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The mixed-order eigenvalue problem −δ∆2u + ∆u + λu = 0 with δ > 0, modeling small amplitude vibrations of a thin

plate, is analyzed in a bounded 2-D domain Ω that contains a single small hole of radius ε centered at some x0 ∈ Ω.

Clamped conditions are imposed on the boundary of Ω and on the boundary of the small hole. In the limit ε → 0,

and for δ = O(1), the limiting problem for u must satisfy the additional point constraint u(x0) = 0. To determine how

the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the small fourth order term

−δ∆2u, together with an additional boundary condition on ∂Ω and on the hole boundary, the asymptotic behavior of the

eigenvalues of the mixed-order eigenvalue problem are studied in the dual limit ε → 0 and δ → 0. Three ranges of δ ≪ 1

are uncovered and analyzed: δ = O(ε2), δ ≪ O(ε2), and O(ε2) ≪ δ ≪ 1. In the regime O(ε2) ≪ δ ≪ 1 it is shown that the

leading-order asymptotic behavior of an eigenvalue of the mixed-order eigenvalue problem is asymptotically independent

of ε. Therefore, it is this regime that provides a transition to the point constraint behavior characteristic of the range

δ = O(1). The asymptotic results for the eigenvalues are validated by full numerical simulations of the PDE.

1 Introduction

The determination of eigenfrequencies and eigenmodes characterizing the small amplitude vibration of thin plates is an

important problem in mechanics. In the framework of Kirchhoff-Love plate theory (cf. [21]), an eigenmode of vibration,

characterizing the out-of-plane deflection w of the plate, is a nontrivial solution of

−D∆2w + T∆w + ρhω2w = 0 , x ∈ Ω ⊂ R
2 ; w = ∂nw = 0 , x ∈ ∂Ω , (1.1)

that occurs for certain discrete values of ω. Here ρ is the material density, D = Eh3/
[

12(1− µ2)
]

is the flexural rigidity

of the plate defined in terms of Young’s modulus E, the plate thickness h, and the Poisson’s ratio µ, while T is the

in-plane tension applied at the edges of the plate. To understand the physical significance of each of the terms in (1.1),

it is useful to consider it as the Euler-Lagrange equation of the energy functional

E [φ] ≡
∫

Ω

[

1

2
ρh

(

∂φ

∂t

)2

+
1

2
D
(

∆φ
)2

+
1

2
T |∇φ|2

]

dx , (1.2)

after applying the ansatz φ(x, t) = w(x)eiωt. The three terms in the integrand of (1.2) correspond to the kinetic,

bending, and stretching, energies of the plate, respectively. In the present work, the density ρ, the thickness h, the

flexural rigidity D, and the tension T , are taken to be spatially uniform positive constants.

The eigenproblem (1.1), augmented by inserting small clamped holes, can be re-cast in a more convenient dimen-
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sionless form as

−δ∆2uε +∆uε + λεuε = 0 , x ∈ Ω \ Ωε ;
∫

Ω\Ωε
u2
ε dx = 1 , (1.3 a)

uε = ∂nuε = 0 , x ∈ ∂Ω ; uε = ∂nuε = 0 , x ∈ ∂Ωε . (1.3 b)

Here Ω is a bounded domain in R
2, and Ωε is a collection of N small non-overlapping holes with centers xj ∈ Ω, for

j = 0, . . . , N − 1, for which the j-th hole shrinks uniformly to a point xj ∈ Ω as ε → 0. A schematic representation of

the perturbed domain Ω \ Ωε is shown in Fig. 1. In (1.3), the key parameter δ, which reflects the relative importance

of the bending and stretching energies, and a new eigenvalue parameter λε are defined by

δ ≡ D

T
, λε ≡ ρhω2

T
. (1.4)

The eigenvalues λε of (1.3) determine the frequencies of vibrations of the perforated thin plate by ω =
√

Tλε/ρh.

Ω

O(ε)

O(ε)

O(ε)

Figure 1. Schematic diagram of a perturbed region Ω \ Ωε consisting of three small holes.

Perforated plate structures are commonly used in many engineering design systems such as heat exchangers in

nuclear power systems, sound absorbing screens, or pressure vessels (cf. [7], [4], [16]). In engineering design, drilling a

small hole inside a plate is generally the easiest method to alter an undesirable natural frequency of a plate structure

without incurring any significant degradation in the structural integrity of the plate (cf. [4], [16]). Effective medium

theories, with varying degrees of success, have been used to model the effect of perforations on either the bending of a

rectangular plate (cf. [3]) or on the resonant frequencies of a plate (cf. [7], [4]). The development of methodologies to

numerically compute resonant frequencies of plates, with and without perforations, are described in [2], [6], and [16].

In contrast, in this paper we will use the method of matched asymptotic expansions to analyze (1.3) in the dual limit

ε → 0 and δ → 0. Before describing our work in detail, we set the context of our study by first briefly summarizing

some key previous mathematical results for singularly perturbed biharmonic eigenvalue problems.

From a mathematical viewpoint, the spectrum of the pure biharmonic operator is known to have some rather

surprising features owing to the lack of a maximum principle. In a domain with a single small hole Ωε of radius ε

centered at some x0 ∈ ∂Ω, the (pure) biharmonic eigenvalue problem is formulated as

∆2u = λu , x ∈ Ω \ Ωε ; u = ∂nu = 0 , x ∈ ∂Ω; (1.5 a)

u = ∂nu = 0 , x ∈ ∂Ωε ;

∫

Ω\Ωε
u2 dx = 1 . (1.5 b)

This system can be obtained formally from (1.3) by setting N = 1 and taking the limit δ → +∞ while replacing λ by

δλ. For the annular domain 0 < ε ≤ |x| ≤ 1 in 2-D, it was shown in [8] and [9] that the principal eigenfunction for
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(1.5) is not radially symmetric when ε is below a critical value. More general results showing that the fundamental

mode of vibration for the biharmonic operator is not necessarily of one sign are given in (cf. [22]).

Another key qualitative feature of the spectrum of (1.5), as described in [5], is that the limiting behavior of a simple

eigenvalue λ of (1.5) is given by

λ = λ0 + 4π|∇u0(x0)|2νb +O(ν2b ), νb ≡ − 1

log ε
, (1.6)

where (u0, λ0) is an eigenpair of the associated point constraint problem

∆2u0 = λ0u0 , x ∈ Ω \ {x0} ; u0 = ∂nu0 = 0 , x ∈ ∂Ω;

∫

Ω

u2
0 dx = 1 ; u0(x0) = 0 . (1.7)

A remarkable feature of the limiting problem (1.7) is that, due to the additional point-constraint requirement u0(x0) = 0

in (1.7), it is not the problem in the absence of a perturbing hole. This result implies that no matter how small ε is

made, the vibrational frequencies of the perturbed plate do not approach those of a defect free plate. In [5] and [15]

asymptotic expansions for λ were derived for (1.5) to capture higher order ε-dependent correction terms to (1.6) for

both the generic situation where |∇u0(x0)| 6= 0 and for the degenerate case where |∇u0(x0)| = 0. Point constraints

also arise in the construction of solutions to nonlinear eigenvalue problems ∆2u = λf(u) in two dimensions [17, 18].

This limiting point constraint behavior for (1.5) as ε → 0 is qualitatively very different from the well-known results

(cf. [19], [12], [14], [23], [24]) for the asymptotic behavior of eigenvalues of the Laplacian in the limit of asymptotically

small hole radius ε → 0, formulated as

∆u+ λu = 0 , x ∈ Ω \ Ωε;
∫

Ω\Ωε
u2 dx = 1; (1.8 a)

u = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωε . (1.8 b)

For the case of a single hole centered at x0, it was shown in [23] that the asymptotic behavior of a simple eigenvalue

of (1.8) is

λ ∼ λ⋆(ν) +O (εν) , where ν ≡ −1/ log(εd) , (1.9)

and d is the logarithmic capacitance (cf. [20]) associated with the hole. Here the function λ⋆(ν), which has the effect

of summing an infinite logarithmic series in powers of ν, satisfies a transcendental equation involving the regular part

of the Green’s function for the Helmholtz operator. As ν → 0, then λ⋆ → λ0, where λ0 is a simple eigenvalue of the

following limiting problem in the absence of a hole:

∆u0 + λ0u0 = 0 , x ∈ Ω ;

∫

Ω

u2
0 dx = 1 ; u0 = 0 , x ∈ ∂Ω . (1.10)

With this background, the goal of this paper is to investigate the mixed-order eigenvalue problem (1.3) in the

limit ε → 0 for various ranges of the parameter δ > 0, measuring the relative strength of the fourth order term. For

simplicity, we will only consider the case of a single hole where N = 1. For δ = O(1), and in the limit ε → 0 of small

hole radius, an eigenvalue of the perturbed problem (1.3) tends to an eigenvalue of the corresponding point constraint

problem associated with (1.3) (see (3.1) below). However, the previous analyses of (1.5) and (1.8), as described above,

suggest a dichotomy of possible behaviors associated with (1.3) in the dual limit ε → 0 and δ → 0. If δ is small enough

relative to ε, then the limiting problem as ε → 0 should be the problem with no hole, whereas if δ is large enough

(relative to ε) the limiting problem as ε → 0 should be one with a point constraint. The goal of this paper is to study

the transition between these two cases as δ ≪ 1 is varied.

Our analysis on (1.3) reveals that there are three distinguished regimes in the ε, δ plane as ε → 0 and δ → 0 where

different eigenvalue asymptotics occur. For the regime δ ≪ O(ε2), the leading-order eigenvalue asymptotics for (1.3) is

essentially the same as that for the Laplacian, as given in (1.9) (see Principal Result 4.3 below). For the distinguished

limit δ = O(ε2), the leading-order eigenvalue asymptotics as ε → 0 is again given by (1.9), but where d is replaced by a

new quantity d(δ0), where δ0 ≡ δ/ε2 = O(1). Here d(δ0) is determined from the far-field behavior of a canonical fourth-

order problem defined near the hole (see Principal Result 4.2 below). The third regime is where O(ε2) ≪ δ ≪ O(1).
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In this regime we show in Principal Result 4.4 that the leading-order asymptotics of an eigenvalue of (1.3) is given by

(1.9), but where εd is replaced by 2
√
δe−γe . Since the resulting leading-order eigenvalue asymptotics is independent

of the hole radius, it is this regime that provides a transition to the point constraint behavior characteristic of the

δ = O(1) regime. Finally, in Principal Result 4.5 we improve this leading-order eigenvalue approximation by adding

to it a transcendentally small term of order O(
√
δ) that results from analyzing the boundary layer near ∂Ω.

The outline of this paper is as follows. In §2 we study the exactly solvable problem (1.5) in an annular domain in

order to clearly motivate the necessity of a point constraint for the limiting solution as ε → 0. In §2.1 we formulate

and analyze an exactly solvable model biharmonic BVP in an annulus so as to motivate the various scalings in δ

and ε that arise in the asymptotic analysis of (1.3). In §3 we analyze the δ → 0 limit of the solution to the point

constraint problem associated with (1.3) for a single hole. In §4.2–4.4, which constitutes the main focus of this paper,

we will analyze (1.3) for a single hole in the limit ε → 0 for the three asymptotic ranges of δ ≪ 1 given by δ = O(ε2),

δ ≪ O(ε2), and O(ε2) ≪ δ ≪ 1. For δ ≪ 1, the effect of the boundary layer along ∂Ω on the eigenvalue asymptotics

is also examined. In §4.4 and §5 we validate our asymptotic theory for the regime O(ε2) ≪ δ ≪ 1 with full numerical

PDE computations of (1.3). Finally, in §6 we suggest a few open problems that warrant further study.

