Exact solutions and dynamics for the aggregation model with singular repulsion and long-range attraction

Razvan Fetecau, Yanghong Huang and Theodore Kolokolnikov

Dalhousie

Introduction

We consider a simple model of particle interaction,

$$
\begin{equation*}
\frac{d x_{j}}{d t}=\frac{1}{N} \sum_{\substack{k=1 \ldots N \\ k \neq j}} F\left(\left|x_{j}-x_{k}\right|\right) \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|}, \quad j=1 \ldots N \tag{1}
\end{equation*}
$$

- Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms [Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].
- Interaction force $F(r)$ is of attractive-repelling type: the insects repel each other if they are too close, but attract each-other at a distance.
- Mathematically $F(r)$ is positive for small r, but negative for large r.
- Commonly, a Morse interaction force is used:

$$
\begin{equation*}
F(r)=\exp (-r)-G \exp (-r / L) ; G<1, L>1 \tag{2}
\end{equation*}
$$

- Under certain conditions on repulsion/attraction, the steady state typically consists of a bounded "particle cloud" whose diameter and is independent of N in the limit $N \rightarrow \infty$. Then the continuum limit becomes

$$
\rho_{t}+\nabla \cdot(\rho v)=0 ; \quad v(x)=\int_{\mathbb{R}^{n}} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) d y
$$

- Questions

1. Describe the equilibrium cloud shape in the limit $t \rightarrow \infty$
2. What about dynamics?

Morse force, h-stable vs. catastrophic

- If $G L^{n+1}>1$, the system is catastrophic: doubling N doubles the density but cloud volume is unchanged:

- If $G L^{n+1}<1$, the system is \boldsymbol{h}-stable: doubling N doubles the cloud volume: but density is unchanged:

$$
F(r)=e^{-r}-0.5 e^{-r / 1.2}
$$

$r=9.56367$
$N=25$
$r=13.3742$

$N=50$
$r=19.3298$

Morse force, explicit results

- Bernoff-Topaz, 2010: In one dimension, the steady states for the Morse force $F(r)=$ $\exp (-r)-G \exp (-r / L)$ have the form

$$
\rho(x)=\left\{\begin{array}{c}
a \cos (b x)+1,|x|<R \\
0,|x|>0
\end{array}\right.
$$

where a, b, c are related to G, L.

(taken from Topaz+Bernoff, 2010 preprint)

- What about stability? Dynamics? 2D?

Bounded states of constant density

Claim. Suppose that

$$
F(r)=\frac{1}{r^{n-1}}-r, \quad \text { where } n \equiv \text { dimension }
$$

Then the aggregation model

$$
\rho_{t}+\nabla \cdot(\rho v)=0 ; \quad v(x)=\int_{\mathbb{R}^{n}} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) d y .
$$

admits a steady state of the form

$$
\rho(x)=\left\{\begin{array}{ll}
1, & |x|<R \\
0, & |x|>R
\end{array} ; \quad v(x)=\left\{\begin{array}{cc}
0, & |x|<1 \\
-a x, & |x|>1
\end{array} .\right.\right.
$$

where $R=1$ for $n=1,2$ and $a=2$ in one dimension and $a=2 \pi$ in two dimensions.

Constant density-state in 2D, $\mathbf{F}(\mathbf{r})=\mathbf{1} / \mathbf{r}-\mathbf{r} ; \mathrm{N}=\mathbf{2 0 0}$ particles.

Proof for two dimensions

Define

$$
G(x):=\ln |x|-\frac{|x|^{2}}{2} ; \quad M=\int_{\mathbb{R}^{n}} \rho(y) d y
$$

Then we have:

$$
\nabla G=F(|x|) \frac{x}{|x|} \quad \text { and } \quad \Delta G(x)=2 \pi \delta(x)-2
$$

so that

$$
v(x)=\int_{\mathbb{R}^{n}} \nabla_{x} G(x-y) \rho(y) d y
$$

Thus we get:

$$
\begin{aligned}
\nabla \cdot v & =\int_{\mathbb{R}^{n}}(2 \pi \delta(x-y)-2) \rho(y) d y \\
& =2 \pi \rho(x)-2 M \\
& =\left\{\begin{array}{cc}
0, & |x|<R \\
-2 M, & |x|>R
\end{array}\right.
\end{aligned}
$$

The steady state satisfies $\nabla \cdot v=0$ inside some ball of radius R with $\rho=0$ outside such a ball but then $\rho=M / \pi$ inside this ball and $M=\int_{\mathbb{R}^{n}} \rho(y) d y=M R^{2} \Longrightarrow R=1$.

