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Abstract. We study the mean capture time of an unbiased random walker by multiple absorbing mobile traps in bounded domains of one and

two spatial dimensions. In one dimension, we consider multiple traps undergoing prescribed oscillatory motion on an interval with reflecting or

absorbing boundary conditions. We develop trap co-operation strategies which optimize the mean capture time. We find that as the frequency of

oscillation passes through certain fixed values, the optimal trap strategy alternates between oscillating exactly in phase and exactly out-of-phase

with neighboring traps. We also demonstrate a scenario in which the optimal configuration is neither in phase nor antiphase. In two dimensions,

we consider two small traps rotating with the same angular velocity ω inside a unit disk, and characterize the optimal positions (radii of rotation

and relative phase) of the two traps as a function of ω and trap radius ε ≪ 1. We identify several distinguished regimes in ω where the optimal

configuration can be distinctly characterized. In particular, in the ω ∼ O(1) regime, the optimal configuration jumps from one in which two traps

rotate antipodal and along the same radius to one where the two traps rotate on the same side of the disk but at different radii. In addition, we

demonstrate an algebraic approach to obtaining optimal configurations of N rotating traps as ω → ∞.
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1 Introduction

We study the problem for the mean first passage time (MFPT) of a randomly diffusing particle to multiple absorb-

ing mobile traps which undertake a prescribed motion in bounded regions of one and two spatial dimensions. Random

motion is a ubiquitous transport mechanism in many biological, physical and chemical systems. Often, a significant

event is triggered when a dispersing particle reaches a particular site, or meets another particle. Consequently, many

important processes may be formulated as a MFPT problem for the expected time taken for a particle to hit a trap. One

dimensional examples include the financial scenario where an investor sells a stock when it reaches a certain threshold,

and stochastic neuronal membrane activity in which spiking activity is triggered when an action potential threshold is

reached [2, 17].

In two and three dimensions, a special case known as a narrow escape or narrow capture problem (see, e.g.,

[3, 9, 23, 29, 32–34]) arises when the size of the trap is small in comparison to that of the search domain. For

example, intra-cellular processes require proteins to diffuse in the cytoplasm until they reach the nucleus where they

are transported to the interior through nuclear pore complexes distributed on its surface [13, 14, 16, 25]. The cell

nucleus is modeled as a small interior trap as its volume is small in comparison to that of the whole cell. Conversely,

when ions diffuse in search of an open ion channel located on the cell membrane [7, 19, 29, 32], the traps may be

modeled as small absorbing portions of an otherwise reflective boundary. The search for antigen presenting molecules

in lymph node tissue by T cells may be modeled as a three dimensional narrow escape problem with interior traps [12]

in which MFPT yields insight into immune system recognition. In ecological examples, the duration of a predator’s

search for prey and the distance it covers factor into its chances of survival. The prey, such as herds of buffalo or deer,

may be modeled as small stationary patches [24, 26] and the predator assumed to undergo either a pure random search

or a random search with centralizing tendency toward a den site [22, 27, 28, 35]. The applications of narrow escape

problems are numerous, and we refer to [8, 20, 21] for detailed reviews.

Existing mathematical treatments of these examples predominately assume that traps occupy a fixed location over

time. However, in many applications traps are known to be mobile. In the action potential example cited previously,

it has been demonstrated [2, 17] that the threshold for initiation does not remain constant, but changes due to external

input as well as from memory effects due to previous spiking events. As such, the stochastically varying membrane

potential chases a moving target. The expected time to the next triggering event is then a MFPT problem involving a

mobile trap. Similarly, in the example of intra-cellular transport, the cell nucleus is in motion before and after mitosis

[36]; therefore proteins must diffuse to mobile targets in order to complete their processes. In ecological problems,

prey undergo migration or make journeys in search of food or water and so predators must locate transient targets.

In this work, we investigate mean survival times of random walkers in the presence of multiple traps undergoing

prescribed motion along a constrained path. In particular, we study the question of how multiple mobile searchers
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should cooperate in order to most quickly locate a diffusing target. We cite as a typical scenario the search of a lost

person by a team of rescuers.

MFPT problems involving mobile traps have been gaining attention for their various applications and also because

there is not yet a systematic methodolgy for their analysis as exists for stationary traps. A recent review on MFPT

problems in bounded domains [4] cited the generalization to mobile traps as an interesting extension. Many works in

this new direction have focused on one dimensional problems, where the mobile trap undergoes either random motion

or advances in one direction linearly in time [5, 6, 11, 15, 18, 37].

An overarching question is whether a mobile trap is more or less effective than a stationary one. In [39], it

was shown that a single trap undergoing sinusoidal motion in a bounded one-dimensional interval is more effective

only when the frequency exceeds a certain threshold. This criticality can be heuristically understood from a balance

between two competing factors that contribute to the MFPT. First, the placement of the absorbing trap at the center of

the one-dimensional interval results in a lower MFPT. Second, trap mobility allows a trap to explore its space more

effectively and so improves its trapping ability. Therefore, a mobile trap is superior to a stationary one only when it

moves quickly enough to overcome the detrimental effects of moving away from optimal spatial locations.

A similar two dimensional result was established in [38] for a single trap rotating inside the unit disk. The

presence of two variables of motion (frequency and radius of rotation) poses a simple optimization problem: for a

given frequency, what is the radius of rotation that would minimize average mean first passage times? In this setting, a

similar criticality is observed where the trap must rotate sufficiently quickly to offset the detrimental effect of moving

off the origin - the optimal spatial location for the unit disk [23].

In the present work, we analyze MFPT problems in bounded one and two dimensional regions with multiple

mobile traps with prescribed trajectories and emphasize the optimization of average (or global) MFPT with respect

to the relative motion between the traps. In §2, we consider a diffusing particle on a one-dimensional interval with

reflecting or absorbing end points and absorbing internal traps with small amplitude oscillations at common frequency

ω and centered on fixed points with separation ℓ. A schematic of the one dimensional two trap problem is displayed

in Fig. 1.1(a). The linearity of the governing equations allows for trivial extension of the present work to trap trajec-

tories with multiple frequency components. However, we focus herein on trajectories described by a single frequency

component as the resulting motion minimizes the MFPT under a fixed kinetic energy constraint.
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(a) Schematic of 1D problem.
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(b) Schematic of 2D problem.

Figure 1.1: (a) A schematic of the 1D problem with two traps. Two traps oscillate in time at the same frequency tracing out the

paths indicated by the curves. Their relative phase is arbitrary. (b) A schematic of the problem 2D problem with two traps. In the

reference frame rotating clockwise at frequency ω, the first trap is placed on the horizontal axis (without loss of generality) at a

distance r1 from the origin. The second trap is phase shifted counterclockwise by angle θ2 and is a distance r2 from the origin.

Both traps have common radius ε.

We show in the one dimensional setup of Fig. 1.1(a) that the mean capture time of the particle averaged uniformly

over all starting locations (often referred to as global MFPT) is minimized when the two traps oscillate either exactly



First passage time to multiple mobile traps 3

in phase or exactly antiphase, depending on the sign a certain quantity χ(ωℓ2) where

χ(z) =

[

cosh
√

z
2 sin

√

z
2 + sinh

√

z
2 cos

√

z
2

cos
√
2z − cosh

√
2z

]

,

the trap separation as ε → 0 is ℓ and the common frequency is ω. The oscillatory nature of χ(z) means that the

optimal strategy alternates as the frequency of the trap’s motion increases. In §2.1, these results are extended to

N traps oscillating about fixed points xj with small amplitude ε and common frequency ω. We determine that the

globally optimal cooperation strategy corresponds to neighboring traps oscillating either exactly in phase or exactly

out-of-phase depending on the sign of χ(ωℓ2j) where ℓj = xj+1 − xj . We also illustrate a scenario in which the

optimizing strategy does not necessarily correspond to being exactly in or out-of-phase with adjacent traps.