2 Two Exactly Solvable Model Problems

To clarify the requirement of a point constraint in the limiting problem of (1.5) as ε → 0, it is useful to consider the

special case where Ω = {x | |x| ≤ 1}, x0 = (0, 0), and Ωε = {x | |x| ≤ ε} in which closed form solutions are obtainable. To

obtain exact radially symmetric solutions of (1.5) for the annulus, we factor ∆2u−λu = (∆−µ2)(∆+µ2)u = 0, where

µ ≡ λ1/4, so that the separable radially symmetric eigenfunctions are spanned by {J0(µr), I0(µr),K0(µr), Y0(µr)}. For
the ε = 0 problem, with no perturbing hole at the origin, the radially symmetric eigenfunctions u∗(r) with smooth

behavior at the origin are given by

u∗(r) = A

[

J0(µ∗r) −
J0(µ∗)

I0(µ∗)
I0(µ∗r)

]

, where I1(µ∗)J0(µ∗) + I0(µ∗)J1(µ∗) = 0 . (2.1)

For the annulus, where ε > 0, an exact radially symmetric solution uε(r) is constructed from a linear combination of

the set {J0(µr), I0(µr),K0(µr), Y0(µr)}, such that uε = ∂ruε = 0 on r = ε and r = 1. The eigenvalues of the system,

with λ
1/4
ε = µε, are determined by the condition

det















J0(µε) I0(µε) K0(µε) Y0(µε)

J1(µε) −I1(µε) K1(µε) Y1(µε)

J0(εµε) I0(εµε) K0(εµε) Y0(εµε)

J1(εµε) −I1(εµε) K1(εµε) Y1(εµε)















= 0 . (2.2)

In Fig. 2 the lowest eigenvalue µε,0, determined from numerical solution of (2.2), is plotted for a range of values of

ε. We observe that the limiting behavior of µε as ε → 0 is not to an eigenvalue of (2.1) for the problem with no hole.

Instead, as shown in [5] and [15], the limiting problem as ε → 0 requires a point constraint u0(0) = 0, as specified in

(1.7). The physical interpretation of this result is that a defect of spatial extent O(ε), for any ε > 0, will in general

generate an O(1) jump in the eigenvalue and the vibrational frequencies of the plate.

In the present example of a disk with a puncture at the center, we can construct the radially symmetric eigensolutions

of this limiting problem satisfying u0(0) = 0 as

u0 = A

[

J0(µ0r)− I0(µ0r)−
(

J0(µ0)− I0(µ0)
2
πK0(µ0) + Y0(µ0)

)(

2

π
K0(µ0r) + Y0(µ0r)

)]

. (2.3 a)

Here A is a normalization constant, and µ0 is a root of the eigenvalue equation

(J0(µ0)− I0(µ0))

(

2

π
K1(µ0) + Y1(µ0)

)

= (J1(µ0) + I1(µ0))

(

2

π
K0(µ0) + Y0(µ0)

)

. (2.3 b)
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Figure 2. The lowest radially symmetric eigenvalue µε,0 versus ε (solid line), as determined from the numerical solution

of (2.2) on 0 ≤ ε ≤ 0.1, The limiting value of µε,0 as ε → 0 is not the lowest eigenvalue µ∗,0 of the unperturbed problem

with no hole determined by (2.1).

Using the well-known behavior of the Bessel functions for small argument, we then identify the local behavior as

u0(r) = α0 r
2 log r +O(r2) , as r → 0 , where α0 ≡ Aµ2

0 [J0(µ0)− I0(µ0)]

2K0(µ0) + πY0(µ0)
. (2.4)

It follows that the limiting eigenfunction u0 is not smooth at the puncture point, but merely differentiable. In terms

of this singularity behavior and the constant α0, we now derive an expression for the difference µ0 − µ∗ between the

lowest eigenvalue of the point constraint problem and that of the unperturbed problem.

We will derive an expression for this difference in a more general context that an annular domain. We consider the

limiting point constraint problem, with u0(x0) = 0, given by

∆2u0 = λ0u0 , x ∈ Ω \ {x0} ; u0 = ∂nu0 = 0 , x ∈ ∂Ω ;

∫

Ω

u2
0 dx = 1 ; (2.5 a)

u0(x) ∼ α0|x− x0|2 log |x− x0|+∇xR(x;x0)|x=x0
· (x− x0) +O(|x− x0|2) , as x → x0 , (2.5 b)

and the problem in the absence of a hole, with smooth solution u∗, satisfying

∆2u∗ = λ∗u∗ , x ∈ Ω ; u∗ = ∂nu∗ = 0 , x ∈ ∂Ω ;

∫

Ω

u2
∗ dx = 1 . (2.6)

The following result gives an expression for the difference between any two eigenvalues of (2.5) and (2.6):

Principal Result 2.1: Let (u0, λ0) be any simple eigenpair of the limiting problem (2.5) with a point constraint

u0(x0) = 0 and let (u∗, λ∗) be any simple eigenpair of the problem (2.6) with no hole. Then for 〈u0, u∗〉 6= 0,

λ0 − λ∗ = −8π α0 u∗(x0)

〈u0, u∗〉
, where 〈u0, u∗〉 ≡

∫

Ω

u0u∗ dx . (2.7)

Proof: We use Green’s second identity over the domain Ω\B(x0, σ), where B(x0, σ) is a ball of radius σ ≪ 1 centered

at x0. This yields that

(λ0 − λ∗)

∫

Ω\B(x0,σ)

u0u∗dx =

∫

Ω\B(x0,σ)

(u∗∆
2u0 − u0∆

2u∗) dx

=

∫

∂B(x0,σ)

(u∗∂n(∆u0)−∆u0∂nu∗ − u0∂n(∆u∗) + ∆u∗∂nu0) ds . (2.8)
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Then, with r = |x− x0| and ∂n = −∂r on B(x0, σ), we use (2.5 b) to calculate as r → 0 that

u0 ∼ α0r
2 log r + acr cos θ + asr sin θ + · · · , u0r ∼ 2α0r log r + α0r + ac cos θ + as sin θ + · · · ,

∆u0 ∼ 4α0[log r + 1] + · · · , ∂r∆u0 ∼ 4α0

r
,

where (x − x0) = r(cos θ, sin θ) and (ac, as) ≡ ∇xR(x;x0)|x=x0
. Then, since u∗ is smooth as x → x0, it follows that

only the first term in the boundary integral on ∂B(x0, σ) in (2.8) is non-vanishing in the limit σ → 0. Therefore,

(λ0 − λ∗) 〈u0, u∗〉 = − lim
σ→0

∫

∂B(x0,σ)

u∗∂r(∆u0) ds = − lim
σ→0

2πσ

[

u∗(x0)
4α0

σ

]

= −8π α0 u∗(x0) .

In the scenario where 〈u0, u∗〉 6= 0, we recover the result (2.7). �

To verify this result in the exactly solvable case of the unit disk with hole centered at the origin, we can without

loss of generality set A = 1 for the normalization constants in (2.1) and (2.3 b) and calculate that

u∗(0) = 1− J0(µ∗)

I0(µ∗)
, α0 =

µ2
0 [J0(µ0)− I0(µ0)]

2K0(µ0) + πY0(µ0)
. (2.9)

For the case of the lowest eigenvalue eigenvalues of (2.1) and (2.3 b), we evaluate numerically that

µ0 = 4.7683 , µ∗ = 3.1962 , u∗(0) = 1.0557 , α0 = 618.2445 , 〈u0, u∗〉 = −39.758 .

This yields λ0 − λ∗ = µ4
0 − µ4

∗ ≈ 412.6 from (2.7), and is in agreement with the numerical results from Fig. 2.

2.1 An Exactly Solvable BVP

To motivate the different scalings appearing in §3–§5 below, it is instructive to consider the following radially symmetric

model BVP for u = u(r):

− δ∆2u+∆u = 1 , ε < r < 1 ; u(1) = ur(1) = 0 , u(ε) = ur(ε) = 0 . (2.10)

Here ∆u ≡ urr + r−1ur, and ε ≪ 1. The particular solution for (2.10) is r2/4 while the homogeneous solution is a

linear combination of {1, log r, I0
(

r/
√
δ
)

,K0

(

r/
√
δ
)

}. In this way, the exact solution to (2.10) is readily obtained as

ue =
(r2 − 1)

4
+

[

− ce√
δ
I ′0

(

1√
δ

)

− 1

2
− de√

δ
K ′

0

(

1√
δ

)]

log r

+ ce

[

I0

(

r√
δ

)

− I0

(

1√
δ

)]

+ de

[

K0

(

r√
δ

)

−K0

(

1√
δ

)]

, (2.11 a)

where the constants ce and de satisfy the 2× 2 linear system

ce

[

I0

(

ε√
δ

)

− log ε√
δ
I ′0

(

1√
δ

)

− I0

(

1√
δ

)]

+ de

[

K0

(

ε√
δ

)

− log ε√
δ
K ′

0

(

1√
δ

)

−K0

(

1√
δ

)]

=
1

4
− ε2

4
+

log ε

2
,

(2.11 b)

ce

[

I ′0

(

ε√
δ

)

− 1

ε
I ′0

(

1√
δ

)

−
√
δI0

(

1√
δ

)]

+ de

[

K ′
0

(

ε√
δ

)

− 1

ε
K ′

0

(

1√
δ

)

−
√
δK0

(

1√
δ

)]

=

√
δ

2ε
− ε

√
δ

2
. (2.11 c)

We now investigate three different asymptotic limits of (2.11).

We first suppose that δ = O(1) and ε → 0. In (2.11 b) and (2.11 c) we use the small argument expansions K ′
0(z) ∼

−1/z, K0(z) ∼ − log (z/2)− γe, and I0(z) ∼ 1 as z → 0 to obtain, after some algebra, that (2.11) reduces to

u ∼ u0 ≡ r2

4
+ c0

[

I0

(

r√
δ

)

− 1

]

+ d0

[

K0

(

r√
δ

)

+ log r − log
(

2
√
δ
)

+ γe

]

, (2.12 a)
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where γe is Euler’s constant. Here ce ∼ c0 and de ∼ d0 as ε → 0, where c0 and d0 satisfy the linear system

c0

[

I0

(

1√
δ

)

− 1

]

+ d0

[

K0

(

1√
δ

)

− log
(

2
√
δe−γe

)

]

= −1

4
, c0I

′
0

(

1√
δ

)

+ d0

[

K ′
0

(

1√
δ

)

+
√
δ

]

= −
√
δ

2
.

The key observation is that the limiting solution (2.12a) satisfies u0(1) = u0r(1) = 0 and the point constraint

u0(0) = 0. We emphasize that this limiting behavior for (2.11) as ε → 0 when δ = O(1), is not to the smooth

unperturbed solution u∗ in the absence of a hole, which is given by

u∗ =
1

4

(

r2 − 1
)

−
√
δ

2I ′0

(

1/
√
δ
)

[

I0

(

r√
δ

)

− I0

(

1√
δ

)]

. (2.13)

The fact that the limiting solution of (2.10) as ε → 0 with δ = O(1) is not the unperturbed solution u∗ is also

apparent from a failure of the method of matched asymptotic expansions. More specifically, if we were to use (2.13)

as the leading-order solution in the outer region, then in the inner region, and with local variable ρ = r/ε, the

leading-order inner problem for (2.10) would be ∆2v = 0 in ρ ≥ 1, subject to v = vρ = 0 on ρ = 1 together with

the matching condition v → u∗(0) as ρ → ∞. Since u∗(0) 6= 0 from (2.13), and v must be a linear combination of

{1, log ρ, ρ2, ρ2 log ρ}, it follows that there is no such solution to this inner problem. This, at least formally, suggests

that (2.13) cannot be used as the outer solution for (2.10), and instead we must use the solution u0 in (2.12) satisfying

the point constraint u0(0) = 0 as the outer solution.

