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Abstract. We consider the general class of two-component reaction-diffusion
systems on a finite domain that admit interface solutions in one of the com-

ponents, and we study the dynamics of n interfaces in one dimension. In the

limit where the second component has large diffusion, we fully characterize the
possible behaviour of n interfaces. We show that after the transients die out,

the motion of n interfaces is described by the motion of a single interface on

the domain that is 1/n the size of the original domain. Depending on param-
eter regime and initial conditions, one of the following three outcomes results:

(1) some interfaces collide; (2) all n interfaces reach a symmetric steady state;

(3) all n interfaces oscillate indefinitely. In the latter case, the oscillations are
described by a simple harmonic motion with even-numbered interfaces oscillat-

ing in phase while odd-numbered interfaces are oscillating in anti-phase. This
extends a recent work by [McKay, Kolokolnikov, Muir, DCDS B(17), 2012]

from two to any number of interfaces.

1. Introduction. Many models in nature involve two-component reaction-diffusion
system of the general form {

ut = ε2uxx + f(u,w)
τwt = Dwxx + g(u,w)

(1)

Examples include models of regulatory gene networks [1], wave propagation in
excitable media [2], chemical reactions [3, 4, 5, 6], gas discharge dynamics [7, 8],
population dynamics [9, 10] and vegetation in arrid landscapes [11]. In the regime
ε � D and under certain general conditions on the nonlinearities f, g, this system
admits a solution which consists of areas of nearly constant u which are connected by
n back-to-back interfaces, where u transitions from one constant value to another.
An example of such a solution in shown in Figure 1.
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Figure 1. Steady state solution to the model (3) with x ∈
[0, 1] , β = 0, ε = 0.01, D = 150

It has been known for quite some time [12] that such interfaces can undergo a
transition from a stationary state to an oscillatory motion as the paramer τ is in-
creased past some threshold τhopf ; this instability is triggered via a Hopf bifurcation.
This was first reported in [12] for a system (1) with piecewise-linear nonlinearities
f and g. Since then, similar oscillatory behaviour was reported and analysed in
many other reaction diffusion systems in one and higher dimensions, see for ex-
ample [13, 14, 1, 2, 15, 7, 16, 17, 18, 19, 20, 21, 22, 8]. In a recent paper [23],
the oscillatory motion was fully characterized for solutions consisting of one or two
interfaces in the regime where D is assumed large. This assumption allowed for a
detailed analysis using the method of multiple scales even for values of τ well above
τhopf . The goal of this paper is to extend this analysis from two interfaces to many
interfaces. As in the paper [23], we make the following assumptions:

D � 1, ε� 1, τ = τ0
D

ε
, with τ0 = O(1). (2)

Under these assumptions, it was found in [23] that the dynamics of the solution
that consists of a single interface is described by a weakly-perturbed harmonic
oscillator, and that the envelope of the oscillations can be computed using the
method of multiple scales. To illustrate the theory, consider the following system
of the general form (1), {

ut = ε2uxx + 2(u− u3) + w
τ0
D
ε wt = Dwxx − u+ β

. (3)

As was shown in [23], this system has a solution in the form of a single interface
on a unit interval x ∈ [0, 1] with u(x, t) ∼ tanh((ξ(t)− x)/ε) ; w ∼ 0, where
the interface location ξ oscillates according to the formula ξ (t) = (1 + β)/2 +

A
(
εD−1t

)
cos(

√
3/τ0εD

−1/2t+ φ0) where the envelope A satisfies

A′(εD−1t) =

(
1

4
(1− 3β2)− 1

8τ0

)
A− 3

4
A3. (4)

Our goal in the present paper is to extend this computation to multiple interfaces.
Our main conclusion is succinctly summarized as follows.

Main Result. After the transients die out, the dynamics of n interfaces on the
domain of size n follow the dynamics of a single interface on the domain of size
one, copied over n times using even reflections.

Figure 2(b) illustrates this conclusion. At the start, the four interfaces are un-
evenly distributed. However they synchronize after a transient period, forming two
phase-locked ”breathers”. In the case of two interfaces, this result was already
obtained in [23].