In §3, we consider N small traps of radius 0 < ε ≪ 1 rotating clockwise with common frequency ω at distances

rj from the center of a unit disk with j = 1, . . . , N (schematic in Fig. 1.1(b)). We use a matched asymptotics

approach (e.g., [23, 29, 38]) to compute the global MFPT of a randomly diffusing particle. Our formulation allows

for arbitrary phase differences between the traps. For N = 2, we perform a numerical optimization of the global

MFPT with respect to the two radii of rotation in addition to the relative phase. The results of optimization show

that as ω increases past a critical O(1) frequency, the optimal configuration of the traps switches from rotating at the

same radius but π-radians out of phase to rotating at different radii but exactly in phase. We also show that in the

regime O(1) ≪ ω ≪ O(ε−1), the optimal radii of N traps divides the unit disk into N annuli of equal area (with

the outermost radius approaching the boundary). We also derive an analogous result in the regime ω ≫ O(ε−1). We

further use a hybrid numeric-asymptotic method [10, 38] to interpolate between these two regimes, showing that the

transition between the regimes is smooth. In §4, we draw conclusions and list open avenues for further work. For

a related problem involving optimizing the fundamental Neumann eigenvalue on a two-dimensional domain with N
small Dirichlet holes, see [23] and the references therein.

2 Multiple Traps in 1D

In this section we consider the MFPT problem in a bounded one dimensional interval with reflecting stationary

endpoints and two mobile internal traps undergoing prescribed motion. The approach is readily applicable to non-

stationary or absorbing boundaries. The formulation of this problem leads to the partial differential equation [6, 31, 39]

ut + uxx + 1 = 0; 0 < x < 1; 0 < t <
2π

ω
; (2.1a)

ux(0, t) = ux(1, t) = 0, u(x, 0) = u
(

x,
2π

ω

)

, (2.1b)

together with the trapping conditions

u(x1 + εf1(t)) = u(x2 + εf2(t)) = 0. (2.1c)

For convenience, the diffusivity has been normalized to one. The traps are moving with a common frequency, but with

a phase shift according to their cooperation strategy,

f1(t) = sinωt, f2(t) = sinω(t− φ), φ ∈
(

0,
2π

ω

)

. (2.1d)

The goal is to calculate the global MFPT

τ(φ;ω) =
ω

2π

∫ 2π
ω

0

∫ 1

x=0

u(x, t) dxdt , (2.2)

which gives a measure of the trapping effectiveness of the configuration. From this quantity, optimizing configurations

of φ and ω can be determined. In the limit ε → 0, (2.1) admits a regular expansion of form

u(x, t) = u0(x) + εu1(x, t) + ε2u2(x, t) +O(ε3) , (2.3a)



4 A. E. Lindsay, J. C. Tzou, T. Kolokolnikov

with ux(0, t) = ux(1, t) = 0. Expanding around the trapping boundaries supplements the equations with the internal

conditions

u0(xj) = 0, u1(xj) = −u′
0(xj)f1, u2(xj) = −u′′

0(xj)

2
f2
1 − u′

1(xj)f1, j = 1, 2. (2.3b)

This subdivides the interval Ω = [0, 1] into three distinct regions

R1(t) = (0, x1 + εf1(t)), R2(t) = (x1 + εf1(t), x2 + εf2(t)), R3(t) = (x2 + εf2(t), 1) . (2.3c)

Order ε0: The problem for the leading order solution u0(x, t) is

u0t + u0xx + 1 = 0; −1 < x < 1; u0x(0) = u0x(1) = 0, u(xj) = 0, j = 1, 2 , (2.4)

which has solution

u0(x) =
1

2











−x2 + x2
1, x ∈ R1(t);

−x2 + (x1 + x2)x− x0x1, x ∈ R2(t);

(x2 − x)(x2 + x− 2), x ∈ R3(t).

(2.5)

Order ε1: In region R1, the boundary conditions are u1x(0) = 0 together with

u1(x1) = −u′
0(x1)f1 =

x1

2i

(

eω
2
+t − eω

2
−t
)

, (2.6)

which gives rise to a correction equation featuring the operator

φxx + φt = 0, φ(x, 0) = φ
(

x,
2π

ω

)

. (2.7a)

The general solution of (2.7a) which matches the boundary conditions (2.6) is

φ(x, t;ω) = eω
2
−t [A1 coshω+x+B1 sinhω+x] + eω

2
+t [A2 coshω−x+B2 sinhω−x] , ω± =

√
±iω, (2.7b)

for constants A1, A2, B1, B2. It is convenient to work with a complex form of the solution until the final result, at

which point the real form is obtained. Fitting the relevant boundary conditions for u1(xj) at j = 1, 2, gives the

solutions in each region to be

u1 =
x1

2i

(

eiωt coshω−x

coshω−x1
− e−iωt coshω+x

coshω+x1

)

, x ∈ R1; (2.8a)

u1 =
ℓ

4i

(

eω
2
+t

sinhω−ℓ

[

sinhω−(x − x2)+

eω
2
−φ sinhω−(x − x1)

]

− eω
2
−t

sinhω+ℓ

[

sinhω+(x− x2)+

eω
2
+φ sinhω+(x− x1)

])

, x ∈ R2;(2.8b)

u1 =
x2 − 1

2i

(

eω
2
+t coshω−(x− 1)

coshω−(x2 − 1)
eω

2
−φ − eω

2
−t coshω+(x− 1)

coshω+(x2 − 1)
eω

2
+φ

)

, x ∈ R3 , (2.8c)

where ℓ = x2 − x1. As u1(x, t) has zero mean over t ∈ (0, 2π
ω
), it does not make a direct contribution to τ in (2.2).

However, u1x(xj) for j = 1, 2 contributes to τ through the boundary conditions on u2(xj) given in (2.3b).

Order ε2: Taking the general form u1x(xj) = aje
ω2

−t + bje
ω2

+t where aj and bj are coefficients taken from (2.8), the

boundary conditions on u2(xj) from (2.3b) are

u2(xj) = −u′′
0(xj)

2
f2
1 − u′

1(xj)f1 =
1

2
− aj

2i
+

bj
2i

+O(e2ω
2
±t) .