The second use of the model problem is to investigate the asymptotic behavior of the solution to (2.10) as δ and

ε both tend to zero. Two cases are considered: Case I: δ = O(ε2). Case II: O(ε2) ≪ δ ≪ O(1). For Case I, we set

δ = δ0ε
2 in (2.11) and let ε → 0. Upon using the well-known large argument expansions of K0(z) and I0(z) as z → ∞,

we obtain after some straightforward, but rather lengthy, algebraic manipulations on (2.11) that

de ∼ − ν
√
δ0

4K ′
0

(

1/
√
δ0
) , ν ≡ − 1

log (εe−χ)
, χ ≡

√
δ0K0

(

1/
√
δ0
)

K ′
0

(

1/
√
δ0
) ; ce ∼ − ε

√
δ0

I ′0
(

1/ε
√
δ0
)

(

ν

4
+

1

2

)

, (2.14 a)

and that the outer limit of (2.11 a) becomes

ue ∼
(r2 − 1)

4
− ν

4
log r , for O(ε) ≪ r < 1−O(

√
δ) . (2.14 b)

As a remark, if we include a boundary layer correction term in order to satisfy ur = 0 on r = 1, a composite expansion

for this modified asymptotic solution is readily obtained as

ue ∼
(r2 − 1)

4
− ν

4
log r +

√
δ

(

1

2
− ν

4

)

(

1− e−(1−r)/
√
δ
)

, for O(ε) ≪ r ≤ 1 . (2.14 c)

The approximation (2.14 b) can also be obtained by using the method of matched asymptotic expansions directly on

the BVP (2.10), with the analysis being very similar to that given, in a more general context, below in §4.2.

Finally, we consider Case II where O(ε2) ≪ δ ≪ O(1). After some algebra, we obtain from (2.11 b) and (2.11 c) that

de ∼ −ν∞
4

, ν∞ ≡ − 1

log
(

2
√
δe−γ

) ; ce ∼ −
√
δ

I ′0

(

1/
√
δ
)

(

ν∞
4

− 1

2

)

, (2.15 a)

and that the outer limit of (2.11 a) is

ue ∼
(r2 − 1)

4
− ν∞

4
log r , for O(ε) ≪ r < 1−O(

√
δ) . (2.15 b)

As a remark, if we include a boundary layer correction term in order to satisfy ur = 0 on r = 1, a composite expansion

for this asymptotic solution is readily obtained as

ue ∼
(r2 − 1)

4
− ν∞

4
log r +

√
δ

(

1

2
− ν∞

4

)

(

1− e−(1−r)/
√
δ
)

, for O(
√
δ) ≪ r ≤ 1 . (2.15 c)
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A key feature of this limiting solution, valid on the range O(ε2) ≪ δ ≪ O(1), is that the outer solution is asymp-

totically independent of the radius ε of the hole. In this sense, this regime exhibits a transition to the point constraint

behavior associated with the regime δ = O(1). This limiting solution (2.15 b) can also be re-derived by using the

method of matched asymptotic expansions applied to the BVP (2.10), with the analysis being similar to that given

below in §4.4. In Fig. 3 we show a favorable comparison between the asymptotic results in (2.14) and (2.15) for Case

I and Case II, respectively, and the exact result given in (2.11).
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Figure 3. Left panel: The exact solution (2.11) versus r for δ = 0.002 and ε = 0.02 (heavy solid curve) is compared

with the asymptotic solution (2.15 b) without boundary layer correction term (solid curve) and with the boundary

layer correction term (2.15 c) (dotted curve). Right panel: similar figure for δ = ε2 with ε = 0.02, so that δ0 = 1. The

asymptotic result is given in (2.14 c) and (2.14 b) with and without the boundary layer correction term, respectively.

3 The Mixed-Order Eigenvalue Problem: Asymptotics of the Point Constraint Problem

As motivated by the analysis in §2, in the limit ε → 0 an eigenvalue λε of (1.3) tends to an eigenvalue λ0 of the point

constraint problem

−δ∆2u0 +∆u0 + λ0u0 = 0 , x ∈ Ω\{x0} ;
∫

Ω

u2
0 dx = 1 , (3.1 a)

u0 = ∂nu0 = 0 , x ∈ ∂Ω ; u0(x0) = 0 . (3.1 b)

The effect of this point constraint is that smoothness of u0 is lost in the sense that ∆u0 = O (log |x− x0|) as x → x0.

To solve (3.1) it is convenient to introduce the Green’s function Gδ(x;x0, λ0) satisfying

∆2Gδ −
1

δ
∆Gδ −

λ0

δ
Gδ = δ(x− x0) , x ∈ Ω ; Gδ = ∂nGδ = 0 , x ∈ ∂Ω . (3.2 a)

Then, Gδ can be decomposed in terms of a singular part and a C2 smooth “regular” part Rδ(x;x0, λ0) as

Gδ(x;x0, λ0) =
1

8π
|x− x0|2 log |x− x0|+Rδ(x;x0, λ0) . (3.2 b)

As x → x0, Gδ in (3.2 b) has the limiting behavior

Gδ(x;x0, λ0) ∼
1

8π
|x− x0|2 log |x− x0|+Rδ(x0;x0, λ0) +∇xRδ(x;x0, λ0)|x=x0

+O(|x − x0|2) . (3.3)

In terms of Gδ, the solution to (3.1) is simply u0 = N0Gδ(x;x0, λ0), where λ0 is a root of

Rδ(x0;x0, λ0) = 0 , (3.4)

and N0 = 1/
(∫

Ω
G2

δ dx
)1/2

. The roots of the point constraint condition (3.4), which is a transcendental equation in
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λ0, give the leading-order eigenvalue asymptotics of (1.3) in that λε → λ0 as ε → 0. We will assume that λ0 is a root

of (3.4) of multiplicity one and that x0 is such that u0 satisfies the non-degeneracy condition ∇xRδ|x=x0
6= 0.

The goal of this section is to derive an approximation to the point constraint condition (3.4) when δ ≪ 1. To do so,

we will use the method of matched asymptotic expansions to analyze the Green’s function of (3.2) as δ → 0.

In the outer region Ωout, defined as Ωout = {x | |x− x0| ≫ O(
√
δ) and dist(x, ∂Ω) ≫ O(

√
δ)}, we expand Gδ =

G0 + o(1) to obtain from (3.2 a) that

∆G0 + λ0G0 = 0 , x ∈ Ωout ; G0 → 0 , as x → ∂Ω . (3.5 a)

This effective zero Dirichlet boundary condition for G0 as x → ∂Ω arises as a leading-order condition for matching G0

to a boundary-layer solution defined in an O(
√
δ) neighborhood of ∂Ω. To construct a solution to (3.2 a) that has a

singularity at x0, we first impose that G0 has a logarithmic singularity as x → x0, so that

G0 ∼ S log |x− x0| , as x → x0 , (3.5 b)

for some S to be determined. The solution to (3.5) is then simply

G0 = −2πSGh(x;x0, λ0) , (3.6)

where Gh is the Helmholtz Green’s function satisfying

∆Gh + λ0Gh = −δ(x− x0) , x ∈ Ω ; Gh = 0 , x ∈ ∂Ω , (3.7 a)

Gh ∼ − 1

2π
log |x− x0|+Rh(x;x0, λ0)|x=x0

+∇xRh(x;x0, λ0)|x=x0
· (x− x0) + · · · , as x → x0 . (3.7 b)

Here Rh0 ≡ Rh(x;x0, λ0)|x=x0
and ∇xRh0 ≡ ∇xRh(x;x0, λ0)|x=x0

are the regular part of the Helmholtz Green’s

function and its gradient, respectively, which depend on λ0 and the domain Ω. From (3.6) and (3.7 b), it follows that

G0 ∼ S [log |x− x0| − 2πRh0 − 2π∇xRh0 · (x− x0) + · · · ] , as x → x0 . (3.8)

This behavior will be used as the matching condition for an inner solution in a neighborhood of x0.

In the inner region, defined in an O(
√
δ) neighborhood of x0, we introduce new variables y and w by

y = (x− x0)/
√
δ , w(y) = Gδ(x0 + εy;x0, λ0) . (3.9)

We obtain from (3.2 a) that w ∼ w0 + · · · where w0 satisfies

∆2
yw0 −∆yw0 = 0 , y ∈ R

2\{0} . (3.10 a)

In terms of the inner variable, the matching condition as |y| → ∞, as obtained from (3.8), is that

w0 ∼ S log |y|+ S log
√
δ − 2πSRh0 − 2πS

√
δ∇xRh0 · y , as |y| → ∞ . (3.10 b)

Moreover, upon substituting the inner scale y = (x− x0)/
√
δ into (3.3), we require that

w0 ∼ δ

8π
|y|2 log |y|+ a+ b · y +O(|y|2) , as y → 0 , (3.11)

for some scalar a and vector b to be found. We remark that the unknown a represents the limiting asymptotics of

Rδ(x0;x0, λ0) as δ → 0, which we seek to determine.

The solution to (3.10) that is bounded as y → 0 is simply

w0 = S
[

log |y|+ log
(√

δ
)

− 2πRh0 +K0(|y|)
]

− 2πS
√
δ∇xRh0 · y , (3.12)

where K0(|y|) is the modified Bessel function of the second kind of order zero. To determine S, we use the well-known

refined asymptotics of K0(|y|) as |y| → 0 from (4.20) below, to obtain in terms of Euler’s constant γe ≈ 0.5772 that

w0 ∼ −S

4
|y|2 log |y|+ S

[

log
(√

δ
)

− 2πRh0 + log 2− γe

]

− 2πS
√
δ∇xRh0 · y . (3.13)
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The final step in the analysis is to choose S so that the O(|y|2 log |y|) terms in (3.11) and (3.13) agree, and then

identify the constant a in (3.11) from the O(1) term in (3.13). In this way, we obtain that S = −δ/(2π) and that

Rδ(x0;x0, λ0) ∼ − δ

2π

[

log
(

2
√
δ e−γe

)

− 2πRh0

]

, as δ → 0 . (3.14)

Finally, upon substituting (3.14) into the point constraint condition (3.4), it follows for δ → 0 that λ0 is a root of

Rh0 = − 1

2πν∞
, where ν∞ ≡ −1/ log

(

2
√
δe−γe

)

. (3.15)

Here Rh0 ≡ Rh(x0;x0, λ0) is the regular part of the Helmholtz Green’s function as defined by (3.7).

This analysis of the limiting behavior as δ → 0 of the point constraint condition (3.4) is insufficient for identifying

the range of δ ≪ 1 and ε ≪ 1 for which (3.15) holds as an approximation to an eigenvalue of (1.3). In the more refined

analysis of §4.4, leading to Principal Result 4.4, it is shown that (3.15) yields the leading-order asymptotics for an

eigenvalue of (1.3) on the range O(ε2) ≪ δ ≪ O(1) for a hole Ωε of arbitrary shape centered at x0.