MANY-INTERFACE OSCILLATIONS IN RD SYSTEMS 3

(a) (b) (c)

Figure 2. Simulation of the cubic model (3) with initial condi-
tions consisting of four interfaces. Parameters are ε = 0.01 , D =
50 , β = 0 and with τ0 as indicated. The red lines show the
locations of interfaces corresponding to the roots of u = 0. The
areas denoted by + and - correspond to the regions where u ≈ ±1,
respectively. The dotted lines correspond to the envelope computa-
tion of the interface locations as derived in Appendix C. (a) With
τ0 = 0.3, oscillations eventually die out and four interfaces settle to
a steady state. (b) With τ0 = 1, four interfaces eventually oscillate
in synchrony. (c) With τ0 = 3, the oscillations increase until the in-
terfaces collide resulting in the constant solution u = −1 thereafter.
Asymptotics correctly predict the time of collision.

In short, the behaviour of n interfaces for the two-component near-shadow system
(1, 2) on the domain of size n is fully described by a single interface on the domain
of size one. In particular, n interfaces are stable if and only if a single interface is. In
fact, one of the following three scenarios give a complete list of possible behaviours:

1. Some interfaces eventually cross each other, leading to annihilation of the two
interfaces (figure 2(c)).

2. 2K interfaces eventually reach a steady state (figure 2(a)).
3. 2K interfaces oscillate indefinitely; the long-time dynamics consist ofK “breathers”

(see figure 2(b)) that oscillate synchronously (in-phase).

Unlike some other literature e.g. [15, 16, 24] which shows the presence of oscil-
lations as a result of a Hopf bifurcation of the ground state, our results are more
“global” as they do not rely on linearization around the steady state. For instance,
our results hold even far from the Hopf bifurcation point. In particular, it shows
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that even if both in-phase and out-of-phase modes become linearly unstable, the
solution with two or more interfaces will converge to the in-phase mode.

While we do not carry out the linear stability analysis here, such an approach
would yield small eigenvalues that undergo a Hopf bifurcation. What our analysis
suggests is that even for values of τ well above the Hopf bifurcation (and with D
large), the critical eigenvalue is dominated by its imaginary part with a comparably
small real part. Its imaginary part then determines the frequency of the oscillations
whereas its real part is proportional to the constant in front of the linear term in
envelope equation (4).

In Appendix C we derive the equations of motion of n interfaces. These equations
are used to plot the asymptotic prediction in Figure 2, in excellent agreement with
the full numerics. However these equations are extremely long and are not used at
all in the proof of the main result.

In the derivation of the main result we will assume periodic boundary conditions.
The periodicity requires an even number of interfaces, n = 2K, so that the value
of u to the left of the leftmost interface is the same as its value to the right of the
rightmost interface. However the result also holds for Neumann boundary conditions
(in which case one can have an odd number of interfaces). This can be seen as
follows. Take the system that has n interfaces on a bounded interval with Neumann
boundary conditions. Extend the solution using even reflection in space about either
endpoint. Then the resulting system on the domain twice the size satisfies periodic
boundary conditions and has 2n interfaces. We can then apply our results to the
extended system to show that the 2n interfaces behave just like a single interface
in the long-run. Therefore the same is true for the original system of n interfaces.

Following the paper [23], the first step in showing the main result is to reduce
the motion of n interfaces to the following diffusion-type equation with n moving
boundaries:

Wxx = ε(Wt + h(x))− σ(x)ε2W (5a)

d

dt
xi = (−1)

i
W (xi), i = 1 . . . n, n even (5b)

W is periodic on the domain [0, n]. (5c)

where functions h(x) and σ(x) are piecewise constant, alternating between two
values with jumps precisely at the interface locations xj as illustrated here for h:

0 4x
1

x
2

x
3

x
4

h
−

h
+

h
−

h
+

h
−

that is

h =

{
h− for x ∈ (0, x1) ∪ (x2, x3) ∪ . . . ∪ (x2K−2,x2K−1) ∪ (x2K , n)

h+ for x ∈ (x1, x2) ∪ (x3,x4) . . . ∪ (x2K−1,x2K)

and similarly for σ. This reduction was done in [23] and is summarized in Appendix
A for completeness. Note that the ε and t in (5) are not the same as the ε and t in
(1); see Appendix A and in particular equation (47) for their values in terms of the
original parameters of the system. The n moving boundaries xi represent interface
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locations ordered in increasing order. For the basic model (3), these functions are
given by

h± =
3

2
τ0 (±1 + β) ; σ+ = σ− = −1

4
;

more generally these functions are given in Appendix A.
In [15], the authors took a similar approach of reducing the dynamics of a single

interface to a free-boundary problem similar to (5). By solving this problem nu-
merically (assuming piecewise-linear nonlinearities f, g, but without assuming that
D is large), they also found that it can capture oscillatory dynamics of the inter-
faces. The authors also computed the eigenvalues of the associated linear problem
analytically, showing directly the existence of the Hopf bifurcation. In a related
work [16] the authors studied the motion of two interfaces for piecewise-linear non-
linearities f, g and without assiming large D. They showed the possibility of in-sync
oscillations when the interfaces are very close to each other.