The general solution is therefore of form u2(x, t) = u2h(x) + u2p(x, t) where u2p(x, t) is the periodic component
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with zero mean over t ∈ (0, 2π
ω
) and makes no contribution to the value of τ . Therefore only u2h(x) is required in

each of the sub regions. As u2h satisfies a homogeneous Neumann condition in regions R1,R3, its value is constant

in those regions while in R2, Dirichlet conditions are applied at either end of the region resulting in a linear form for

u2h:

u2h =
1

2
− x1

4
(ω+ tanhω+x1 + ω− tanhω−x1) , x ∈ R1 (2.9a)

u2h =
(x− x1)

4

[

ω+

sinhω+ℓ
− ω−

sinhω−ℓ

]

sinωφ

+
1

4
− ℓ

8

[

ω+

sinhω+ℓ

(

coshω+ℓ

+eiωφ

)

+
ω−

sinhω−ℓ

(

coshω−ℓ

+e−iωφ

)]

, x ∈ R2 (2.9b)

u2h =
1

2
− 1− x2

4
(ω+ tanhω+(1 − x2) + ω− tanhω−(1− x2)) , x ∈ R3 . (2.9c)

The value of τ is calculated by integration in each subregion with application of Leibniz’s rule. This gives

τ =
ω

2π

∫ 2π
ω

0

[∫

R1

u dx+

∫

R2

u dx+

∫

R3

u dx

]

dt = τ0 + ε2τ2 + · · · , (2.10)

where, after much algebra and simplification of complex valued expressions,

τ0 =
x2
1

3
+

(1− x2)
3

3
+

ℓ3

12
;

τ2 = −
√
2ωx2

1

4

(

sin
√
2ωx1 + sinh

√
2ωx1

cos
√
2ωx1 + sinh

√
2ωx1

)

−
√
2ω(1− x2)

2

4

(

sin
√
2ω(1 − x2) + sinh

√
2ω(1 − x2)

cos
√
2ω(1− x2) + sinh

√
2ω(1− x2)

)

+
ℓ

2
+

√
2ωℓ2

8

(

sin
√
2ωℓ + sinh

√
2ωℓ

cos
√
2ωℓ − cosh

√
2ωℓ

+ 2

[

cosh
√

ω
2 ℓ sin

√

ω
2 ℓ+ sinh

√

ω
2 ℓ cos

√

ω
2 ℓ

cos
√
2ωℓ− cosh

√
2ωℓ

]

cosωφ

)

.

The local extrema of τ = τ(φ) are ωφ = 0, π and correspond to the two traps being exactly in or out phase with each

other. The nature of these critical points is determined by

d2τ

dφ2
= −ε2

√
2ω

5
2 ℓ2

4
χ(ωℓ2) cosωφ, χ(z) =

[

cosh
√

z
2 sin

√

z
2 + sinh

√

z
2 cos

√

z
2

cos
√
2z − cosh

√
2z

]

. (2.11)
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Figure 2.1: Plot of χ(z) from (2.11) with first three roots indicated.
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Therefore, the MFPT is minimized by the traps moving in phase (φ = 0) when χ(ωℓ2) < 0 and by out of phase

(φ = π/ω) when χ(ωℓ2) > 0. The graph of χ(z) in Fig. 2.1 indicates that its sign changes over certain intervals of

z = ωℓ2. Applying a large argument approximation to χ(zk) = 0 implies that these thresholds are approximated by

zk ≈ π2

8
(−1 + 4k)2, k = 1, 2, 3, . . . , (2.12)

which agrees closely with values obtained from numerical solution of χ(zk) = 0 given in Table 2.1. Therefore, the

optimal alignment strategy of the traps alternates as the quantity ωℓ2 increases.

z1 z2 z3

Approximate 11.1033 60.4513 149.2778
Numerical 11.1866 60.4517 149.2778

Table 2.1: Approximate (2.12) and numerical values for the critical z = ωℓ2 over which the optimal cooperation strategy changes.

2.1 N traps in 1D

The analysis of the previous section can easily be extended to accommodate N traps undergoing motion with

relative phases to one another. The 1D domain (x1, xN ) is expressed as union of N − 1 intervals ∪N−1
j=1 Rj(t) where

Rj(t) = (xj + εfj(t), xj+1 + εfj+1(t)), fj(t) = sinω(t− φj), ℓj = xj+1 − xj .

In this case all traps, including the end points, are absorbing and we assume the cooperation phases φj are free variables

over which to optimize. Following the same process as the two trap problem yields that

τ ∼
N−1
∑

j=1

ℓ3j
12

+ ε2
N−1
∑

j=1

[

ℓj
2

+

√
2ωℓ2j
8

(

sin
√
2ωℓj + sinh

√
2ωℓj

cos
√
2ωℓj − cosh

√
2ωℓj

+ 2χ(ωℓ2j) cosω(φj+1 − φj)

)]

. (2.13)

where ℓj = xj+1 − xj . When the intervals have common length, ℓj = ℓ for j = 1, . . . , N − 1, the conclusions are the

same as the two trap case, i.e. the MFPT is minimized by moving in phase with the neighboring trap if χ(ωℓ2) < 0
and out of phase with neighboring traps if χ(ωℓ2) > 0. For non uniform spacing, finding the lowest MFPT is reduces

to minimizing f(s1, . . . , sn) =
∑n

j=1 aj cos sj for sj ∈ (0, 2π). The global minimum of this function is −∑n
j=1 |aj |

which is attained when sj = 0 if aj < 0 and sj = π if aj > 0. Consequently, the co-operation strategy for N traps to

minimize MFPT is

φj+1 − φj =







0 if χ(ωℓ2j) < 0;

π

ω
if χ(ωℓ2j) > 0,

(2.14)

with a corresponding minimum MFPT

τ =
N−1
∑

j=1

ℓ3j
12

+ ε2
N−1
∑

j=1

[

ℓj
2

+

√
2ωℓ2j
8

(

sin
√
2ωℓj + sinh

√
2ωℓj

cos
√
2ωℓj − cosh

√
2ωℓj

− 2|χ(ωℓ2j)|
)]

. (2.15)

Similarly, the global MFPT τ is maximized by adopting the opposite phase cooperation strategy to (2.14).

2.2 Adaptation to neighboring traps

As a demonstration of this theory in which the optimal strategy is not exactly in phase or antiphase, we suppose a

fixed configuration of traps is present with common frequency ω and individual phases. We then insert an additional

trap of frequency ω at location xk with phase φk. The contribution to the MFPT τ which depends only on the phase
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(a) Graph of τ against ωφ for ω = 1. Asymptotic (solid line) and

numerical solutions (open circle).

(b) Numerical solution of (2.1) over one period with two antiphase

mobile absorbing boundary traps.

Figure 2.2: Validation of the asymptotic theory with two mobile boundary traps and ω = 1. (a) Agreement of numerical and

asymptotic theories as the phase difference between the two traps varies. (b) Numerical computation of the MFPT over one period

with two antiphase absorbing mobile boundary traps.

φk of the additional trap is

Ik =
ε2√
8ω

[zk cosω(φk+1 − φk) + zk−1 cosω(φk − φk−1)] , zk = ωℓ2k χ(ωℓ
2
k) ,

where xk+1 and xk−1 are the locations of the traps adjacent to the inserted one. Assuming φk−1 and φk+1 are fixed,

the local extrema of this interaction function are the two solutions φ±
k ∈ (0, 2π/ω) of the equation

tanωφ±
k =

zk sinωφk+1 + zk−1 sinωφk−1

zk cosωφk+1 + zk−1 cosωφk−1
. (2.16)

Therefore, the optimal interaction strategies are not simply in or out of phase with the adjacent traps, but determined

by a weighted average of their phases. The nature of each local extrema follows from the sign of

d2Ik
d2φk

(φ±
k ) = −ω2Ik(φ±

k ) = −ε2ω
3
2

√
8

secωφ±
k

[

zk cosωφk+1 + zk−1 cosωφk−1

]

.