4 Asymptotics for δ → 0 of the Mixed-Order Eigenvalue Problem

In this section we investigate the limiting behavior as δ → 0 of the mixed-order problem

−δ∆2u+∆u+ λu = 0 , x ∈ Ω \ Ωε ;
∫

Ω\Ωε
u2 dx = 1 , (4.1 a)

u = ∂nu = 0 , x ∈ ∂Ω ; u = ∂nu = 0 , x ∈ ∂Ωε . (4.1 b)

Here Ωε is a hole of diameter O(ε) that shrinks uniformly to a point x = x0 ∈ Ω as ε → 0. In our analysis of

(4.1) in §4.2–4.4 we will consider the limit ε → 0 for the three asymptotic ranges of δ ≪ 1 given by δ = O(ε2),

δ ≪ O(ε2), and O(ε2) ≪ δ ≪ 1. For each of these regimes, we will determine asymptotic approximations for any O(1)

simple eigenvalues of (4.1). However, first, in order to isolate the effect of the outer boundary ∂Ω, in §4.1 we begin by

calculating the eigenvalues and eigenfunctions of (4.1) for the case δ ≪ 1 when there is no hole.

4.1 Boundary layer at ∂Ω

In this subsection we analyze the perturbation of the eigenvalues λ due to the fourth order term −δ∆2u with δ ≪ 1

in the absence of a hole. Assuming, for simplicity, that the boundary ∂Ω is C2, this eigenproblem is

− δ∆2u+∆u+ λu = 0 , x ∈ Ω ; u = ∂nu = 0 , x ∈ ∂Ω ;

∫

Ω

u2 dx = 1 . (4.2)

In the limit δ → 0, the formal leading order problem for (4.2) is ∆u+λu = 0. For this reduced problem, both boundary

conditions for u cannot be applied on ∂Ω. To understand how the full boundary conditions are enforced, a boundary

layer is introduced in the vicinity of ∂Ω. Since ∂Ω is arbitrary, but smooth, it is convenient to employ an orthogonal

system (η, s), where η > 0 measures the perpendicular distance from x ∈ Ω to ∂Ω, while on ∂Ω, s measures arc-length.

In terms of these coordinates, valid in a neighborhood of ∂Ω, (4.2) becomes

− δ

[

∂ηη − κ

1− κη
∂η +

1

1− κη
∂s

(

1

1− κη
∂s

)]2

u+

[

∂ηη − κ

1− κη
∂η +

1

1− κη
∂s

(

1

1− κη
∂s

)]

u+ λu = 0 . (4.3)

Here κ = κ(s) is the curvature of ∂Ω, with κ = 1 for the unit disk. Equation (4.3) is valid when η < 1/ (max∂Ω κ).

In the inner boundary layer region near ∂Ω of extent O(δ1/2), we introduce the inner variables and inner expansion

η̂ = η/δ1/2 , u = δ1/2v , v = v0 + δ1/2v1 + δv2 + · · · . (4.4)
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Upon substituting (4.4) into (4.3) and collecting powers of δ, we obtain the following sequence of problems on η̂ ≥ 0:

−v0η̂η̂η̂η̂ + v0η̂η̂ = 0 , v0 = v0η̂ = 0 , on η̂ = 0 , (4.5 a)

−v1η̂η̂η̂η̂ + v1η̂η̂ = −2κv0η̂η̂η̂ + κv0η̂ , v1 = v1η̂ = 0 , on η̂ = 0 . (4.5 b)

To asymptotically match the inner solution to an outer solution, as constructed below, we require that the solution to

(4.5) has no exponential growth as η̂ → +∞. In this way, the solution to (4.5) is

v0 = −c0 + c0η̂ + c0e
−η̂ ; v1 = −c1 +

(

c1 −
κc0
2

)

η̂ + c1e
−η̂ +

κc0
2

η̂2 +
κc0
2

η̂e−η̂ , (4.6)

where c0(s) and c1(s) are to be determined. As η̂ → ∞, these solutions have the dominant asymptotic behavior

v0 ∼ −c0 + c0η̂ , v1 ∼ −c1 +
(

c1 −
κc0
2

)

η̂ +
κc0
2

η̂2 .

In terms of the outer variable η = δ1/2η̂, the far-field behavior of the two-term inner expansion is

u ∼ c0η +
κc0
2

η2 + δ1/2
[

−c0 + η
(

c1 −
κc0
2

)]

+ δ [−c1 +O(η)] + · · · . (4.7)

In the outer region, defined away from an O(δ1/2) distance from ∂Ω, we pose the outer expansion

u = u0 + δ1/2u1 + δu2 + · · · . (4.8)

In terms of the boundary-fitted orthogonal coordinate system, the local behavior of this outer solution as η → 0 is

u ∼ u0 + η∂ηu0 +
η2

2
∂ηηu0 + δ1/2 [u1 + ηu1η + · · · ] + δ [u2 + · · · ] + · · · , (4.9)

where u0, u1 and their derivatives are to be evaluated on η = 0. Upon comparing (4.9) with the required matching

condition (4.7), and noting that the outer normal derivative ∂nu on ∂Ω is simply ∂nu = −∂ηu, we obtain

u0 = 0 , u1 = ∂nu0 , u2 =
κ

2
∂nu0 + ∂nu1 , x ∈ ∂Ω . (4.10)

Moreover, from this matching condition, c0 and c1 in (4.6) are given by

c0 = −∂nu0 , c1 = −κ

2
∂nu0 − ∂nu1 , x ∈ ∂Ω . (4.11)

Next, we substitute (4.8), together with the eigenvalue expansion λ = λ0+ δ1/2λ1+ δλ2+ · · · , into (4.2), and collect

powers of δ, to obtain a sequence of outer problems. The effective boundary conditions as x → ∂Ω for these outer

problems are given by (4.10). In this way, we obtain that

∆u0 + λ0u0 = 0 , x ∈ Ω ; u0 = 0 , x ∈ ∂Ω ;

∫

Ω

u2
0 dx = 1 , (4.12 a)

∆u1 + λ0u1 = −λ1u0 , x ∈ Ω ; u1 = ∂nu0 , x ∈ ∂Ω ;

∫

Ω

u0u1 dx = 0 , (4.12 b)

∆u2 + λ0u2 = (λ2
0 − λ2)u0 − λ1u1 , x ∈ Ω ; u2 = ∂nu1 +

κ

2
∂nu0 , x ∈ ∂Ω ;

∫

Ω

(2u0u2 + u2
1) dx = 0 .

(4.12 c)

We assume that (u0, λ0) is a base eigenpair of (4.12 a) of multiplicity one. Solvability conditions are then applied to

(4.12 b) and (4.12 c) to fix the values of λ1 and λ2, and the solutions u1 and u2 are made unique from the integral

constraints in (4.12 b) and (4.12 c). In terms of the unique u0 and u1, the functions c0(s) and c1(s), as needed in the

inner solution (4.6), are calculated from (4.11). Our result is summarized in the following formal statement.

Principal Result 4.1: Let (u0, λ0) be an eigenpair of (4.12a) with multiplicity one, and assume ∂Ω is smooth. Then,

for δ ≪ 1, and with κ(s) denoting the curvature of ∂Ω, there is an eigenvalue of (4.2) with asymptotics

λ(δ) = λ0 + δ1/2
[
∫

∂Ω

(∂nu0)
2 ds

]

+ δ

[

λ2
0 +

∫

∂Ω

∂nu0(∂nu1 +
κ

2
∂nu0) ds

]

+O(δ3/2) . (4.13)
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We conclude that the biharmonic term and the extra boundary condition ∂nu = 0 on ∂Ω induce an O(
√
δ) correction

to the eigenvalue of the Laplacian. In the three subsections below, the various scalings δ = δ(ε) that are investigated

as ε → 0 in (4.1) are all such that eigenvalue correction terms due to the boundary layer are asymptotically smaller

than those generated by the hole. However, by including a transcendentally small boundary layer contribution to the

eigenvalue approximation a quantitatively more accurate result is obtained at moderately small values of δ.

4.2 The Distinguished Limit δ = δ0ε
2

In the limit ε → 0, in this subsection we study the eigenvalue problem

−δ0ε
2∆2u+∆u+ λu = 0 , x ∈ Ω ;

∫

Ω\Ωε
u2 dx = 1 , (4.14 a)

u = ∂nu = 0 , x ∈ ∂Ω ; u = ∂nu = 0 , x ∈ ∂Ωε , (4.14 b)

where δ0 = O(1) is a positive parameter controlling the influence of the bi-Laplacian term in (4.14).

Our analysis begins by introducing a canonical local problem defined near the hole Ωε. In terms of the local variables

y = ε−1(x− x0) , v(y) = u(x0 + εy) , (4.15)

we obtain the following inner problem from (4.14):

− δ0∆
2
yv +∆yv + ε2λv = 0 , y ∈ R

2 \ Ω0 ; v = ∂nv = 0, x ∈ ∂Ω0 , (4.16)

where Ωε = x0 + εΩ0 and Ω0 is the magnified domain of the hole. We define the canonical solution vc as the solution

to (4.16), upon neglecting the O(ε2) term, that satisfies vc ∼ log |y| as |y| → ∞. As such, vc is taken to satisfy

−δ0∆
2
yvc +∆yvc = 0 , y ∈ R

2 \ Ω0 ; vc = ∂nvc = 0 , y ∈ ∂Ω0 ; (4.17 a)

vc ∼ log |y|+ χ(δ0) + O(1) , as |y| → ∞ . (4.17 b)

Here the O(1) constant χ(δ0) in the far-field behavior of vc depends on both δ0 and the shape of the hole Ω0. For an

arbitrary shaped hole Ω0, χ(δ0) must be calculated numerically.

For the special case where Ωε is the circular disk |x− x0| ≤ ε, so that Ω0 is the unit disk |y| ≤ 1, we can find χ(δ0)

analytically. To do so, we note that any radially symmetric solution of −δ0∆
2
yvc + ∆yvc = 0 is a linear combination

of {1, log ρ,K0

(

ρ/
√
δ0
)

, I0
(

ρ/
√
δ0
)

}. Here ρ = |y| while I0(z) and K0(z) denote modified Bessel functions of the first

and second kinds of order zero. To ensure that vc grows only logarithmically as ρ → ∞ we must eliminate the I0
component. A simple calculation yields that

vc = log ρ+ a+ bK0

(

ρ/
√
δ
)

; a = −
√
δ0K0

(

1/
√
δ0
)

K1

(

1/
√
δ0
) , b =

√
δ0

K1

(

1/
√
δ0
) . (4.18)

Then, upon comparing (4.18) with (4.17 b), and using K0(z) → 0 as z → +∞, we readily identify χ(δ0) in (4.17 b) as

χ(δ0) = −
√
δ0K0

(

1/
√
δ0
)

K1

(

1/
√
δ0
) . (4.19)

To determine the asymptotics of χ(δ0) as δ0 → ∞ we use the well-known asymptotics for z → 0 given by

K0(z) ∼ − log z + log 2− γe −
1

4
z2 log z +

z2

4
(log 2 + 1− γe) , K1(z) ∼

1

z
+

z

4
(2γe − 1) +

z

2
log
(z

2

)

, (4.20)

where γe ≈ 0.5772 is Euler’s constant. In contrast, the asymptotics of χ(δ0) for δ0 → 0 relies on the identity
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K0(z)/K1(z) ∼ 1− 1/(2z) + 51/(128z2) as z → ∞. In this way, we readily calculate that

χ ∼ − log
(

2
√
δ0

)

+ γe −
1

2δ0

[

log
(

2
√

δ0

)]2

+
1

δ0

(

γe −
1

2

)

log
(

2
√

δ0

)

−
(

1− 2γe + 2γ2
e

)

4δ0
, as δ0 → ∞ ,

(4.21 a)

χ ∼ −
√

δ0 +
δ0
2

− 51

128
δ
3/2
0 +O(δ20) , as δ0 → 0 . (4.21 b)

In Fig. 4 we plot χ(δ0), as computed from (4.19), and compare it with the limiting asymptotic behavior in (4.21).
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Figure 4. Plot of χ(δ0) versus δ0 for a circular hole of radius ε as computed numerically from (4.19) (solid curve). The

dotted curves are the approximations in (4.21) that are valid for either δ0 ≪ 1 or for δ0 ≫ 1.