We now state the Principal Result for the system (5), which is the more precise
statement of the Main Result.

Principal Result 1.1. Consider the system (5) with n = 2K interfaces and with
ε� 1. Suppose that the interface locations xi never cross each-other. Then in the
limit t� 1, we have:

x2j−1 ∼ −A cos (ω(t+ φ)) + (2j − 2)− l0 + x0, j = 1 . . .K

x2j ∼ A cos (ω(t+ φ)) + (2j − 2) + l0 + x0, j = 1 . . .K

where:

l0 = −h−/(h+ − h−)

and A is the stable equilibrium of the ODE

dA

ds
= −A

3

4
−
(

1

6
− l0 + l20 +

σ− + (σ+ − σ−) l0
2

)
A. (6)

The proof of Principal Result 1.1 is given in the following section. It depends
on lemmas 2.1 and 2.3 whose proofs are also given there, as well as on lemma 2.2
previously proven in [23] and included here in appendix B for completeness.

2. Proof of Principal Result 1.1. The proof of Principal Result 1.1 is a direct
consequence of the following two lemmas.

Lemma 2.1. Consider the system (5). Suppose that the interface locations xj(t)
never collide. Suppose that they are ordered in the increasing order 0 < x1 < x2 <
. . . < x2K < 2K. Define

m1 =
x1 + x2

2
, m2 =

x3 + x4
2

, . . . , mK =
x2K−1 + x2K

2

and similarly, define

m̂1 =
x2 + x3

2
, m̂2 =

x4 + x5
2

, . . . m̂K =
x2K + (x1 + 2K)

2

Then in the limit t→∞, we have the following properties:

mj+1 −mj → 2 as t→∞, j = 1 . . .K − 1 (7)

m̂j+1 − m̂j → 2 as t→∞, j = 1 . . .K − 1. (8)



6 SHUANGQUAN XIE AND THEODORE KOLOKOLNIKOV

Lemma 2.2. Consider the system

Wxx = ε(wt + h(x; ξ))− ε2σ(x; ξ)w (9a)

d

dt
ξ(t) = W (ξ, t) (9b)

Wx = 0 at x = 0, and x = 1 (9c)

h(x; ξ) =

{
h+ if 0 < x < ξ
h− if ξ < x < 1

; σ(x; ξ) =

{
σ+ if 0 < x < ξ
σ− if ξ < x < 1

. (9d)

In the limit ε→ 0, the system (5) has solution of the form

ξ(t) ∼ A(s) cos (ωt+ φ0) + l0

where

s = εt

ω =
√
h+ − h−;

l0 = −h−/(h+ − h−)

and A satisfies

As = −A
3

4
−
(

1

6
− l0 + l20 +

σ− + (σ+ − σ−) l0
2

)
A. (10)

Lemma 2.2 was proven in [23]; for completeness and reader’s convenience, we
include a slightly different derivation in appendix A. We first prove Principal Result
1.1 followed by the proof of Lemma 2.1.

Proof of Principal Result 1.1. For reader’s convenience, we will give the
proof for four interfaces here; the proof is similar for 2K interfaces.

By lemma 2.1, there exist constants c0 and c1 such that for large t we have:

x1(t) + x2(t) ∼ 2c0 + 2 (11)

x2(t) + x3(t) ∼ 2c1 + 4 (12)

x3(t) + x4(t) ∼ 2c0 + 6 (13)

x4(t) + x1(t) ∼ 2c1 + 4. (14)

Taking (11)-(12)+(13)-(14) we obtain

c0 = c1.

By shifting xj we may assume without loss of generality that c0 = c1 = 0. The
resulting linear system (11-14) has a one-dimensional null space and its solution is
parameterized by a free parameter ξ and may be written as

x1(t) ∼ 1− ξ(t), x2(t) ∼ 1 + ξ(t),

x3(t) ∼ 3− ξ(t), x4(t) ∼ 3 + ξ(t).