As an example, consider two mobile traps centered at x = 0, 1 with fixed phases ωφ = 0, π
4 respectively and common

frequencyω. An additional mobile trap is centered at location 0 < s < 1 with phase φs and frequencyω. From (2.16),

the optimizing values of φs satisfy

tanωφ±
s =

(1 − s)2χ(ω(1− s)2) sin π
4

(1− s)2χ(ω(1− s)2) cos π
4 + s2χ(ωs2)

. (2.17)

In Fig. 2.3, we display the solution of (2.17) for values of ω = 5 and ω = 50. The optimal adaptation strategy is

observed to depend quite sensitively on the frequency ω and the spatial placement of the trap.
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Figure 2.3: The MFPT minimizing phase ωφ−
s of a trap inserted as a function of spatial placement s ∈ (0, 1) for ω = 5 and

ω = 50. Curves obtained from solution of (2.17).

3 N traps on a unit disk

In this section, we seek optimal cooperation strategies for two small identical mobile traps in two dimensions.

We formulate the problem for the case of N traps, but perform numerical optimization only for the two trap case.

In analogy to the formulation of mobile traps in 1D, the nondimensionalized MFPT u for a Brownian particle in a

2D domain Ω in the presence of a mobile trap undergoing 2π-periodic motion in time satisfies the three dimensional

boundary value problem

∆u+ uz + 1 = 0 , x ∈ Ω \ Ωtrap(z) , z ∈ [0, 2π) , (3.1a)

u = 0 , x ∈ ∂Ωtrap(z) , ∂nu = 0 , x ∈ ∂Ωr , z ∈ [0, 2π) , (3.1b)

u(x, 0) = u(x, 2π) , x ∈ Ω \ Ωtrap(z) . (3.1c)

In (3.1), Ωr is the reflective outer boundary of the domain Ω, and Ωtrap(z) encodes the evolution of the trap’s shape

and location in time. For the assumption of periodicity, we require Ωtrap(z + 2π) = Ωtrap(z).

Analysis of (3.1) is in general very difficult. We therefore consider the special case in which the N traps rotate at

the same frequency about the center of a unit disk. With this rotational symmetry, the geometry of the corresponding

PDE remains two dimensional. A detailed derivation of the PDE for a single rotating trap is given in [38], which we

generalize here for N rotating traps. In the frame of N traps each rotating clockwise about the center of the disk with

frequency ω, we obtain the mixed Neumann-Dirichlet boundary value problem

∆u+ ωuθ + 1 = 0 , x ∈ Ω \ ∪N
j=1Ωεj ; (3.2a)

u = 0 , x ∈ ∂Ωa = ∪N
j=1∂Ωεj , j = 1, . . . , N ; ∂nu = 0 , x ∈ ∂Ωr , (3.2b)

where uθ is the derivative of u with respect to the angular coordinate θ. In (3.2), the absorbing set ∂Ωa consists of the

boundaries of N small traps separated by O(1) distance, Ωr the reflective outer boundary of the disk, and u(x) the

nondimensional mean first passage time to one of the traps starting from location x. The j-th trap Ωεj = xj + εΩ0j is

centered at location xj , where Ω0j is the O(1) geometry of the trap and ε is its “radius.” The schematic and a typical

solution (computed using the finite element software FlexPDE [1]) are shown in Figs. 1.1(b) and 3.1, respectively.

Assuming a uniform distribution of starting locations, the average MFPT (or sometimes referred to as global

MFPT) is the quantity

ū =
1

|Ω|

∫

Ω

u(x) dΩ , (3.3)
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Figure 3.1: A typical 2-trap solution with ε = 0.1, ω = 30, r1 = 0.3, r2 = 0.7, and θ2 = 3π/4. Blue (red) regions indicate small

(large) values of u. Notice that MFPT is lower in front of the rotating traps than it is behind. Computed using the finite element

software FlexPDE.

where |Ω| is the size of the domain. Below, we calculate ū in terms of the trap locations xj . We then optimize ū with

respect to the locations. To reduce the number of parameters in the optimization problem, we assume that all traps are

circular and share a common radius ε. That is, we assume Ω0j is the unit disk for j = 1, . . . , N .

3.1 The regime ω ∼ O(1)

In the regime ω ∼ O(1), we adopt the method of matched asymptotic expansions [23, 29] to calculate ū as a

function of the relative locations xj of N traps. In the inner region near the j-th spike, we let y = |x − xj |/ε and

u(xj + εy) = Uj(y) to obtain the leading order inner problem

∆Uj = 0 , y ∈ R
2 \ Ω0j , Uj ∼ Sj log |y| − Sj log dj as |y| → ∞ . (3.4)

In (3.4), dj is the referred to as the logarithmic capacitance of the j-th trap, which depends on the geometry Ω0j . A

list of numerical and analytic values of d for different shapes are given in [30]. For the case we consider, where Ω0j is

the unit disk, dj = 1 so that Uj = Sj log |y| is the exact solution of (3.4). The quantity Sj , the strength of trap j, is to

be determined from a system of linear equations obtained by matching inner and outer solutions. In terms of the outer

variables, we calculate the matching condition

u ∼ Sj log |x− xj | − Sj log ε as x → xj . (3.5)

Since u is logarithmic near each trap, we may express u as a sum of Neumann Green’s functions G(x,x0) satisfying

∆G+ ωGθ =
1

|Ω| − δ(x− x0) , x ∈ Ω; (3.6a)

∂nG = 0, x ∈ ∂Ω ,

∫

Ω

GdΩ = 0 , (3.6b)

G ∼ − 1

2π
log |x− x0|+R(x0,x0) as x → x0 . (3.6c)

Then in the limit ε → 0, we write

u = −2π

N
∑

j=1

SjG(x,xj) + ū . (3.7)

In (3.6c), R(x0,x0) is the regular part of G as x → x0, referred to as the self-interaction term. By the integral

condition in (3.6b), which uniquely specifies G, ū in (3.7) is the uniform average of u in (3.3) that we seek to optimize.
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To obtain the N +1 equations for S1, . . . , SN and ū, we first compare (3.7) with (3.6) to (3.2) to obtain the solvability

condition

N
∑

j=1

Sj =
1

2
. (3.8)

The other N equations come from applying the matching condition (3.5) at the N trap locations xj . Letting x → xi

in (3.7) and using the limiting behavior of G near xi, we calculate

−2πSi

[

− 1

2π
log |x− xi|+Rii

]

− 2π

N
∑

j 6=i

GijSj + ū = Si log |x− xi|+
Si

ν
, (3.9)

where Rii ≡ R(xi,xi), Gij ≡ G(xi,xj), and ν ≡ −1/ log ε ≪ 1. The logarithmic terms in (3.9) match by

construction. To write (3.9) in matrix form, we define

s ≡







S1

...

SN






, e ≡







1
...

1






, E ≡ ee

t , G ≡













R11 G12 · · · G1N

G21
. . .

. . .
...

...
. . .

. . . GN−1,N

GN1 · · · GN,N−1 RNN













, (3.10)

where t denotes the transpose, and G in (3.10) is the Green’s interaction matrix, which encodes information on the

locations of the N traps. In contrast to the Green’s matrix in [23], G is not symmetric due to the symmetry-breaking

rotation of the traps. We rewrite (3.8) and (3.9) in the form

2πGs+ 1

ν
Is = ūe , e

t
s =

1

2
, (3.11)

where I is the N ×N identity matrix. Multiplying both sides of (3.11) by e
t and solving for ū, we obtain the solution

for ū and the strengths of the traps S1, . . . , SN

ū =
1

N

[

2πetGs+ 1

2ν

]

, s =
1

2νN

[

2π

(

I − 1

N
E
)

G +
1

ν
I
]−1

e . (3.12)

We observe in (3.12) that Sj = (2N)−1 to leading order in ν−1 for all j, and ū = (2νN)−1. That is, all traps share

a common strength to leading order, and ū increases logarithmically as ε → 0. The effect of trap locations on ū is

therefore a smaller O(1) correction.