Finally, it is convenient to introduce the constant d = d(δ0) ≡ e−χ(δ0) defined so that

vc ∼ log |y| − log d+ O(1) , as |y| → ∞ ; d ≡ e−χ(δ0) . (4.22)

When Ωε is the disk of radius ε, d can be calculated from χ(δ0) in (4.19). From (4.21), it has the leading-order behavior

d ∼ 2
√

δ0 e
−γe , as δ0 → ∞ ; d ∼ 1 +

√

δ0 +O(δ
3/2
0 ) , as δ0 → 0 . (4.23)

Next, we construct an infinite asymptotic series in powers of ν ≡ −1/ log(εd) for a simple eigenvalue of (4.1). In

terms of the canonical inner solution vc and unknown constants cj , we expand the inner solution for (4.16) as

v ∼ ν
∞
∑

j=0

νjcjvc , ν ≡ −1/ log(εd) , d ≡ e−χ(δ0) . (4.24)

To determine the far-field behavior of (4.24), we use (4.22) in (4.24) and write the resulting expression in terms of the

outer variable. This yields the following matching condition for the outer solution of (4.1):

u ∼ c0 +
∞
∑

j=1

νj [cj−1 log |x− x0|+ cj ] , as x → x0 . (4.25)

In the outer region, where |x− x0| ≫ O(ε) and dist(x, ∂Ω) ≫ O(δ1/2) = O(ε), we expand the eigenvalue λ and the

outer eigenfunction u as

u ∼ u0 +

∞
∑

j=1

νjuj + · · · , λ ∼ λ0 +

∞
∑

j=1

νjλj + · · · . (4.26)

Here u0(x) and λ0 is assumed to be any simple eigenpair of the unperturbed problem (4.12a) for which u0(x0) 6= 0.

The leading-order matching condition from (4.25) is that c0 = u0(x0). Since νj ≫ O(ε) for any j ≥ 0, the correction

to λ0 induced by the boundary layer near ∂Ω is asymptotically smaller than any term in the infinite series (4.26). As

such, in our analysis of the outer region, we can neglect both the boundary layer near ∂Ω and the term −δε2∆2 in
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(4.1), while imposing u → 0 as x → ∂Ω. Thus, upon substituting (4.26) into (4.1) and the matching condition (4.25),

we obtain upon equating powers of ν that uj for j ≥ 1 satisfies

∆uj + λ0uj = −λju0 − (1− δ1j)

j−1
∑

i=1

λiuj−iu0 , x ∈ Ω\{x0} ; uj = 0 , x ∈ ∂Ω , (4.27 a)

uj ∼ cj−1 log |x− x0|+ cj , as x → x0 , (4.27 b)

∫

Ω

u0uj dx = −1

2
(1− δ1j)

j−1
∑

i=1

∫

Ω

uiuj−i dx , (4.27 c)

where c0 = u0(x0) 6= 0 and δ1j is the usual Kronecker symbol.

The coefficients cj for j ≥ 1 and the eigenvalue corrections λj for j ≥ 1 are determined recursively from (4.27).

Suppose that cj−1 and ui for 0 ≤ i ≤ j − 1 are known. Then, the solvability condition for (4.27) yields that

λj = 2πcj−1u0(x0)− (1− δ1j)

j−1
∑

i=1

λi

∫

Ω

uj−iu0 dx , for j ≥ 1 . (4.28)

With λj now determined, we can solve (4.27 a) with uj ∼ cj−1 log |x−x0| as x → x0 to obtain uj to within an additive

multiple of u0. This multiple is then determined uniquely by the normalization condition (4.27 c). Finally, with uj now

uniquely determined, we calculate the constant cj from the limiting behavior cj = limx→x0
(uj − cj−1 log |x−x0|). This

process is repeated recursively in j. It is initialized with c0 = u0(x0), where (u0, λ0) is an eigenpair of (4.12 a).

We illustrate this procedure by deriving a three-term expansion for λ. For j = 1, (4.28) yields that λ1 = 2π [u0(x0)]
2
.

To identify u1 from (4.27) it is convenient to introduce the uniquely-defined Gm(x;x0) by

∆Gm + λ0Gm = u0(x0)u0(x)− δ(x− x0) , x ∈ Ω ; Gm = 0 , x ∈ ∂Ω (4.29 a)

Gm(x;x0) ∼ − 1

2π
log |x− x0|+Rm(x0) + o(1) , as x → x0 ;

∫

Ω

Gmu0 dx = 0 , (4.29 b)

where Rm(x0) is the regular part of the modified Green’s function Gm. The solution to (4.27) with j = 1 is simply

u1 = −2πu0(x0)Gm(x;x0) . (4.30)

Next, expanding u1 as x → x0 and comparing with (4.27 b) for j = 1, we get c1 = −2πu0(x0)Rm(x0). Finally, since
∫

Ω
u0u1 dx = 0, (4.28) for j = 2 yields that λ2 = −4π2 [u0(x0)]

2
Rm(x0). We summarize the result as follows:

Principal Result 4.1: Let (u0, λ0) be an simple eigenpair of (4.12 a) with u0(x0) 6= 0. Then, for δ = ε2δ0 with

δ0 = O(1), (4.14) has an eigenvalue with three-term asymptotics

λ ∼ λ0 + 2π [u0(x0)]
2
ν − 4π2 [u0(x0)]

2
Rm(x0)ν

2 +O(ν3) ; ν ≡ −1/ log (εd) , d = e−χ(δ0) , (4.31)

where χ(δ0) is defined in (4.17 b) in terms of the far-field behavior of the canonical inner solution vc. For a circular

hole of radius ε, χ(δ0) is given in (4.19). Here Rm(x0) is the regular part of the modified Green’s function in (4.29).

We conclude this section by deriving a transcendental equation for λ that has the effect of summing the infinite

logarithmic series in (4.26). Since the analysis is similar to that in [23], we only briefly outline it here.

In the inner region, the solution to (4.16) is given asympotically in terms of some unknown function C(ν) as

v ∼ C(ν)νvc . (4.32)

Upon using vc ∼ log |y| − log d+ o(1) as |y| → ∞ in (4.32), we derive the matching condition for the outer solution:

u ∼ Cν log |x− x0|+ C , as x → x0 . (4.33)

In the outer region, instead of expanding u and λ term-by-term in powers of ν as in (4.26), we expand u = u⋆(x; ν)+t.s.t.

and λ = λ⋆(ν) + t.s.t., where t.s.t indicates terms that are transcendentally small in comparison with ν. In addition,
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u⋆ is to satisfy the matching condition (4.33). In this way, we find that u⋆ and λ⋆ satisfy

∆u⋆ + λ⋆u⋆ = 0 , x ∈ Ω\{x0} ; u⋆ = 0 , x ∈ ∂Ω ;

∫

Ω

[u⋆]
2
dx = 1 . (4.34 a)

u⋆ ∼ Cν log |x− x0|+ C , as x → x0 . (4.34 b)

The singularity structure (4.34 b) specifies both the regular and singular part of the singularity. As such, it provides

a constraint to determine λ⋆. The solution to (4.34) is

u⋆ = −2πC(ν)Gh(x;x0, λ
⋆) , (4.35)

where C is found from the condition
∫

Ω
[u⋆]2 dx = 1. Here Gh is the Helmholtz Green’s function satisfying

∆Gh + λ⋆Gh = −δ(x− x0) , x ∈ Ω ; Gh = 0 , x ∈ ∂Ω , (4.36 a)

Gh ∼ − 1

2π
log |x− x0|+Rh(x0;λ

⋆) + o(1) , as x → x0 , (4.36 b)

where Rh(x0;λ
⋆) is the regular part of Gh. Then, by expanding u⋆ in (4.35) as x → x0 and comparing the resulting

expression with (4.34 b), we get −2πνRhC = C, which is an equation for λ⋆. We summarize the result as follows:

Principal Result 4.2: For δ = ε2δ0 with δ0 = O(1), there is an eigenvalue λ of (4.14) with λ ∼ λ⋆(ν) + t.s.t, where

λ⋆(ν) satisfies the transcendental equation

Rh(x0;λ
⋆) = − 1

2πν
, ν ≡ −1/ log (εd) , d = e−χ(δ0) , (4.37)

where χ(δ0) is defined by (4.17 b), and is given in (4.19) for a circular hole of radius ε. Here Rh is the regular part

of the Helmholtz Green’s function defined in (4.36). Since Rh is unbounded as λ⋆ → λ0 it follows from (4.37) that

λ⋆ → λ0 as ν → 0, where λ0 is an eigenvalue of (4.12 a).

As a test of Principal Result 4.2, we consider the exactly solvable case of the annulus ε < r < 1. By factorizing the

operator −δ∆2 + ∆ − λ as a quadratic in ∆, we find that the radially symmetric solutions of (4.2) are spanned by

{J0(ξ1r), Y0(ξ1r),K0(ξ2r), I0(ξ2r)} where

ξ1 ≡

√

−1 +
√
1 + 4δλ

2δ
, ξ2 ≡

√

1 +
√
1 + 4δλ

2δ
. (4.38)

With the clamped boundary conditions u0 = ∂ru0 = 0 on r = 1 and r = ε, the eigenvalues are determined

det















J0(ξ1) Y0(ξ1) K0(ξ2) I0(ξ2)

ξ1J1(ξ1) ξ1Y1(ξ1) ξ2K1(ξ2) −ξ2I1(ξ2)

J0(ξ1ε) Y0(ξ1ε) K0(ξ2ε) I0(ξ2ε)

ξ1J1(ξ1ε) ξ1Y1(ξ1ε) ξ2K1(ξ2ε) −ξ2I1(ξ2ε)















= 0 . (4.39)

To test the accuracy of Principal Result 4.2, we set δ = ε2 (δ0 = 1) in (4.38) and numerically obtain the zeros of (4.39)

over a range of ε values. For the particular case x0 = 0, the Helmholtz Green’s function satisfying (4.36) is a linear

combination J0(
√
λ⋆r) and Y0(

√
λ⋆r). The regular part Rh(0, λ

⋆) is readily calculated to be

Rh(0;λ
⋆) = − 1

2π

[

− log 2 + γe + log(
√
λ⋆)
]

+
1

4

Y0(
√
λ⋆)

J0(
√
λ⋆)

, (4.40)

which allows for a numerical solution of the transcendental equation (4.37).

In Fig. 5 a comparison of the lowest eigenvalue from the asymptotic prediction (4.37) and the exact solution shows

agreement between the two theories as ε → 0. In particular the asymptotic result shows the limiting behavior λ⋆ → λ0

as ε → 0 where λ0 is determined by (4.12 a). For this particular example, λ0 = z20 ≈ 5.7832 where J0(z0) = 0.
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Figure 5. A quantitative test of Principal Result 4.2. The solid curve is the smallest eigenvalue calculated from the

exact solution by a numerical evaluation of (4.39). The dotted curve is the asymptotic prediction determined from

numerical solution of the transcendental equation (4.37). The right panel shows an enlargement for small values of ε

and captures the limiting behavior λ⋆ → λ0 as ε → 0.