This implies that the solution is an even periodic extension of the interval of size one
copied over n times; in particular u is even around x = 1, 2, 3, . . . n−1. Therefore the
solution in this regime is equivalent to an oscillation of a single interface on domain
of size one with Neumann boundary conditions. This is precisely the situation
captured by lemma 2.2, which concludes the proof. �

Proof of Lemma 2.1. Define

li =
x2i − x2i−1

2
, i = 1 . . .K (15)
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and define a symmetric unit box of size 2l to be

B(x; l) =
1

2
(H(x− l) +H(l − x)) =

{
1 if |x| < l
0 if |x| > l

(where H is the Heaviside function) so that we may write h(x) as

h(x) = c+ d

n/2∑
j=1

B(x−mj , lj), where d = h+ − h−, c = h−. (16)

We perform multiple scales analysis. Introduce a slow-time scale

s = εt, w = W (x, t, s), ξj = ξj(t, s)

and expand

W (x, t) = W0 +W1ε+W2ε
2 . . .

and

xj = ξj + εηj + . . .

Expanding h to two orders, we have

h(x) = h0(x) + εh1(x)

where h0 is as given by (16) but with ξj replaced by ξj0, and

h1(x) =
∑

(−1)
j
dηjδ(x− ξj)

where δ is the delta function. We therefore obtain

W0xx = 0 (17)

W1xx = W0t + h0(x) (18)

W2xx = W1t +W0s + h1(x)− σW0 (19)

Similarly, expanding (5c) we obtain

ξjt = (−1)
j
W0(ξj , t, s) (20)

ηjt + ξjs = (−1)
j
ηjW0x(ξj , t, s) + (−1)

j
W1(ξj , t, s). (21)

From (17) and periodicity, W0 is independent of x :

W0(x, t, s) = W0(t, s)

so that (20, 21) becomes

ξjt = (−1)
j
W0(t, s); ηjt + ξjs = (−1)

j
W1(ξj , t, s). (22)

Integrating (51) assuming periodic b.c. we get

W0t = − 1

n

∫ n

0

h0(x)dx = −c− d

n

n∑
j=1

(−1)
j
ξj . (23)

This suggests that we define a new variable

Y = c+
d

L

n∑
j=1

(−1)
j
ξj . (24)

From (22) and (23) we then obtain

Yt = ω2W0; W0t = −Y where ω :=
√
d. (25)
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From this we obtain

W0 = A (s)ω cos (ωt+ Φ (s)) ; Y = A (s)ω2 sin(ωt+ Φ (s)) (26)

We can therefore write

ξj = (−1)
j
A(s) sin (ωt+ Φ(s)) +Bj(s) (27)

with an additional algebraic constraint

0 = c+
d

L

n∑
j=1

(−1)
j
Bj . (28)

Next let’s compute W1. We have

W1xx = h0 −
1

L

∫ L

0

h0, W1 periodic on [0, L] (29)

Define F̂ (x; l, L) to be the unique periodic solution to the equation

F̂xx = B(x, l)− 1

L

∫ L/2

−L/2
B(x, l)dx inside [−L/2, L/2];∫ L/2

−L/2
F̂ (x)dx = 0 and F̂ is periodic on [−L/2, L/2].

Direct computations show that

F̂ (x; l, L) =


− 1

6
l
L (L− l) (L− 2l) + ( 1

2 −
l
L )x2, |x| < l

− 1
6
l
L (L− l) (L− 2l) +

(
− l
Lx

2 + l |x| − l2

2

)
, l < |x| < L

2

F̂ (mod(x+ L
2 , L)− L

2 , l, L) otherwise

.

(30)
Next define

F (x; ξ1 . . . ξn) =

n/2∑
j=1

F̂ (x−mj , lj , L) (31)

so that

W1 = dF (x) +R(t, s) (32)

and

ηjt + ξjs = (−1)
j

(dF (x) +R(t, s)) . (33)

First, assume n = 4.. We expand (with a slight abuse of notation)

mj = mj + εMj + . . .

lj = lj + εΛj + . . .

Then

m1s +M1t =
d

2
[F (ξ2)− F (ξ1)] ;

m2s +M2t =
d

2
[F (ξ4)− F (ξ3)] .