To construct the Green’s interaction matrix (3.10) in the case ω 6= 0, we adopt a Fourier series approach where

we let x = (r cos θ, r sin θ). The Neumann Green’s function satisfying (3.6) is then given by [38]

G(x,x0;ω) = G(r, θ, r0, θ0;ω) = R0(r, r0) +
∑

m>0

eim(θ−θ0)Rm(r, r0) + c.c. , (3.13a)

where the coefficients R0 and Rm are given by

R0(r, r0) =
r2

4π
+

1

8π
[2r20 − 3]− 1

2π

{

log r0 , 0 < r < r0

log r , r0 < r < 1
, (3.13b)

Rm(r, r0;ω) =
1

2π















[

−K ′
m(cm)

I ′m(cm)
Im(cmr0) +Km(cmr0)

]

Im(cmr) , 0 < r < r0

[

−K ′
m(cm)

I ′m(cm)
Im(cmr) +Km(cmr)

]

Im(cmr0) , r0 < r < 1

, cm ≡ −i
√
imω .

(3.13c)

The regular part of G is obtained by using the definition in (3.6c) and expressing log |x − x0| in terms of its Fourier
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series. This calculation yields

R(x0;x0) =
r20
2π

− 3

8π
+
∑

m>0

(

Rm(r0, r0)−
1

4πm

)

+ c.c. . (3.13d)

In (3.13), c.c. refers to the complex conjugate of the term involving the summation. In the case where ω, ε are fixed

and N = 2, we compare in Fig. 3.2 the asymptotic result (3.12) for ū to full numerical solutions of (3.2) obtained

using FlexPDE. In Fig. 3.2(a), we let the polar coordinates of the first trap be (r1, θ1) = (0.4, 0), with the second

located at various locations on the ring r2 = 0.8. In Fig. 3.2(b), we fix the angle of the second trap at θ2 = π, and

vary r2 between 0 and 1. In both figures, we observe excellent agreement between the asymptotic formula (3.12) and

numerical results.

0 1 2 3 4 5 6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

θ2

ū

(a) ū versus θ2

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

1.05

r2

ū

(b) ū versus r2

Figure 3.2: Comparison of the asymptotic formula for ū (3.12) (solid curve) versus numerical results obtained from numerical

solution of (3.2) (circles) with parameter values ω = 5 and ε = 0.01. In both figures, the first trap is located at (r1, θ1) = (0.4, 0)
while the location of the second (r2, θ2) is varied. In (a), r2 = 0.8 while θ2 is varied. In (b), θ2 = π while r2 is varied.
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(a) optimal radii of rotation
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(b) optimal relative phase

Figure 3.3: Optimal radii of rotation (a) along with relative phase and minimum ū (b) obtained from optimizing (3.12) for a range

of ω. For ω . 14, the optimal configuration consists of two traps rotating π-phase apart at a common radius. For 14 . ω . 160,

the optimal configuration has the traps rotating exactly in phase but on two different rings. For ω & 160, the phase difference

becomes nonzero while the traps remain on two different rings. For ū, its optimal value is decreasing for all ω. The dashed lines in

(a) represent the limiting behavior in the subregime O(1) ≪ ω ≪ O(ε−1).
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Using MATLAB’s global optimization algorithm fmincon(), we optimize ū in (3.12) over r1, r2, and θ2, where,

without loss of generality, we set the angular location of one of the traps at θ1 = 0. The results are shown in Fig.

3.3. For ω . 14, the optimal configuration consists of two traps rotating π-phase apart at a common radius. For

14 . ω . 160, the optimal configuration has the traps rotating exactly in phase (θ2 = 0) but on two different rings.

This “bifurcation” is analogous to that found in [38] for one rotating trap, where the optimal radius of rotation is

nonzero only when ω & 3. The key difference, however, is that since a zero radius of rotation implies that the trap

remains stationary, rotation in the one trap case can be detrimental to search times when ω is small. That is, one

observes a decrease in the optimal MFPT only when ω & 3. In contrast, we observe for this two trap configuration

that the optimal MFPT is a decreasing function of ω for any ω (dashed curve in Fig. 3.3(b)). For ω & 160, the phase

difference again becomes nonzero, but the two traps remain on different rings. As we demonstrate in §3.2, the relative

phase becomes less important the faster the rotation rate.

We note that, in the small ω limit of Fig. 3.3(a), the result is the same as that obtained from optimizing ū with the

Neumann Green’s function and its regular part (3.13) replaced by their ω = 0 variants [23]. For large ω, the optimal

radii approach r1 = 1/
√
2 and r2 = 1, represented by the dashed lines. In this limit, the accuracy of the truncated sum

of (3.13d) is diminished due to numerical under- and overflow. In §3.2, we adopt a different approach to calculating ū
in this particular large ω regime that does not involve a infinite sum. We use it to demonstrate the result suggested by

the dashed lines in Fig. 3.3(a), and extend it to N traps.

3.2 The sub-regime O(1) ≪ ω ≪ O(ε−1)

In §3.1, optimal configurations could only be found through numerical optimization of a function involving a

truncated series. It is thus very difficult to understand how the optimal radii of rotation behave in the limit of large ω.

Here, we use a leading order expression for the Neumann Green’s function to calculate a closed form expression for

the objective function ū. This simplified result allows the limiting behavior of the optimal radii shown in Fig. 3.3(a)

to be calculated explicitly. We note that this is not a distinguished regime, as it is contained within the O(1) regime.

In that sense, we consider ω as being fixed at a very large value while ε is sent to 0. In this limit, a trap rotating on

the ring of radius r0 can be thought of as being almost everywhere on that ring at once. This near-radial symmetry

was exploited in [38], where a matched asymptotics approach was employed to compute the leading order radially

symmetric solution of (3.6)

G(r, r0) =
r2 − r20
4π

− 1

2π
Θ(r − r0) log

(

r

r0

)

+ Ĥ , (3.14a)

where Θ(z) is the Heaviside step function and

Ĥ(r0) = − 1

π

[

−r20
2

+
3

8
+

1

2
log r0

]

+O(ω−1) . (3.14b)

From a separately constructed inner solution, the limiting behavior of G

G(r, r0) ∼
1

2π

[

− log |x− x0| − log
(r0ω

4

)

− γ
]

+ Ĥ , as x → x0 , (3.15)

yields the leading order regular part of G

R(r0) =
1

2π

[

− log
(r0ω

4

)

− γ
]

+ Ĥ(r0) . (3.16)

In (3.15), γ is Euler’s constant. Recalling that s = (2N)−1
e to leading order in ν, we calculate the simplified leading

order formula for ū

ū =
π

N2

∑

ij

Gij +
1

2νN
, (3.17)

where Gij is the ij-th entry of the matrix G defined in (3.10). For N = 2, assuming r1 < r2, we use (3.14) to calculate

ū =
1

8

[

log

(

16

ω2

)

− 2γ − 3 + 2(r21 + r22)− 2 log r1 − 4 log r2

]

+
1

4ν
. (3.18)