4.3 Weaker Bi-Laplace: δ ≪ O(ε2)

In this subsection we consider the case where δ ≪ O(ε2). In terms of the inner variables y = ε−1(x − x0) and

v(y) = u(x0 + εy), the canonical inner solution satisfies

− δ

ε2
∆2

yvc +∆yvc + ε2λvc = 0 , y ∈ R
2 \ Ω0 ; v = ∂nv = 0 , y ∈ ∂Ω0 , (4.41 a)

vc ∼ log |y|+ χ , as |y| → ∞ , (4.41 b)

for some constant χ to be determined. In our analysis below, where we allow Ω0 to have an arbitrary shape, there are

two regions that must be analyzed: The region where |y| = O(1) is called the inner region, while the range of y where

dist(y, ∂Ω0) = O(
√

δ/ε2) ≪ 1 is called the sub-inner region.

As similar to the boundary layer analysis of §4.1, the leading order inner solution vc0 for (4.41), defined away from

an O(
√

δ/ε2) neighborhood of ∂Ω0, must satisfy the effective boundary condition vc0 → 0 as y → ∂Ω0. In the inner

region, we expand vc and χ in (4.41) as

vc = vc0 +

√

δ

ε2
vc1 + · · · , χ ∼ χ0 +

√

δ

ε2
χ1 + · · · . (4.42)

Upon substituting (4.42) into (4.41), we obtain the leading-order problem

∆vc0 = 0 , y ∈ R
2\Ω0 ; vc0 = 0 , y ∈ ∂Ω0 , (4.43 a)

vc0 ∼ log |y| − log d0 , as |y| → ∞ ; χ0 ≡ − log d0 . (4.43 b)

In addition, assuming that δ ≫ O(ε6), the problem for vc1 is

∆vc1 = 0 , y ∈ R
2\Ω0 ; vc1 ∼ χ1 , as |y| → ∞ . (4.44)

In our analysis below of the sub-inner layer near ∂Ω0 we will derive an effective boundary condition for vc1 on ∂Ω0.

Then, by imposing that vc1 is bounded as |y| → ∞ we will identify the constant χ1 in (4.44).

The PDE (4.43) is a classical problem in electrostatics (cf. [23], [20]), where the constant d0 is referred to as the

logarithmic capacitance of Ω0. The logarithmic capacitance is known analytically for various shapes of Ω0 (cf. [23],

[20]). For the circular domain Ω0 = {y | |y| ≤ 1} we have vc0 = log |y| and d0 = 1.

Next, we insert a sub-inner layer near ∂Ω0 to satisfy the boundary condition ∂nvc = 0 on ∂Ω0. As in §4.1, we use
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the orthogonal boundary-fitted coordinates (η, s) so that (4.41) is transformed on the region η ≤ 0 to (see (4.3))

− δ

ε2

[

∂ηη −
κ0

1− κ0η
∂η +

1

1− κ0η
∂s

(

1

1− κ0η
∂s

)]2

vc+

[

∂ηη − κ0

1− κ0η
∂η +

1

1− κ0η
∂s

(

1

1− κ0η
∂s

)]

vc+ε2λvc = 0 ,

(4.45)

subject to vc = ∂ηvc = 0 on η = 0. Here κ0 = κ0(s) is the curvature of ∂Ω0, with κ0 = 1 when Ω0 is the unit disk.

We introduce the sub-inner layer variables η̂ and wc by

η̂ = η/σ , vc = σwc , where σ =

√

δ

ε2
≪ 1 . (4.46)

Then, we expand wc = wc0 + O(1) and obtain to leading order from (4.45) that

− ∂η̂η̂η̂η̂wc0 + ∂η̂η̂wc0 = 0 , η̂ ≤ 0 ; wc0 = ∂η̂wc0 = 0 , η̂ = 0 . (4.47 a)

The leading-order matching condition to the inner solution is that

wc0 ∼ −η̂∂nvc0
∣

∣

∂Ω0

, as η̂ → −∞ , (4.47 b)

where ∂n is the outward normal derivative to ∂Ω0. The solution to (4.47) is wc0 = −∂nvc0
∣

∣

∂Ω0

[

1 + η̂ − eη̂
]

. In this

way, the leading-order solution in the sub-inner region is

vc ∼
√

δ

ε2
(wc0 + · · · ) = −

√

δ

ε2

[

∂nvc0
∣

∣

∂Ω0

(

1 + η̂ − eη̂
)

+ O(1)
]

. (4.48)

Next, we employ a higher order matching condition between the far-field behavior of (4.46) as η̂ → −∞ and the

near-field behavior as η → 0 of the inner expansion (4.42). This yields the effective boundary condition

vc1 = −∂nvc0
∣

∣

∂Ω0

, y ∈ ∂Ω0 . (4.49)

The problem for vc1 is (4.44), subject to the boundary condition (4.49) and with vc1 bounded as |y| → ∞. To determine

χ1 = lim|y|→∞ vc1, we apply Green’s identity to vc0 and vc1 over the region ΩL\Ω0, where ΩL = {y | |y| ≤ L}, and then

pass to the limit L → ∞. This yields that
∫

∂Ω0

(−vc0∂nvc1 + vc1∂nvc0) ds = − limL→∞
∫

∂ΩL

(vc0∂nvc1 − vc1∂nvc0) ds.

Since vc0 = 0 and vc1 = −∂nvc0 on ∂Ω0, while vc0 ∼ logL, vc1 ∼ χ1 and ∂nvc1 = O(L−2) on ∂ΩL, we get that

χ1 = − 1

2π

∫

∂Ω0

(∂nvc0)
2 ds . (4.50)

In this way, the two-term expansion for χ in (4.41), valid for an arbitrarily-shaped hole Ω0, is

χ ∼ − log d0 −
1

2π

√

δ

ε2

∫

∂Ω0

(∂nvc0)
2 ds+ · · · . (4.51 a)

It is then convenient to define dδ by χ ≡ − log dδ so that

dδ = e−χ ∼ d0

(

1 +
1

2π

√

δ

ε2

∫

∂Ω0

(∂nvc0)
2
ds

)

. (4.51 b)

Here d0 is the logarithmic capacitance of Ω0 defined in terms of vc0 by (4.43). For the unit disk Ω0 = {y | |y| ≤ 1}, we
have vc0 = log |y|, d0 = 1, and hence χ ∼ −

√

δ/ε2 from (4.51 a). If we set δ = δ0ε
2 in this last expression, we recover

χ ∼ −
√
δ0 as was previously derived in (4.21 b) of §4.2 for the small δ0 limit for the critical scaling regime δ = δ0ε

2.

Finally, with dδ determined as in (4.51 b), we can then simply repeat the analysis in (4.32)–(4.36) involving the

matching of the inner and outer solutions, which yields an approximation to the eigenvalue of (4.1). In place of

Principal Result 4.2, we obtain the following result:

Principal Result 4.3: For O(ε6) ≪ δ ≪ O(ε2), there is an eigenvalue λ of (4.1) with λ ∼ λ⋆(ν) + t.s.t, where λ⋆(ν)
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satisfies the transcendental equation

Rh(x0;λ
⋆) = − 1

2πνδ
, νδ ≡ −1/ log (εdδ) , dδ ∼ d0

(

1 +
1

2π

√

δ

ε2

∫

∂Ω0

(∂nvc0)
2
ds

)

. (4.52)

Here d0 is the logarithmic capacitance of Ω0 defined in terms of vc0 by (4.43), and Rh is the regular part of the

Helmholtz Green’s function defined in (4.36). For the unit disk Ω0 = {y | |y| ≤ 1}, we have d ∼ 1 +
√

δ/ε2.

We remark that the leading-order term d ∼ d0 still holds even without the extra technical restriction that δ ≫ O(ε6).

Using the leading-order result d ∼ d0, Principal Result 4.3 shows that when δ ≪ O(ε2) the approximation to the

eigenvalue for (4.1) is the same to within all logarithmic terms as that for an eigenvalue of the Laplacian in a domain

with a hole, as analyzed in [23]. The second-order term for dδ in (4.52) characterizes the weak influence on λ⋆ of the

fourth-order term −δ∆2 in the regime O(ε6) ≪ δ ≪ O(ε2) for an arbitrarily-shaped hole.

4.4 Stronger Bi-Laplace: O(ε2) ≪ δ ≪ O(1)

Next, we consider the range O(ε2) ≪ δ ≪ O(1). In terms of the inner variable y = ε−1(x−x0) and v(y) = u(x0 + εy),

the canonical inner solution still satisfies (4.41). In our analysis there are two regions that must be analyzed: an inner

region with |y| = O(1) where ∆2 dominates in (4.41), and a far-inner region with z = y/
(√

δ/ε
)

= O(1) where −∆2

and ∆ balance in (4.41). We will first consider the special case of a circular hole where Ω0 = {y | |y| ≤ 1}.

In the far-inner region we introduce the local variables z and wc, and we obtain to leading order from (4.41) that

−∆2
zwc0 +∆wc0 = 0 , |z| ≥ 0 . (4.53)

We look for a radially symmetric solution to (4.53) satisfying wc0 ∼ log |z| as |z| → ∞ and wc0 → 0 as |z| → 0.

The necessity of this second condition, which allows for an asymptotic matching of wc0 as |z| → 0 with the far-field

behavior of the leading-order inner solution, is discussed in Remark 1. Any radially symmetric solution to (4.53) is a

linear combination of {1, log |z|,K0(|z|), I0(|z|)}. Upon using the asymptotics (4.20) for K0(|z|) as |z| → 0, it readily

follows that the solution to (4.53) that satisfies wc0 ∼ log |z| as z → ∞ and wc0 → 0 as |z| → 0 is

wc0 = γe − log 2 + log |z|+K0(|z|) . (4.54)

Upon using (4.20), we obtain the more refined behavior

wc0 ∼ −1

4
|z|2 log |z|+ |z|2

4
(log 2 + 1− γe) , as |z| → 0 . (4.55)

In terms of the inner variable y, defined by z = y/
(√

δ/ε
)

, (4.55) then yields

wc0 ∼ −|y|2
4

ε2

δ
log

(

ε√
δ

)

+
ε2

4δ

[

−|y|2 log |y|+ |y|2 (log 2 + 1− γe)
]

+ · · · . (4.56)

The matching condition is that the far-field behavior as |y| → ∞ of the inner solution must agree with (4.56).