We now explicitly compute these expressions. Recall that

ξ1 = m1 − l1; ξ2 = m1 + l1

ξ3 = m2 + l2; ξ4 = m2 − l2
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and we compute

F (ξ1) = F̂ (−l1, l1, 4) + F̂ (m1 −m2 − l1, l2, 4)

= F̂ (l1, l1, 4) + F̂ (m2 −m1 + l1, l2, 4)

F (ξ2) = F̂ (−l1, l1, 4) + F̂ (m1 −m2 + l1, l2, 4)

= F̂ (l1, l1, 4) + F̂ (m2 −m1 − l1, l2, 4)

From (30), note that

F̂ (x− a, l, L)− F̂ (x+ a, l, L) = la

(
2− 4

L
x

)
provided that l < x± a < L,

from which it follows that

F (ξ2)− F (ξ1) = l2l1 (m2 −m1 − 2) .

Similarly,

F (ξ3) = F̂ (m2 −m1 − l2, l1, 4) + F̂ (l2, l2, 4)

F (ξ4) = F̂ (m2 −m1 + l2, l1, 4) + F̂ (l2, l2, 4)

so that

F (ξ4)− F (ξ3) = l1l2 (2− (m2 −m1)) .

Change variables,

m1 = 1 + y1; m2 = 3 + y2

so that

y1s +M ′1t =
d

2
l2l1 (y2 − y1) ;

y2s +M ′2t =
d

2
l1l2 (y1 − y2) .

More generally, for n = 2K interfaces, we change variables mj = 2j−1+yj , j =
1 . . .K to obtain: 

y1s +M1t

y2s +M2t

. . .
yKs +MKt

 =
d

K
M


y1
y2
. . .
yK

 ,

M =


− (l1l2 + l1l3 + . . . l1lK) l1l2 . . . l1lK

l2l1 − (l2l1 + l2l3 + . . . l1lK) . . . l2lK
...

...
lK l1 . . . lK lK−1 − (lK l1 + lK l3 + . . . lK lK−1)

 .

Integrating each equation from 0 to 2π/ω this yields
y1s
y2s
. . .
yKs

 = M̃(s)


y1
y2
. . .
yK


where M̃ij(s) = 1

2π/ω
d
K

∫ 2π/ω

0
Mij(s, t)dt. Note that assuming lj > 0 for j = 1 . . .K,

each off-diagonal entry of M̃ is positive. It follows by Lemma 2.3 below that yj → ȳ

as t→∞, where ȳ = 1
K

∑K
j yj . This shows the formula (7) of lemma 2.1. To show
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formula (8), apply exactly the same argument after shifting all of the indices by one
(so that x1 becomes x2, x2 becomes x3 ... and xn becomes x1). �

It remains to show the following lemma.

Lemma 2.3. Let A(t) be an K ×K matrix with the following properties:

(a) There exists a constant m such that Aij(t) ≥ m for all t ≥ 0 and for all
off-diagonal entries i 6= j;

(b) A is symmetric;
(c) Aii(t) = −

∑
j 6=iAij(t).

Suppose that y solves
y′(t) = A(t)y(t). (34)

Then y(t) → ȳ1 as t → ∞, where ȳ is the average ȳ = 1
K

∑K
j=1 yj(0), and 1 =

(1, 1, . . . 1)T . More precisely, there there exists a constant C such that

|y(t)− ȳ1| ≤ Ce−mKt for all t ≥ 0 (35)

Proof. First, note that that y(t) = c1 is a solution to (34) for any constant
c, since A admits an eigenvalue of zero whose corresponding eigenvector is 1. Let

z(t) = y(t) − ȳ1 where ȳ = 1
K

∑K
j=1 yj(0). Then z also satisfies z′ = Az with∑

zi = 0. Multiply both sides by zT on the left to obtain:(
|z|2
)′

= 2zTAz.

Next we claim that zTAz ≤ −mK |z|2 . To see this we have

zTAz = −1

2

∑
i

∑
j

Aij (zj − zi)2

≤ −m
2

∑
i

∑
j

(zj − zi)2

= −m
2

∑
i

∑
j

(
z2j + z2i − 2zizj

)

= −m
2

2K
∑
i

z2i − 2
∑
i

zi

∑
j

zj


= −mK |z|2

so that
(
|z|2
)′
≤ −2mK |z|2 . By Gronwall’s inequality, it follows that |z|2 ≤

Ce−2mKt which shows (35). �

3. Discussion. In this paper we established that the behaviour of n interfaces
for the two-component near-shadow system (1, 2) on the domain of size n is fully
described by a single interface on the domain of size one. In particular, n interfaces
are stable if and only if a single interface is. In fact, one of the following three
scenarios give a complete list of possible behaviours:

1. Some interfaces eventually cross each other, leading to annihilation of the two
interfaces (figure 2(c)).

2. 2K interfaces eventually reach a steady state (figure 2(a)).
3. 2K interfaces oscillate indefinitely; the long-time dynamics consist ofK “breathers”

(see figure 2(b)) that oscillate synchronously (in-phase).
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Unlike some other literature e.g. [16, 24] which shows the presence of oscillations
as a result of a Hopf bifurcation of the ground state, our results are more “global” as
they do not rely on linearization around the steady state. For instance, our results
hold even far from the Hopf bifurcation point. In particular, it shows that even if
both in-phase and out-of-phase modes become linearly unstable, the solution with
two or more interfaces will converge to the in-phase mode.