First passage time to multiple mobile traps 13

Finding the critical points of (3.18) by solving ∂r1 ū = ∂r2 ū = 0 leads to two uncoupled equations for r1 and r2. The

result is that ū is minimized to leading order when r1 and r2 are given by

r1 ∼ 1√
2
, r2 ∼ 1 , as ω → ∞ with ω ≪ O(ε−1) . (3.19)

We make three remarks. The first is that result (3.19) is rather counterintuitive given the suboptimal nature of search

locations near boundaries. However, it was shown also [38] in the same subregime O(1) ≪ ω ≪ O(ε−1) that a single

rotating trap is best placed asymptotically close to the boundary of the unit disk. Second, in assuming radial symmetry

in constructing G in (3.15), we have lost resolution on θ2, the relative phase between the two traps. Because the radial

symmetry of u increases with increasing ω, the effect of relative phase diminishes in this regime. Lastly, the two rings

of rotation divide the unit disk into two regions of equal area. In fact, it can be easily shown using (3.17) that the

optimal radii of rotation for N traps are

rj =

√

j

N
, j = 1, . . . , N . (3.20)

The results of [23, 38] show that a single Dirichlet ring on which u = 0 is best placed at r = 1/
√
2, which divides

the unit disk into two equal areas. In [38], this occurred in the ω → ∞ regime with ω ≫ O(ε−1) regime. The

result (3.20), showing that the equal division of area in fact occurs in the O(1) ≪ ω ≪ O(ε−1) subregime, is thus

unexpected. In Fig. 3.4, with r1 = 1/
√
2 fixed, we verify the formula (3.18) with full numerical solutions of (3.2) for

various r2. We observe that ū is minimized very near r2 = 1, consistent with (3.19). The circles (stars) are for θ2 = 0
(θ2 = π), their similarity showing that the relative phase of the traps has little effect on ū. We also remark that, in

contrast to the case of N optimally placed stationary traps, which share a few concentric rings, (3.20) shows that for

sufficiently high rotation frequencies, each trap occupies its own ring.

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

r2

ū

Figure 3.4: Comparison in the regime O(1) ≪ ω ≪ O(ε−1) of ū from (3.18) (solid) with that from full numerical solutions

of (3.2) (circles and stars). One radius of rotation is fixed at r1 = 1/
√
2, while the second (r2) is varied. We observe that ū is

minimized very near r2 = 1, consistent with (3.19). Here, ω = 500 and ε = 1× 10−4. The circles (stars) are for θ2 = 0 (θ2 = π),

showing that the relative phase of the traps has little effect on ū.

3.3 The regime ω ∼ O(ε−1)

In the distinguished regime ω = ε−1ω0 with ω0 = O(1), the equation in the O(ε) j-th inner region is no longer

the radially symmetric Laplace’s equation outside the unit disk. Indeed, with scaling y = ε−1(x − xj), both the

∆u and ω∂θu terms in (3.2) become O(ε−2). Recalling that the relative phases of the traps has little effect on ū, we

assume for simplicity that they are all located on θj = 0. With Uj(y) = u(xj + εy), the equation in the j-th inner
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region then becomes

∆Uj + ω0rj
∂

∂y2
Uj = 0 , |y| > 1 , Uj = 0 , |y| = 1 , Uj ∼ uj(ω0rj) as |y| → ∞ ; y = (y1, y2) ,

(3.21a)

where uj(ω0rj) is a constant to be found. This inner solution and the outer solution is mediated through an interme-

diate parabolic layer with scaling r̂ =
√
ω0(r − rj)/

√
ε and θ̂ = 2π − θ, forming an O(

√
ε) layer around the ring

r = rj . In this layer, u = ûj satisfies the parabolic equation

ûjr̂r̂ − û
jθ̂

= 0 , ûj(r̂, 0) =
√
εcjδ(r̂) + uj , (3.21b)

where cj is an O(1) constant. The solution of (3.21b) decays to the constant uj as r̂ → ∞ so that u in the outer region

is approximately constant on the ring r = rj . Therefore, the leading order radially symmetric outer solution satisfies

the ODE

urr +
1

r
ur + 1 = 0 , u = uj(ω0rj) , r = rj , u′(0) = u′(1) = 0 . (3.21c)

The solution to (3.21) was found in [38] for a single rotating trap using a hybrid numeric-asymptotic technique similar

to that employed in [10]. Here, we extend the method to the case of two traps, noting that extension to N traps follows

in the same manner. Our goal is to calculate uj in order to uniquely specify the outer equation (3.21c).

We begin by letting Uj = uj(µj + 1). Substituting into (3.21a), we obtain for µj

∆µj + qj
∂µj

∂y2
= 0 , |y| > 1 , µj = −1 , |y| = 1 , µj ∼ 0 as |y| → ∞ ; qj ≡ ω0rj . (3.22)

The quantity we seek is the flux of µj on the boundary of the unit disk Ω0,

Φj ≡
∫

∂Ω0

∂µj

∂n
dS , (3.23)

where ∂/∂n denotes the outward normal derivative on Ω0. The flux may be extracted numerically as follows [10, 38].

We first consider the adjoint Green’s function satisfying

∆G̃− qj
∂G̃

∂ξ2
= δ(ξ − z) , G̃ → 0 as |ξ| → ∞ , (3.24)

which may be solved to give

G̃(ξ; z) = − 1

2π
e

qj

2
(η−z2)K0

(qj
2
|ξ − z|

)

; ξ = (ξ1, ξ2) , z = (z1, z2) . (3.25)

In polar coordinates (ξ1, ξ2) → (r̃ cos θ̃, r̃ sin θ̃) and (z1, z2) → (ρ cosφ, ρ sinφ), the solution to (3.22) can then be

expressed in terms of G̃ in (3.25) as

µj(ρ cosφ, ρ sinφ) =

∫ 2π

0

∂G̃

∂r̃

∣

∣

∣

∣

∣

r̃=1

dθ̃ +

∫ 2π

0

(

G̃
∂µj

∂r̃

)

r̃=1

dθ̃ − qj

∫ 2π

0

G̃
∣

∣

∣

r̃=1
sin θ̃ dθ̃ . (3.26)

Note that all integrals in (3.26) are over the boundary of the unit disk ∂Ω0. To extract the flux ∂µj/∂r̃|r̃=1, we impose

the boundary condition µj = −1 on ρ = 1, yielding

−
∫ 2π

0

G̃
∣

∣

∣

r̃=ρ=1

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ =
1

2
+

∫ 2π

0

∂G̃

∂r̃

∣

∣

∣

∣

∣

r̃=ρ=1

dθ̃ − s0

∫ 2π

0

G̃
∣

∣

∣

r̃=ρ=1
sin θ̃ dθ̃ . (3.27)

The integral equation (3.27) may then be solved numerically for ∂µj/∂r̃|r̃=1. In (3.27), the 1/2 term is a result of

evaluating µj on ∂Ω0 and thus integrating over only half of the delta function in its Green’s function representation.
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To express Φj in terms of the flux fj of u, we recall that u ∼ uj(µj + 1) near x = xj . Substituting into (3.23), we

obtain

uj =
fj

∫

∂Ω0

∂µj

∂n
dS

= −fj
π

−π
∫

∂Ω0

∂µj

∂n
dS

. (3.28)

where fj is the flux of u on the j-th trap. We rewrite (3.28) as

uj = −fj
π
u0j , u0j ≡

−π

Φj

, (3.29)

where Φj is defined in (3.23). The quantity u0j(qj), whose dependence on qj ≡ ω0rj is through that of µj , was

computed in [38] and reproduced in Fig. 3.5. To find uj in (3.29), we require N equations for fj . We demonstrate this

