ 2πδ (ξ − α) = 0, ξ ∈ (α, β)

Equating coefficients of ξ finally yields the annulus dimensions

α =
K022π

R0K021 (K022 +K021)
δ; β = − (K022 + 2K021)π

R0K021 (K022 +K021)
δ. (64)

Example: We take f(r) = 1 − r + δ/r2. Then f0(r) = 1 − r and we obtain R0 =
3
16
π; K021 = −π/2; K022 = −3π/2; α = − 8

π
δ; β = 40δ

3π
. This yields the inner and outer

radius of

R1 =
3

16
π − 8

π
δ; R2 =

3

16
π +

40δ

3π
. (65)

Figure 6 shows that an excellent agreement is observed between the asymptotics and the
full numerics of the continuum limit (42).
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5 Discussion

A simple piecewise-linear force (4) is all it takes to generate a rich class of steady states
as seen in Figure 1. In this paper we have shown that many of these states can be
understood of in terms of singular perturbations of lower dimensional patterns: spots
arise as bifurcations of point clusters; annuli are perturbations of a ring. Asymptotic
methods provide a powerful tool to describe the stability, shape and precise dimensions
of these complex patterns. Spots and annuli form basic building blocks from which it is
possible to construct more complex solutions, such as multiple annuli, soccer balls, and
hybrid spot-annulus patterns. We are currently investigating how to combine these basic
blocks into more complex patterns.

Many open problems remain. Consider the reduced problem (30). Based on numerical
evidence of Figure 4, we conjecture that in the limit N → ∞, the steady state is an ellipse
whenever α, β > 0. Note that for the problem (41) with p = 2, we showed this explicitly in
Theorem 3.3. But the problem (30) is more difficult since the density is non-constant: even
for the radially symmetric case α = β, the precise density profile is unknown (although
it was shown in [3] that the density blows up near the boundary in this case). We have
described the profile of the annulus under the perturbation (39) with p = 1 or p = 2. An
interesting open problem is to describe the ring profile for a more general case, 0 < p < 2.
Finally, many questions remain for three and higher dimensions. For example, numerical
simulations of (30) in three dimensions indicate that the equilibrium density concentrates
on the surface of what looks like an ellipsoid. In the case α = β, it was shown in [28] that
the equilibrium density indeed concentrates on the surface of a sphere. The more general
case α 6= β remains open.
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