The situation can much richer if D is not assumed to be large [16], or for systems
consisting of more than two equations, such as two competing species mediated by
a predator [25], or a system with one activator and two inhibitors [26]. In [16],
both in-phase as well as out-of-phase oscillations of two interfaces were observed
and analysed for a two-component system with piece-wise linear nonlinearities, and
with D = O(1). Out-of-phase oscillations were found when the two interfaces were
“close” to each-other. It is an interesting question whether a reduced PDE-ODE
type system can be derived in the regime where D = O(1), and whether such system
can capture the out-of-phase oscillations (or even more exotic dynamics) that are
not present when D is large.

In [26], for a three-component system, in addition to synchronous and asyn-
chronous oscillations, the authors found regimes where chaotic oscillations of two
interfaces was observed. An interesting open question is whether the multiple-scales
type methods can be applied to the three-component system in some sub-regime,
and if so, what kind of envelope equations can be derived from it.

4. Appendix A: Moving boundary problem. For completeness, we include
the derivation of the moving boundary problem from [23]. First, suppose that there
exists a constant w0 and two constants u+ 6= u− such that boundary value problem

U0yy + f(U0, w0) = 0 (36)

U0(y)→ u± as y → ∓∞ (37)

admits a solution. Then U0(−y) also solves (36). (for the special case of f as in
(3), we may choose w0 = 0, u± = ±1, U0(y) = − tanh(y)). The required conditions
are that u± and w0 must satisfy∫ u+

u−

f(u,w0)du = 0, f(u+, w0) = 0 = f(u−, w0), (38)

with u+ 6= u−. We further expand

u = u0 +
1

D
u1 + . . . , w = w0 +

1

D
w1 + . . . .

to obtain

0 = ε2u0xx + f(u0, w0), (39)

Du0t = ε2u1xx + fu(u0, w0)u1 + fw(u0, w0)w1. (40)

In the subsequent analysis, the time scaling will be chosen in such a way that the
term Du0t is of the same order as the other terms in (39). Consider a single interface
located at x = ξ(t) in the domain [0, 1], with u ∼ u+ for 0 < x < ξ and with u ∼ u−
for ξ < x < 1. In the inner region we have

u0(x, t) = U0

(
x− ξ(t)

ε

)
= U0(y) (41)
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where U0 is defined (36). Multiplying (39) by u0x and integrating by parts over the
domain, we obtain

− ξ′(t)
∫ 1

0

u20xdx =
1

D

∫ 1

0

fww1u0xdx. (42)

where we neglected the exponentially small boundary terms. In the inner vari-
ables, we approximate w1 ∼ w1(ξ). Rearranging, we now have an equation for the
dynamics of the interface

ξt =
ε

D

∫ u+

u−
fwdu∫∞

−∞ U2
0ydy

w1(ξ). (43)

Expanding in 1
D , from the equation for w in (1), we obtain

τ

ε
w1t = w1xx + g(u0, w0) +

1

D
gu(u0, w0)u1 +

1

D
gw(u0, w0)w1 (44)

Note that we also kept to O(1/D) terms here. These are not needed to compute the
Hopf bifurcation threshold but are necessary for envelope calculation. Away from
the interface, we neglect the diffusion term u1xx as well the left hand side in (40),
so that

u1 ∼ −
fw(u0, w0)

fu(u0, w0)
w1.

and we obtain a moving boundary problem

τ

ε
w1t = w1xx + g(x) +

1

D
σ(x)w1 (45)

where

g(x) =

{
g(u+, w0), x < ξ
g(u−, w0), x > ξ

,

σ(x) =


(
gw − fw

fu
gu

)
u=u+,w=w0

, x < ξ(
gw − fw

fu
gu

)
u=u+,w=w0

, x > ξ
.

and with ξ controlled by (43). A-posteriori analysis suggests the following rescaling:

τ = τ0
D

ε

w1 =
√
D

∫∞
−∞ U2

0ydy∫ u+

u−
fwdu

τ0W

t =
τ0
√
D

ε
t̂

which yields the scaled system

Wxx = ε̃(Wt̃ + h(x))− σ(x)ε̃2W,
d

dt̃
ξ = W (ξ, t̃) (46)

where

ε̃ =
1√
D
, h(x) = −g(x)

∫ u+

u−
fwdu∫∞

−∞ U2
0ydy

τ0. (47)

Dropping the tilde yields the system (9). The reduced system (5) for multiple
interfaces is derived in an identical manner.
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5. Appendix B: Single interface. In this appendix we re-derive the dynamics of
a single interface for the problem (5) with Neumann boundary conditions on [0, 1].
This was derived in [23], and we include a slightly different self-contained derivation
here for completeness. That is, we consider the following problem. . Introduce a

Wxx = ε(Wt + h(x))− σ(x)ε2W, x ∈ (0, 1) (48a)

d

dt
ξ = W (ξ, t) (48b)

Wx = 0 at x = 0, 1. (48c)

where h(x) can be written in terms of the Heaviside functionH(x) =

{
1 if x > 0
0 if x < 0

as

h(x) = c+ dH(ξ − x), d = h+ − h−, c = h−. (48d)

and where

σ =

{
σ+ if x < ξ
σ− if x > ξ

. (48e)

We perform multiple scale analysis on (48). Introduce a slow-time scale

s = εt, w = W (x, t, s), ξ = ξ(t, s)

Expand

W = W0 +W1ε+W2ε
2 . . . (49)

First, we expand

H(ξ − x) = H(ξ0 + εξ1 − x) = H(ξ0 − x) + εξ1δ(ξ0 − x) +O(ε2)

where δ is the delta function. We therefore obtain

W0xx = 0 (50)

W1xx = W0t + c+ dH(ξ0 − x) (51)

W2xx = W1t +W0s + ξ1dδ(x0 − x)− σW0 (52)

Similarly, expanding (48b) we obtain

ξ0t = W0(ξ0, t, s) (53)

ξ1t + ξ0s = ξ1W0x(ξ0, t, s) +W1(ξ0, t, s) (54)

Equation (50) along with the boundary conditions W0x = 0 at x = 0, 1 yields

W0(x, t, s) = W0(t, s).

Integrating equation (51) and using Neumann boundary conditions yields

W0t + c+ dξ0 = 0

so that the leading-order behaviour is

W0t = −c− dξ0; ξ0t = W0 (55)

which is a harmonic oscillator assuming d > 0, whose solution is given by

ξ0 = l0 +A(s) sin (ωt+ Φ) ,

W0 = ωA(s) cos (ωt+ Φ)

where we defined

l0 := −c/d; ω2 := d.
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Substituting (55) into (51), W1 satisfies

W1xx = d (H(ξ0 − x)− ξ0) .

The solution to W1 is then given by

W1 = dF (x) + V (t) (56)

where F is the solution to 
Fxx = H(ξ0 − x)− ξ0,
Fx(0) = 0 = Fx(1),∫ 1

0
F (x)dx = 0.

Explicitly we obtain

F =

{
− ξ0(x−1)

2

2 +
ξ0−ξ20

2 +A, x > ξ0
(1−ξ0)

2 x2 +A, x < ξ0
, where A :=

ξ0(2− ξ0)(ξ0 − 1)

6

and evaluating at x = ξ0 we have

F (ξ0) =
1

3
ξ0 (2ξ0 − 1) (1− ξ0). (57)

Substituting (56 57), into (52) and integrating for x = 0 . . . 1 we obtain

0 = Vt +W0s + ξ1d− σ̂W0 (58)

where

σ̂ = (σ+ − σ−) ξ0 + σ− (59)

and (54) simplifies to

ξ1t + ξ0s = dF (ξ0) + V. (60)

Eliminating V and Vt from (58) and (60) yields

ξ1tt + ω2ξ1 = dF ′(ξ0)ξ′0 − 2W0s + {(σ+ − σ−) ξ0 + σ−}W0

where ω2 := d, so that

ξ1tt + ω2ξ1 = d (F (ξ0))t − ω [(2As − {(σ+ − σ−) ξ0 + σ−}A) cos (ωt+ Φ)− 2AΦs sin (ωt+ Φ)]
(61)