0 10 20 30 40
0

0.5

1

1.5

2

qj

u0j(qj)

Figure 3.5: Plot of u0j versus qj ≡ ω0rj .

for two traps. In the three distinct regions, we compute ur as

ur = − r

2
+



















0, 0 < r < r1;

2c

r
, r1 < r < r2;

1, r2 < r < 1,

c ≡ 1

log r1
r2

[

u1 − u2 +
1

4

(

r21 − r22
)

]

. (3.30)

The total fluxes on the rings r = r1 and r = r2 must, respectively, be f1 and f2. We calculate that

f1 = −2πc , f2 = 2πc− π . (3.31)

We remark that f1 + f2 = −π, as expected from applying the divergence theorem to (3.2). Finally, with c defined in

(3.30), we obtain u1 and u2

u1 =
1

2

u01(r
2
1 − r22 − 4u02)

log r1
r2

− 2u01 − 2u02
, u2 =

1

2

u02

(

2 log r1
r2

− r21 + r22 − 4u01

)

log r1
r2

− 2u01 − 2u02
, r1 < r2 . (3.32)

The mean of u is then obtained from computing the mean of the solution of (3.21c), which yields

ū =
1

8 log r1
r2

[

(r22 − r21)(r
2
2 − r21 + 4(u2 − u1)) + (4r22 + 8u2 − 3− 4 log r2) log

r1
r2

]

, r1 < r2 . (3.33)

In Fig. 3.6(a), with ω0 = 10, ε = 0.001 and r2 = 0.95, we compare (3.33) (solid) with full numerical solutions of

(3.2) (circles) for a range of r1. We observe good agreement not only in the value of ū, but in where the minimum
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occurs. Further confirmation of the analysis (not shown) comes from the agreement of u1 and u2 given asymptotically

by (3.32) with that obtained from numerical solutions of (3.2). In Fig. 3.6(b), we show the optimal radii of rotation

obtained from optimizing (3.33) with respect to r1 and r2.
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Figure 3.6: In (a), with ω0 = 10, ε = 0.001, and r2 = 0.95, we compare ū in (3.33) for a range of r1 (solid) against full numerical

results of (3.2) (circles). The asymptotic result (3.33) correctly predicts the location of the minimum. In (b), we show optimal radii

r1 and r2 that minimize ū. The dashed lines are the optimal radii r1 = 1/
√
2 and r2 = 1 in the limit ω0 → 0. The dotted lines

represent the limit in which ω0 → ∞, discussed in §3.4.

We remark that this regime interpolates between the O(1) ≪ ω ≪ O(ε−1) subregime (ω0 → 0) and the ω → ∞
regime with ω ≫ O(ε−1) (ω0 → ∞). Taking the latter limit in (3.21a), it is simple to see that, since ∂y2

Uj = 0
and Uj = 0 on ∂Ω0, we must have uj = 0. This corresponds to the case in which u = 0 on the ring r = rj , which

occurs in the limit of infinitely fast trap rotation. This limit is discussed in detail in §3.4, the two-trap result of which

is represented by the dotted lines in Fig. 3.6(b).

To analyze the former limit ω0 → 0 (dashed lines in Fig. 3.6(b)), we must look at the corresponding limit qj → 0

in (3.25) and (3.27). From the asymptotics of modified Bessel functions, we calculate the leading order behavior of G̃
and ∂r̃G̃|r̃=ρ=1

G̃ ∼ 1

2π
[log qj + log |ξ − z| − log 4 + γ]+O(qj log qj) ,

∂G̃

∂r̃

∣

∣

∣

∣

∣

r̃=ρ=1

∼ 1

4π
+O(qj) , as qj → 0 , (3.34)

where γ is Euler’s constant. With (3.34) in (3.27), we have to leading order that

− 1

2π
[log qj − log 4 + γ]

∫ 2π

0

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ − 1

4π

∫ 2π

0

log
[

(cos θ̃ − cosφ)2 + (sin θ̃ − sinφ)2
] ∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ = 1 .

(3.35)

Since the limit ω0 → 0 in (3.22) corresponds to µj approaching a radially symmetric solution, we assume that ∂r̃µj is

uniform on ∂Ω0. The second term in (3.35) consequently integrates to zero, leaving

∫ 2π

0

∂µj

∂r̃

∣

∣

∣

∣

r̃=1

dθ̃ ∼ − 2π

log qj − log 4 + γ
. (3.36)

Using (3.36) in (3.29), and noting that ∂n = −∂r̃, we obtain the asymptotic behavior of u0j in the limit of small qj

u0j ∼ −1

2
[log qj − log 4 + γ] . (3.37)

With qj = ω0rj , substituting (3.37) for u01 and u02 into (3.33) and discarding terms of O(1/ logω0) results in

precisely (3.18). The optimal radii of rotation then, as depicted in Fig. 3.6(b), approach r1 = 1/
√
2 and r2 = 1
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(dashed lines) as ω0 → 0. As such, the transition between the results of the regimes O(1) ≪ ω ≪ O(ε−1) and

ω ∼ O(ε−1) is smooth.

3.4 The regime ω → ∞ with ω ≫ O(ε−1)

In this regime the MFPT u is radially symmetric and satisfies

urr +
1

r
ur + 1 = 0, u(rj) = 0 and u′(0) = u′(1) = 0 , 0 ≤ r1, . . . , rN ≤ 1 . (3.38)

The solution to (3.38) can be obtained in piecewise fashion. The optimal radii are then found by optimizing
∫ 1

0
u(r)rdr

with respect to N variables r1, . . . rN .

We now show how this N−dimensional optimization problem can be reduced to a sequence of N − 1 algebraic

equations whose solution yields the optimal radii. We first define two functions: let r2 = F (r1, r3) be the optimal

ring location r2 for the MFPT problem on an annulus with Dirichlet boundary conditions on r = r1 and r3, and with

a ring trap at location r2 ∈ (r1, r3). That is, let

r2 = F (r1, r3) = minarg
r2∈(r1,r3)

∫ r3

r1

u(r)rdr , (3.39a)

where u(r) solves

urr +
1

r
ur + 1 = 0, u(r1) = u(r2) = u(r3) = 0. (3.39b)

Similarly, let r1 = G(r2) be the optimal location of the ring trap of radius r1 inside a Dirichlet disk of radius r2 :

r2 = G(r2) = minarg
r1∈(0,r2)

∫ r2

0

u(r)rdr , (3.40a)

where u(r) solves

urr +
1

r
ur + 1 = 0, u(r1) = u(r2) = 0, u′(0) = 0. (3.40b)

The following are three key observations that allow us to “decouple” the problem.

• Observation 1: For an optimal configuration r1, . . . , rN which minimizes min
r1,...,rN

∫ 1

0 u(r)rdr of problem

(3.38), one has that r1 = G(r2), r2 = F (r1, r3), . . . , rN−1 = F (rN−2, rN ). In other words, r2 is optimal

for the MFPT with Dirichlet boundary conditions of an annulus of radii r1 and r3, and so on.

• Observation 2: If r2 = F (r1, r3) then r2
r3

= F ( r1
r3
, 1) and similarly, r1 = G(r2) ⇐⇒ r1

r2
= G(1). This is

a simple consequence of the geometric invariance under the scaling of space.