Motivated by (4.56), which suggests the asymptotic gauge functions, the inner solution for (4.41) is expanded as

vc ∼
(

−ε2

δ
log

(

ε√
δ

))

vc0 +
ε2

δ
vc1 + · · · . (4.57)

Upon substituting (4.57) into (4.41), and by using the matching condition (4.56), we obtain that the radially symmetric

functions vc0(|y|) and vc1(|y|) satisfy

∆2
yvc0 = 0 , in |y| ≥ 1 ; vc0 = v′c0 = 0 , on |y| = 1 ; vc0 ∼ |y|2/4 , as |y| → ∞ , (4.58 a)
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and

∆2
yvc1 = 0 , in |y| ≥ 1 ; vc1 = v′c1 = 0 , on |y| = 1 , (4.58 b)

vc1 ∼ −|y|2
4

log |y|+ |y|2
4

(log 2 + 1− γe) , as |y| → ∞ . (4.58 c)

These two problems can be solved explicitly to obtain

vc0 =
1

4

(

|y|2 − 1
)

− 1

2
log |y| ; vc1 =

1

4
(log 2 + 1− γe)

(

|y|2 − 1
)

− |y|2
4

log |y| −
(

1

2
log 2 +

1

4
− γe

2

)

log |y| . (4.59)

Remark 1 The condition wc0 → 0 as |z| → 0 for the solution (4.53) is required in order to match to the inner

solution. If instead, wc0 → A 6= 0 as |z| → 0, then in the inner region we would expand vc ∼ vc0(|y|) + O(1), to obtain

the leading-order problem ∆2
yvc0 = 0 in |y| ≥ 1 with vc0 = v′c0 = 0 on |y| = 1 with vc0 → A as |y| → ∞. Since vc0 is a

linear combination of {1, log |y|, |y|2, |y|2 log |y|}, there is no such solution when A 6= 0.

Next, to determine the matching behavior as x → x0 required for the outer solution, we let |z| → ∞ in (4.54), and

write the resulting expression in terms of y using |z| = y/
(√

δ/ε
)

. This yields that

vc ∼ log |y| − log d∞ + O(1) , as |y| → ∞ ; d∞ ≡ 2
√
δ

ε
e−γe . (4.60)

With the far-field behavior of the solution to (4.41) now known for the regime O(ε2) ≪ δ ≪ 1, we then simply repeat

the analysis in (4.32)–(4.36) for the matching to the outer solution. This leads to the following result:

Principal Result 4.4: Consider (4.1) with a circular hole of radius ε centered at x = x0 for the range O(ε2) ≪ δ ≪
O(1). Then, there is an eigenvalue λ of (4.1) with λ ∼ λ⋆(ν∞), where λ⋆(ν∞) satisfies the transcendental equation

Rh(x0;λ
⋆) = − 1

2πν∞
, ν∞ ≡ −1/ log

(

2
√
δe−γe

)

. (4.61)

Here Rh is the regular part of the Helmholtz Green’s function defined in (4.36) and γe is Euler’s constant.

The central implication of this result is that on the range O(ε2) ≪ δ ≪ O(1), the approximation λ⋆ to the eigenvalue

is independent of the radius ε of the hole, and depends on δ, the hole location x0, and the shape of Ω. Therefore, we

state that it is in this asymptotic range of δ where the asymptotic result for λ provides a smooth transition to the result

obtained in §3 involving a point constraint. More precisely, the result (4.61) was previously obtained in (3.15) from

formally taking the small δ limit of the point constraint formulation of §3. Alternatively, if we formally set δ = ε2δ0
in (4.61) we recover the same limiting expression as that obtained by letting δ0 ≫ 1 in the asymptotic result (4.37) of

Principal Result 4.2 derived for the critical scaling regime δ = O(ε2).

Although (4.61) does provide the leading asymptotic behavior as δ → 0, the example below for the annulus shows

that it is not particularly accurate for moderately small δ. The discrepancy at moderately small values of δ arises from

neglecting the boundary layer of width O(δ1/2) in the vicinity of ∂Ω in which the clamped boundary conditions (1.3 b)

are satisfied. For an arbitrary domain with smooth boundary, we now extend the analysis leading to Principal Result

4.4 to account for the boundary layer near ∂Ω. Motivated by the analysis in §4.1, we substitute the expansion

u = u⋆(x, ν∞) + δ1/2u1(x, ν∞) + · · · , λ = λ⋆(ν∞) + δ1/2λ1(ν∞) + · · · , (4.62)

into (1.3) and equate powers of δ1/2. At leading order, (λ⋆, u⋆) satisfy (4.34), with normalization condition
∫

Ω
[u⋆]2 dx =

1, while the pair (λ1, u1) satisfies

∆u1 + λ⋆u1 = −λ1u
⋆ , x ∈ Ω \ {x0} ; u1 = ∂nu

⋆ , x ∈ ∂Ω ;

∫

Ω

u1u
⋆ dx = 0 . (4.63)

The boundary condition for u1 on ∂Ω in (4.63) arises from a similar boundary layer analysis as in §4.1 (see (4.12 b)).

To establish a condition that fixes λ1, the singular behavior of u1 as x → x0 is obtained by writing u1 =
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Figure 6. Comparison of the asymptotic result (4.68) for the lowest eigenvalue λ versus δ (dotted curve) and the exact

result (solid curve), as obtained by solving (4.39) numerically, for an annular domain ε ≤ |x| ≤ 1 with ε = 0.01. The

dashed curve is the asymptotic result (4.70) that represents adding a boundary layer correction term to the result for

λ⋆(ν) of Principal Result 4.2 that applies for the regime δ = O(ε2). As expected, this latter result is more accurate

than (4.68) when δ is small, and it tends to the result in (4.68) as δ is increased.

A1(ν∞)ν∞vc(|y|) in the inner region. Using the established behavior of vc in (4.60), we have that u1 must satisfy

u1 ∼ A1ν∞ log |x− x0|+A1 , as x → x0 . (4.64)

We then decompose u1 = u1p + u1s where u1p is a smooth particular solution, and u1s is a solution that is singular as

x → x0. The local behavior (4.64) indicates that u1s = −2πA1ν∞Gh(x;x0, λ
⋆), leaving u1p to solve

∆u1p + λ⋆u1p = −λ1u
⋆ , x ∈ Ω ; u1p = ∂nu

⋆ , x ∈ ∂Ω . (4.65)

The local behavior of the decomposed solution as x → x0 is obtained by using (4.36 b) and the fact that u1p is smooth

for all x ∈ Ω. This yields,

u1 ∼ u1p(x0) +A1ν∞ log |x− x0| − 2πA1ν∞Rh(x0, λ
⋆) + O(1), x → x0 . (4.66)

Upon comparing (4.66) and (4.64), and noting that −2πν∞Rh(x0, λ
⋆) = 1 from (4.61), we conclude that u1p(x0) = 0.

We now show that this condition determines λ1. By applying Green’s identity to u1p and Gh we derive
∫

Ω

[u1p(∆Gh + λ⋆Gh)−Gh(∆u1p + λ⋆u1p)] dx =

∫

∂Ω

(u1p∂nGh −Gh∂nu1p) ds .

Upon substituting (4.63) and (4.36) into this identity, we obtain that−u1p(x0)+λ1

∫

Ω u⋆Gh dx =
∫

∂Ω (∂nu
⋆) (∂nGh) ds .

Finally, applying the condition u1p(x0) = 0 and recalling from (4.35) that u⋆ = −2π CGh(x;x0, λ
⋆), we conclude that

λ1 =

∫

∂Ω

(∂nGh)
2 ds

∫

Ω

(Gh)
2 dx

. (4.67)

The constant A1 is A1 = − [2πν∞]
−1 ∫

Ω Ghu1p dx/
∫

ΩG2
h dx, which results from imposing the normalization condition

∫

Ω u⋆u1dx = 0. We summarize the result as follows:

Principal Result 4.5: Consider (4.1) with a circular hole of radius ε centered at x = x0 for the range O(ε2) ≪ δ ≪
O(1). Then, there is an eigenvalue λ of (4.1) with

λ ∼ λ⋆(ν∞) + δ1/2λ1(ν∞) + · · · , (4.68)

where λ⋆(ν∞) satisfies the transcendental equation (4.61), and λ1 is given in (4.67).

As a test of the accuracy of Principal Result 4.5, we revisit the case considered at the end of §4.2 where Ω is the
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annular domain ε < r < 1, for which closed form solutions are available. The exact eigenvalues are determined by

(4.39), which are solved numerically. To implement the asymptotic theory, we recall that Rh is given in (4.40). In

addition, by calculating Gh analytically from (4.36), we determine λ1 in (4.67) as

λ1(ν∞) =
4

π2

(
∫ 1

0

r
[

Y0(
√

λ⋆(ν∞)r)J0(
√

λ⋆(ν∞))− Y0(
√

λ⋆(ν∞))J0(
√

λ⋆(ν∞)r)
]2

dr

)−1

. (4.69)

As δ → 0, for which λ⋆ → λ0, where λ0 is an eigenvalue of the Laplacian, (4.69) readily reduces upon using the

Wronskian relation between J0 and Y0 to λ1 → 2λ0. A similar boundary layer correction term can be added to the

result for λ⋆ in (4.37) of Principal Result 4.2 that is valid when δ = O(ε2). This leads to the approximation

λ ∼ λ⋆(ν) + δ1/2λ1(ν) + · · · . (4.70)

Here λ⋆(ν) and ν are defined in (4.37) and λ1 is obtained by replacing ν∞ in (4.69) with ν.

For a circular hole with radius ε = 0.01, in Fig. 6 we show a reasonably favorable comparison over a range of values

of δ between the asymptotic results (4.68) and (4.70) for the lowest eigenvalue and the exact result, as obtained by

solving (4.39) numerically. From the insert in this figure, we observe that (4.70) provides a more accurate prediction

than (4.68) when δ is small, and that the results in (4.70) and (4.68) are essentially indistinguishable for larger δ.

However, neither approximation is particularly accurate when δ ≈ 0.01. The reason for the discrepancy is likely due to

not including higher order boundary layer contributions of order O(δ). In fact, from (4.13), one of the terms of O(δ)

is λ2
0δ which is quantitatively significant even when δ = 0.01.

We remark that, although we have derived Principal Results 4.4 and 4.5 only for the case of a circular hole, these

results still hold for an arbitrarily-shaped hole Ω0. Therefore, the effect of the hole shape on the eigenvalue on the

range O(ε2) ≪ δ ≪ O(1) is only through higher-order correction terms to (4.61) and (4.68). To show this, we observe

that the leading-order solution for the far-inner region still holds, which in turn motivates the inner expansion (4.57).

For an arbitrarily-shaped hole, and in place of (4.58), the non-radially symmetric functions vc0 and vc1 now satisfy

∆2
yvc0 = 0 , y ∈ R

2\Ω0 ; vc0 = ∂nvc0 = 0 , y ∈ ∂Ω0 , (4.71 a)

vc0 ∼ |y|2/4 , as |y| → ∞ , (4.71 b)

∆2
yvc1 = 0 , y ∈ R

2\Ω0 ; vc1 = ∂nvc1 = 0 , y ∈ ∂Ω0 , (4.71 c)

vc1 ∼ −|y|2
4

log |y|+ |y|2
4

(log 2 + 1− γe) , as |y| → ∞ . (4.71 d)

Since the solutions of the homogeneous problem for vck for k = 0, 1 are linear combinations of {ρ2 log ρ, ρ2, log ρ, 1},
{ρ3, ρ log ρ, ρ, ρ−1} × {cos θ, sin θ}, and {ρ4, ρ2, 1, ρ−2} × {cos 2θ, sin 2θ} etc., where y = ρ(cos θ, sin θ) and ρ = |y|, the
far-field behavior of the solution v0 to (4.71) must have the form

vc0 ∼ 1

4
|y|2 +A0 log |y|+ f0 · y +

yTD0y

|y|2 + o(1) , as |y| → ∞ , (4.72)

for some constant A0, vector f0, and matrix D0, all determined by the shape of Ω0. Notice that we have imposed that

|y|−1
(

vc0 − |y|2/4
)

is bounded as |y| → ∞. In contrast, for vc1, we must allow for a growth of order O(y log |y|) as

|y| → ∞. In terms of an arbitrary vector b1, the far-field behavior of this solution to (4.71) has the form

vc1 ∼ −1

4
|y|2 log |y|+ |y|2

4
(log 2 + 1− γe) + b1 · y log |y|+ f1 · y +A1 log |y|+

yTD1y

|y|2 + o(1) , as |y| → ∞ , (4.73)

for some constant A1, vector f1, and matrix D1 determined in terms of the unknown b1 and the shape of Ω0. We

remark that the unknown vector b1 is eventually determined by the gradient of the regular part of the Helmholtz

Green’s function at x = x0. The terms Aj , fj , Dj for j = 0, 1 then induce new higher-order non-radially symmetric

correction terms to the far-inner solution. However, it is clear that the effect of these terms on the eigenvalue is of

negligible asymptotic order as compared to (4.61).
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5 A Numerical Experiment

In this section we illustrate Principal Results 4.4 and 4.5 for the case where Ω is the unit disk with an off-centered

hole of radius ε centered at x0 ∈ Ω. We will consider the parameter regime where O(ε2) ≪ δ ≪ O(1).