Multiplying both sides of (61) by sin(ωt+ Φ) and integrating on t = 0 . . . 2π/ω we
obtain AΦs = 0. Similarly, multiplying (61) by cos (ωt+ Φ) we obtain∫ 2π/ω

0

d (F (ξ0))t cos (ωt+ Φ) dt = ωd

∫ 2π/ω

0

F (ξ0) sin (ωt+ Φ) dt

= −πA
3

2
− π

3

(
1− 6l0 + 6l20

)
A

= π [(2As − (σ− + (σ+ − σ−) l0)A)]

so that

As = −A
3

4
−
(

1

6
− l0 + l20 +

(σ− + (σ+ − σ−) l0)

2

)
A. (62)
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6. Appendix C: dynamics of 2K interfaces. We recall from the proof of the
Lemma 2.1, equations (26-27) and (32-33) are

W0 = A (s)ω cos (ωt+ Φ (s)) (63)

Y = A (s)ω2 sin(ωt+ Φ (s)) (64)

ξj = (−1)
j
A(s) sin (ωt+ Φ(s)) +Bj(s) (65)

W1 = dF (x) +R(t, s) (66)

ηjt + ξjs = (−1)
j

(dF (ξj) +R(t, s)) (67)

Integrating (19) we then obtain

2K (Rt +W0s)−W0

∫ 2K

0

σ(x)dx+
∑

(−1)
j
dηj = 0. (68)

Define

Y1 =

∑2K
j=1 (−1)

j
ηj

2K
Then Y1 satisfies

Y1t +

∑
(−1)jξjs

2K
=
d
∑2K
j=1 F (ξj)

2K
+R(s, t) (69)

Notice that Y = c+ d
2K

∑
(−1)jξj , which implies

∑
(−1)jξjs
2K = Ys

d Thus

Y1t +
Ys
d

=
d
∑2K
j=1 F (ξj)

2K
+R(s, t) (70)

and ∫ 2K

0
σ(x)dx

2K
= (σ+ − σ−)

∑2K
1 (−1)jξj

2K
+ σ− = (σ+ − σ−)

Y − c
d

+ σ− (71)

Taking the derivative of (70) and combining it with (68), we obtain

Y1tt + ω2Y1 =
d
∑2K
j=1 Fx(ξj)ξjt

2K
− Yst

d
−W0s +

W0

∫ 2K

0
σ(x)dx

2K
. (72)

From (67) we have

R(t, s) = Y1t +
Ys
d
−
d
∑2K
j=1 F (ξj)

2K
.

Plugging it back into (67),we finally get

ηjt + ξjs = (−1)
j

(
dF (ξj) + Y1t +

Ys
d
−
d
∑2K
j=1 F (ξj)

2K

)
. (73)

Multiplying both sides of (72) by sin(ωt + Φ) and integrating on t = 0 . . . 2π/ω
we obtain AΦs = 0. Similarly, multiplying (72) by cos (ωt+ Φ) we obtain

∫ 2π/ω

0

(
d
∑2K
j=1 Fx(ξj)ξjt

2K
− Yst

d
−W0s +

W0

∫ 2K

0
σ(x)dx

2K

)
cos (ωt+ Φ) = 0

(74)
Integrating (73) on t = 0 . . . 2π/ω we obtain
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Bjs = (−1)j
∫ 2π/ω

0

(
dF (ξj) +

Ys
d
−
d
∑2K
j=1 F (ξj)

2K

)
(75)

This yields the reduced ODE systems to describe the evolution of the envelope:

W0 = A (s)ω cos (ωt+ Φ (s))
Y = A (s)ω2 sin(ωt+ Φ (s))

ξj = (−1)
j
A(s) sin (ωt+ Φ(s)) +Bj(s)∫ 2π/ω

0

(
d
∑2K

j=1 Fx(ξj)ξjt

2K − Yst

d −W0s + ( (σ+−σ−)(Y−c)
d + σ−)W0

)
cos (ωt+ Φ) dt = 0

Bjs = (−1)j
∫ 2π/ω

0

(
dF (ξj) + Ys

d −
d
∑2K

j=1 F (ξj)

2K

)
0 = c+ d

2K

∑2K
j=1 (−1)

j
Bj

(76)
We used Maple to evaluate these integrals for the particular case of four interfaces,
resulting in a set of ODE’s for Bj and A. The right-hand side of each of these
equations involves a cubic polynomial in Bj and A with over 40 terms. These
ODE’s were then integrated numerically. The resulting numerical solution is shown
using dotted lines in Figure 2.
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