• Observation 3: Let A1, . . . , AN+1 be the areas of the regions that are obtained by cutting the disk along

the radii r1, . . . , rN . Then the sum of even areas is equal to the sum of odd areas. We show below that this

condition may be written as

r21 − r22 + r23 − . . .+ (−1)Nr2N − (−1)N
1

2
= 0. (3.41)

The first two observations yield the following algorithm to compute the optimal radii of rotation r1, . . . , rN . First,

define:

zi =
ri

ri+1
, i = 1, . . . , N − 1. (3.42)

Then from Observation 2, we have that z1 satisfies z1 = G(1), while zi for i > 1 may be found sequentially by solving

z2 = F (z1z2, 1), . . . , zN−1 = F (zN−1zN , 1). Once we determine z1, . . . , zN−1, the radii r1, . . . , rN are found by

simultaneously solving (3.41) and (3.42).
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Explicit solutions of (3.39) and (3.40) show, respectively, that z1 satisfies

4− z21 − 1

z21 ln (z1)
= 0 , (3.43)

while zi+1 is related to zi through

4− z2i+1 − 1

z2i+1 ln (zi+1)
=

z2i − 1

ln (zi)
, i ≥ 1. (3.44)

Note that the values of zi are universal and do not depend on N. The first seven values of zi are approximately:

k 1 2 3 4 5 6 7

zk 0.533543 0.712445 0.792159 0.837265 0.866283 0.886517 0.901433

To illustrate this method, we consider the case of N = 3 rings. Then we have

r1 = z1z2r3 , r2 = z2r3, r3 =

√

1/2

(z1z2)
2 − (z2)

2
+ 1

, (3.45)

which yields the optimal radii of rotation for the three traps r1 = 0.33679, r2 = 0.63124, r3 = 0.886022. We

observe that these radii satisfy (3.41) of Observation 3, which we show here. First, consider the following problem:

rm = minarg
rm∈(ri,ro)

∫ ro

ri

u(r)rdr , (3.46a)

where u(r) solves

urr +
1

r
ur + 1 = 0, u′(ri) = u′(ro) = 0, u(rm) = 0. (3.46b)

For a fixed rm, u(r) is given by

u =















r2m − r2

4
+

r2i
2
ln (r/rm) , ri < r < rm;

r2m − r2

4
+

r2o
2
ln (r/rm) , rm < r < ro.

To find rm which minimizes (3.46), we compute

∂

∂rm

∫ ro

ri

u(r)rdr =

∫ ro

ri

(

∂

∂rm
u

)

rdr =
1

4rm

(

r2m − r2i
)2 − 1

4rm

(

r2m − r2o
)2

= 0 .

It follows that the minimizing rm satisfies

r2m − r2i = r2o − r2m. (3.47)

We conclude that for the problem (3.46), the optimal rm divides the annulus into two regions of equal area. Now

consider the optimal solution to (3.38). As an example of this theory, the case N = 3 is considered and the optimal

solution u(r) shown in Fig. 3.7.the solution u(r) is plotting along with the interior maximizers of u by r12 and r23
and the areas between maxima and zeros of u as shown. By the property (3.47), we have:

A1 = A21, A22 = A31, A32 = A4 . (3.48)

Moreover, we have

A2 = A21 +A22, A3 = A31 +A32, (3.49)
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where A1, . . . , A4 are the areas of the regions that are obtained by cutting the disk along the radii r1, . . . , r3. It follows

from (3.48) and (3.49) that A1 +A3 = A2 +A4. This is equivalent to (3.45).

Figure 3.7: Plot of the solution u(r) to (3.38) for N = 3 with traps located at the optimal radii.

In Fig. 3.8, we compare the optimal radii in this ω → ∞ with ω ≫ O(ε−1) regime (top row) against those in the

O(1) ≪ ω ≪ O(ε−1) regime (bottom row). In the top row, we observe that as N increases, the outer rings appear

to be be equally spaced. By contrast, in the bottom row, the rings locations have an explicit formula ri =
√

i/N for

i = 1, . . . , N , and tend to concentrate nearer to the boundary (bottom row).

Figure 3.8: Top row: optimal ring positions when ω ≫ O(ε−1). Bottom row: optimal ring positions when O(1) ≪ ω ≪ O(ε−1).
The ring locations are indicated by solid lines and the boundary r = 1 of the disk is denoted by a dashed line. In the bottom row,

the outermost ring rN coincides with the boundary.

4 Discussion

We have used the techniques from [23, 38, 39] to study the MFPT in the presence of multiple mobile traps in

one and two dimensions. Very surprising and intricate behaviour is observed even in a one dimensional setting, where

we find an infinite sequence of bifurcations (two oscillating traps switch from an in-phase to antiphase configuration

infinitely many times) as the oscillation frequency ω is increased. When a trap is forced to adapt to two neighbors

whose dynamics are predetermined, its optimal strategy may be neither in-phase nor antiphase with either neighbor.

In two dimensions, the presence of multiple distinguished regimes allows for the characterization of distinct

optimal configurations. The simplest of these regimes is ω ≫ O(ε−1), in which case each rotating trap becomes

a Dirichlet ring inside a disk. It is interesting to contrast this to the the regime O(1) ≪ ω ≪ O(ε−1), for which

each trap is becomes a “ring” but instead of Dirichlet condition on a ring, it is more “porous”, yielding a different

radius. For both of these regimes, the relative phase between the two traps is insignificant to leading order, and it is

an open question to find the optimal phase. In the ω ∼ O(1) regime, we observe a bifurcation in which the optimal

configuration changes from antiphase rotation with a common radius to an in-phase rotation with different radii.

While our analysis of all regimes is valid for three or more traps, the complexity of the numerical optimizations

quickly increases with the number of traps. However, we expect that some behavior observed in the two-trap scenario
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would extend to the N > 2 case. For example, if three traps rotate slowly, we expect that they rotate with the same

radius separated by a 2π/3 phase, and that a similar bifurcation occurs as the rotation rate increases. On the other

hand it is unclear what the resulting phase difference (if any) will result on the other side of the bifurcation. For seven

or more traps, where the optimal stationary configuration may be a ring of six traps with one at the origin [23], the

bifurcation may be more complex.

Our analysis of the two dimensional problem was greatly simplified by the rotational symmetry. It would be very

interesting to solve (3.1) either numerically or asymptotically to understand the effects on MFPT of more general trap

motion. Within the same rotational framework, one could use (3.1) to investigate whether it is more optimal for two

traps to rotate in the same or opposite direction, and whether the result depends on rotation rate in a similar way to

what was found in §2 for one dimension.

Another open question is to determine an “optimal” path of the trap. Here, the key issue is to find the right

“constraint” on the type of admissible motion. This problem may require an energy constraint, as otherwise one can

allow the trap to travel with infinite speed on a space-filling curve. Whether an energy constraint leads to a well-

posed optimization problem, and if other or additional constraints may be more appropriate are interesting modeling

question.

The question of proper constraints also arises in the analogous one-dimensional problem, where one seeks an

optimal periodic path of O(1) amplitude. The problem (2.1) for the MFPT would need to be solved numerically

for an arbitrary periodic path expressed in terms of Fourier coefficients, which would then be optimized subject to

constraints. For example, one may require a fixed energy output over one period, while also penalizing mean square

displacement from a certain fixed point.

An overarching theme of this work has been to investigate configurations that result from multiple mobile traps

cooperating to optimize a global quantity. It may be interesting to ask what happens when each trap adjusts its motion

locally in order to increase its own rate of capturing the Brownian particles, and whether this algorithm leads to any

stable configurations.
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