Dynamics in 1D with $F(r)=1-r$

Assume WLOG that

$$
\int_{-\infty}^{\infty} x \rho(x)=0 ; \quad M:=\int_{-\infty}^{\infty} \rho(x) d x
$$

Then

$$
\begin{aligned}
v(x) & =\int_{-\infty}^{\infty} F(|x-y|) \frac{x-y}{|x-y|} \rho(y) d y \\
& =\int_{-\infty}^{\infty}(1-|x-y|) \operatorname{sign}(x-y) \rho(y) \\
& =2 \int_{-\infty}^{x} \rho(y) d y-M(x+1)
\end{aligned}
$$

and continuity equations become

$$
\begin{aligned}
\rho_{t}+v \rho_{x} & =-v_{x} \rho \\
& =(M-2 \rho) \rho
\end{aligned}
$$

Define the characteristic curves $X\left(t, x_{0}\right)$ by

$$
\frac{d}{d t} X\left(t ; x_{0}\right)=v ; \quad X\left(0, x_{0}\right)=x_{0}
$$

Then along the characteristics, we have $\rho=\rho(X, t)$;

$$
\frac{d}{d t} \rho=\rho(M-2 \rho)
$$

Solving we get:

$$
\rho\left(X\left(t, x_{0}\right), t\right)=\frac{M}{2+e^{-M t}\left(M / \rho_{0}-2\right)} ; \quad \rho\left(X\left(t, x_{0}\right), t\right) \rightarrow M / 2 \text { as } t \rightarrow \infty
$$

Solving for characteristic curves

Let

$$
w:=\int_{-\infty}^{x} \rho(y) d y
$$

then

$$
v=2 w-M(x+1) ; \quad v_{x}=2 \rho-M
$$

and integrating $\rho_{t}+(\rho v)_{x}=0$ we get:

$$
w_{t}+v w_{x}=0
$$

Thus w is constant along the characteristics X of ρ, so that characteristics $\frac{d}{d t} X=v$ become

$$
\frac{d}{d t} X=2 w_{0}-M(X+1) ; \quad X\left(0 ; x_{0}\right)=x_{0}
$$

Summary for $F(r)=1-r$ in 1D:

$$
\begin{aligned}
X & =\frac{2 w_{0}\left(x_{0}\right)}{M}-1+e^{-M t}\left(x_{0}+1-\frac{2 w_{0}\left(x_{0}\right)}{M}\right) \\
w_{0}\left(x_{0}\right) & =\int_{-\infty}^{x_{0}} \rho_{0}(z) d z ; \quad M=\int_{-\infty}^{\infty} \rho_{0}(z) d z \\
\rho(X, t) & =\frac{M}{2+e^{-t M}\left(M / \rho_{0}\left(x_{0}\right)-2\right)}
\end{aligned}
$$

Example: $\rho_{0}(x)=\exp \left(-x^{2}\right) / \sqrt{\pi} ; \quad M=1$:

Global stability

In limit $t \rightarrow \infty$ we get:

$$
X=\frac{2 w_{0}}{M}-1 ; \quad w_{0}=0 \ldots M ; \quad \rho(X, \infty)=\frac{M}{2}
$$

We have shown that as $t \rightarrow \infty$, the steady state is

$$
\rho(x, \infty)=\left\{\begin{array}{c}
M / 2,|x|<1 \tag{3}\\
0,|x|>1
\end{array}\right.
$$

- This proves the global stability of (3)!
- Characteristics intersect at $t=\infty$; solution forms a shock at $x= \pm 1$ at $t=\infty$.

Dynamics in 2D, $F(r)=\frac{1}{r}-r$

- Similar to 1D,

$$
\begin{aligned}
\nabla \cdot v & =2 \pi \rho(x)-4 \pi M ; \\
\rho_{t}+v \cdot \nabla \rho & =-\rho \nabla \cdot v \\
& =-\rho(\rho-2 M) 2 \pi
\end{aligned}
$$

- Along the characterisitics:

$$
\frac{d}{d t} X\left(t ; x_{0}\right)=v ; \quad X\left(0, x_{0}\right)=x_{0}
$$

we still get

$$
\begin{gather*}
\frac{d}{d t} \rho=2 \pi \rho(2 M-\rho) \\
\rho\left(X\left(t ; x_{0}\right), t\right)=\frac{2 M}{1+\left(\frac{2 M}{\rho\left(x_{0}\right)}-1\right) \exp (-4 \pi M t)} \tag{4}
\end{gather*}
$$

- Continuity equations yield:

$$
\rho\left(X\left(t ; x_{0}\right), t\right) \operatorname{det} \nabla_{x_{0}} X\left(t ; x_{0}\right)=\rho_{0}\left(x_{0}\right)
$$

- Using (4) we get

$$
\operatorname{det} \nabla_{x_{0}} X\left(t ; x_{0}\right)=\frac{\rho_{0}\left(x_{0}\right)}{2 M}+\left(1-\frac{\rho_{0}\left(x_{0}\right)}{2 M}\right) \exp (-4 \pi M t)
$$

- If ρ is radially symmetric, characteristics are also radially symmetric, i.e.

$$
X\left(t ; x_{0}\right)=\lambda\left(\left|x_{0}\right|, t\right) x_{0}
$$

then

$$
\operatorname{det} \nabla_{x_{0}} X\left(t ; x_{0}\right)=\lambda(t ; r)\left(\lambda(t ; r)+\lambda_{r}(t ; r) r\right), \quad r=\left|x_{0}\right|
$$

so that

$$
\begin{gathered}
\lambda^{2}+\lambda_{r} \lambda r=\frac{\rho_{0}\left(x_{0}\right)}{2 M}+\left(1-\frac{\rho_{0}\left(x_{0}\right)}{2 M}\right) \exp (-4 \pi M t) \\
\lambda^{2} r^{2}=\frac{1}{M} \int_{0}^{r} s \rho_{0}(s) d s+2 \exp (-4 \pi M t) \int_{0}^{r} s\left(1-\frac{\rho(s)}{2 M}\right) d s
\end{gathered}
$$

So characteristics are fully solvable!!