We first must determine the regular part Rh(x0;λ
⋆) of the Helmholtz Green’s function defined in (4.36). Set x =

r (cos θ, sin θ) and suppose without loss of generality that x0 = (r0, 0). A standard Fourier series expansion of the

solution to (4.36) yields

Gh(x0;λ
⋆) = −1

4
J0 (r<c)

(

Y0 (r>c)− J0(r>c)
Y0(c)

J0(c)

)

(5.1)

− 1

2

∞
∑

m=1

cos(mθ)Jm (r<c)

(

Ym (r>c)− Jm(r>c)
Ym(c)

Jm(c)

)

,

where we have defined r<, r>, and c by

r< ≡ min (r, r0) , r> ≡ max (r, r0) , c ≡
√
λ⋆ .

Similarly, the Fourier series expansion of the free-space Green’s function is

log |x− x0| = log r> −
∞
∑

m=1

1

m

(

r<
r>

)m

cos (mθ) . (5.2)

By combining (5.1) and (5.2), and noting the singularity behavior in (4.36), we identify Rh as

Rh(x0;λ
⋆) =

1

2π
log r0 −

1

4
J0 (r0c)

(

Y0 (r0c)− J0(r0c)
Y0(c)

J0(c)

)

(5.3)

+
∞
∑

m=1

{

− 1

2πm
− 1

2
Jm (r0c)

(

Ym (r0c)− Jm(r0c)
Ym(c)

Jm(c)

)}

.

The series in (5.3) is convergent as can be seen by using the large-m asymptotics Jm(r) ∼ (r/2)m

Γ(m+1) (1 +O(1/m)) , Ym(r) ∼
(r/2)

−m
Γ(m) (1 +O(1/m)) , so that for large m, the terms of the sum in (5.3) behave like O(1/m2).

From Principal Result 4.4, λ⋆ is a root of the transcendental equation

Rh(x0; λ⋆) =
1

2π
log
(

2
√
δe−γ

)

. (5.4)

We seek to determine the lowest root of (5.4). First, consider the case where r0 is small. Using the small-r expansions

Jm(r) ∼ rm2−m/Γ(1 +m), m > 0 and Ym(r) ∼ −rm2mΓ(m)/π, m > 0, one readily sees that the sum in (5.3) tends

to zero as r0 → 0. Using the small-r asymptotics of Y0(r) ∼ 2/π(ln r − ln 2 + γ) and J0(r) ∼ 1 we readily obtain that

Rh(x0, λ
⋆) ∼ 1

2π
(log 2− γ − log c) +

1

4

Y0(c)

J0(c)
, |x0| ≪ 1 .

Therefore, for x0 = 0, (5.4) reduces to

− log c+
π

2

Y0(c)

J0(c)
=

1

2
log δ . (5.5)

More generally, for |x0| 6= 0, expanding (5.4) to two orders yields the following two-term approximation λ⋆,2 to λ⋆:

√
λ⋆,2 ∼ c0 +

π

log
(

2e−γ
√
δ
)

J2
0 (c0r0)Y0(c0)

2J ′
0(c0)

. (5.6)

Here c0 ≈ 2.4048 is the first root of J0(c0) = 0.

For δ = 10−5 and hole radius ε = 0.001, in Fig. 7 we compare the one-term λ ∼ c20, two-term (5.6), and hybrid

approximation (5.4) for the lowest eigenvalue of the (4.1) with the corresponding “exact” result as obtained by solving

(4.1) numerically. The hybrid result is seen to provide a decent approximation to the eigenvalue.
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Figure 7. For δ = 10−5 and hole radius ε = 0.001, we compare the one-term λ ∼ c20, two-term (5.6), and hybrid

approximation (5.4) for the lowest eigenvalue of (4.1) with the corresponding “exact” result as obtained by solving

(4.1) numerically. The domain is the unit disk with an off-centered hole at distance r0 from the origin.

Next, we show how to calculate the coefficient λ1, given in (4.67) as needed in Principal Result 4.5. Upon using the

Wronskian relation in (5.1), we calculate the numerator in (4.67) as

∫

∂Ω

(∂nG)
2
ds =

1

2π

∞
∑

m=0

[

Jm (cr0)

Jm(c)

]2

. (5.7)

Next we compute the denominator in (4.67) as

∫

Ω

G2 dx = −π

2

∞
∑

m=0

∫ 1

0

(Jm (cr<)Zm (cr>;m))
2
r dr , where Zm(x;n) ≡ Ym (x) − Jm(x)

Yn(c)

Jn(c)
. (5.8)

Then, by using the indefinite integral (cf. [13] formula 5.54)
∫

B2
m(cr)r dr =

r2

2

(

B2
m(cr) −Bm−1(cr)Bm+1(cr)

)

, (5.9)

where B is any Bessel function, we obtain, after some simplifications, that

∫ 1

0

(Jm (cr<)Zm (cr>;m))
2
rdr =J2

m(cr0)

[

r20
2
Zm−1(cr0;m)Zm+1(cr0;m) +

1

2
Zm−1(c;m)Zm+1(c;m)

]

− r20
2
Z2
m(cr0;m)Jm−1(cr0)Jm+1(cr0).

This allows us to compute the denominator in (4.67).

In Table 1 we give some full numerical results for the lowest eigenvalue of (4.1). The computations were done

assuming a hole radius of ε =
√

δ/100. These “exact” results are then compared with the asymptotic result λ ∼ λ⋆

and the improved asymptotic result λ ∼ λ⋆ +
√
δλ1, which adds the boundary layer correction term. From this table

we observe that the improved asymptotic result agrees very favorably with the full numerical result. In each of the

following examples, the “exact” results are obtained by means of finite element simulation [11] of the full problem

(4.1).

In Fig. 8, we apply Principal Result 4.5 to the case of the disk but with the perturbing hole centered away from

the origin. The inclusion of the δ1/2λ∗ boundary correction term improves the accuracy of the expansion dramatically,

even when δ is moderately small. The full numerical simulations of (4.1) with an off centered hole are obtained from

finite element simulation [11].
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r0 δ λexact λ⋆ λ1 λ⋆ +
√
δλ1 (λexact − λ⋆)/

√
δ

0 0.0001 8.106 7.912 16.418 8.076 19.430
0 1e-05 7.443 7.391 15.126 7.439 16.346
0 1e-06 7.088 7.073 14.369 7.087 15.118
0.2 0.0001 7.718 7.545 14.740 7.692 17.267
0.2 1e-05 7.188 7.141 14.022 7.185 14.650
0.2 1e-06 6.898 6.885 13.557 6.899 13.020
0.5 0.0001 6.693 6.563 11.625 6.679 12.936
0.5 1e-05 6.434 6.400 11.630 6.437 10.734

Table 1. For a single hole of radius ε =
√

δ/100, we compare the asymptotic and numerical results for the lowest

eigenvalue of (4.1) for various values of δ and r0, where r0 is the distance of the hole from the center of the unit disk.

The third column is the full numerical result, the fourth column λ⋆ is the solution to (5.4), the fifth colunn is the

boundary layer correction term λ1 in (4.67), while the sixth column is the asymptotic approximation λ ∼ λ⋆ +
√
δλ1,

which includes the boundary layer correction term.
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Figure 8. Application of Principal Result 4.5 for the case of a hole at x0 = (0.5, 0) with radius ε = 0.01. The solid

line is from full numerical simulation of (4.1) together with the leading order term (dotted line) and two term (dashed

line) of the expansion (4.68).

6 Discussion

We have analyzed the limiting asymptotic behavior of the mixed eigenvalue problem (4.1) in the dual limit ε → 0 and

δ → 0. Our analysis has identified the following three key parameter regimes where different eigenvalue asymptotics

occur: δ = O(ε2), δ ≪ O(ε2), and O(ε2) ≪ δ ≪ 1. In the regime O(ε2) ≪ δ ≪ 1 we have shown in Principal Result 4.4

that the leading-order asymptotic behavior of an eigenvalue of (4.1) is asymptotically independent of ε. As a result,

this regime provides a transition to the point constraint problem associated with the δ = O(1) regime. Results from

the asymptotic theory were favorably compared with full numerical results.

There are several directions that warrant further investigation. Firstly, by developing a boundary integral method

to compute χ(δ0) numerically for an arbitrarily-shaped hole from the canonical inner problem (4.17) that holds for

the scaling regime δ = O(ε2), Principal Result 4.2 could then be readily implemented for general hole shapes. In this

paper, χ(δ0) has been determined analytically only for a circular-shaped hole.

A second more fundamental open direction would be to analyze (4.1) for the regime δ = O(1) in the presence of

N ≥ 1 holes of asymptotically small radii O(ε) ≪ 1. In the limit ε → 0, and for δ = O(1), an eigenvalue λε of the
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perturbed problem tends to an eigenvalue λ0 of the limiting point constraint problem

−δ∆2u0 +∆u0 + λ0u = 0 , x ∈ Ω ;

∫

Ω\Ωε
u2
0 dx = 1 , (6.1 a)

u0 = ∂nu0 = 0 , x ∈ ∂Ω ; u0(xj) = 0 , j = 1 . . . , N , (6.1 b)

where xj for j = 1, . . . , N are the centers of the small holes. It would be interesting to develop a numerical method to

compute the eigenvalues λ0 of this point constraint problem, and to determine how they depend on δ, with δ = O(1),

and the hole locations. In particular, where should the centers of N holes be located so as to minimize the principal

eigenvalue of the limiting point constraint problem (6.1)? In the unit disk, optimal configurations of small holes that

minimize the principal eigenvalue of the Laplacian in a 2-D domain Ω with Neumann boundary condition on ∂Ω and

with a homogeneous Dirichlet boundary condition on each of the N holes were identified in [14]. For δ = O(1), and

for the case of multiple small holes, it would also be interesting to extend the analysis of [5] and [15], valid for a one

hole pattern for the pure biharmonic operator, to determine ε-dependent correction terms for the difference λε − λ0.

Finally, it would be interesting to analyze localization behavior for the eigenfunctions u0 of the point constraint

problem (6.1). For the pure biharmonic eigenvalue defined in a thin rectangular domain, and with a clamped point,

the numerical computations in [10] showed that almost all of the eigenfunctions of the point constraint problem are

typically confined to one side of a vertical line parallel to the thin edge of the rectangle that goes through the clamped

point. In this way, the existence of a clamped point in the domain has a large effect on the geometric patterns and

localization behavior of the eigenfunctions. It would be interesting to extend this analysis of [10] to (4.1).
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