- This proves global stability in the space of radial initial conditions $\rho_{0}(x)=$ $\rho_{0}(|x|)$.
- More general global stability is still open.

The force $F(r)=\frac{1}{r}-r^{q-1}$ in 2D

- If $q=2$, we have explicit ode and solution for characteristics.
- For other q, no explicit solution is available but we have differential inequalities: Define

$$
\rho_{\max }:=\sup _{x} \rho(x, t) ; \quad R(t):=\text { radius of support of } \rho(x, t)
$$

Then

$$
\begin{aligned}
\frac{d \rho_{\max }}{d t} & \leq\left(a R^{q-2}-b \rho_{\max }\right) \rho_{\max } \\
\frac{d R}{d t} & \leq c \sqrt{\rho_{\max }}-d R^{q-1}
\end{aligned}
$$

where a, b, c, d are some [known] positive constants.

- It follows that if $R(0)$ is sufficiently big, then $R(t), \rho_{\max }(t)$ remain bounded for all t. [using bounding box argument]
- Theorem: For $q \geq 2$, there exists a bounded steady state [uniqueness??]

Inverse problem: Custom-designer kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

$$
\rho(x)=\left\{\begin{array}{c}
b_{0}+b_{2} x^{2}+b_{4} x^{4}+\ldots+b_{2 n} x^{2 n}, \quad|x|<R \tag{5}\\
0, \quad|x| \geq R
\end{array}\right.
$$

Define the following quantities,

$$
\begin{equation*}
m_{2 q}:=\int_{0}^{R} \rho(r) r^{2 q} d r \tag{6}
\end{equation*}
$$

Then $\rho(r)$ is the steady state corresponding to the kernel

$$
\begin{equation*}
F(r)=1-a_{0} r-\frac{a_{2}}{3} r^{3}-\frac{a_{4}}{5} r^{5}-\ldots-\frac{a_{2 n}}{2 n+1} r^{2 n+1} \tag{7}
\end{equation*}
$$

where the constants $a_{0}, a_{2}, \ldots, a_{2 n}$, are computed from the constants $b_{0}, b_{2}, \ldots, b_{2 n}$ by solving the following linear problem:

$$
\begin{equation*}
b_{2 k}=\sum_{j=k}^{n} a_{2 j}\binom{2 j}{2 k} m_{2(j-k)}, \quad k=0 \ldots n \tag{8}
\end{equation*}
$$

Example: custom kernels 1D

Example 1: $\rho=1-x^{2}, \quad R=1$, then $F(r)=1-9 / 5 r+1 / 2 r^{3}$.
Example 2: $\rho=x^{2}, \quad R=1$, then $F(r)=1+9 / 5 r-r^{3}$.
Example 3: $\rho=1 / 2+x^{2}-x^{4}, \quad R=1$; then $F(r)=1+\frac{209425}{336091} r-\frac{4150}{2527} r^{3}+\frac{6}{19} r^{5}$.

Inverse problem: Custom-designer kernels: 2D

Theorem. In two dimensions, conisder a radially symmetric density $\rho(x)=\rho(|x|)$ of the form

$$
\rho(r)=\left\{\begin{array}{c}
b_{0}+b_{2} r^{2}+b_{4} r^{4}+\ldots+b_{2 n} r^{2 n}, \quad r<R \tag{9}\\
0, \quad r \geq R
\end{array}\right.
$$

Define the following quantities,

$$
\begin{equation*}
m_{2 q}:=\int_{0}^{R} \rho(r) r^{2 q} d r \tag{10}
\end{equation*}
$$

Then $\rho(r)$ is the steady state corresponding to the kernel

$$
\begin{equation*}
F(r)=\frac{1}{r}-\frac{a_{0}}{2} r-\frac{a_{2}}{4} r^{3}-\ldots-\frac{a_{2 n}}{2 n+2} r^{2 n+1} \tag{11}
\end{equation*}
$$

where the constants $a_{0}, a_{2}, \ldots, a_{2 n}$, are computed from the constants $b_{0}, b_{2}, \ldots, b_{2 n}$ by solving the following linear problem:

$$
\begin{equation*}
b_{2 k}=\sum_{j=k}^{n} a_{2 j}\binom{j}{k}^{2} m_{2(j-k)+1} ; \quad k=0 \ldots n \tag{12}
\end{equation*}
$$

This system always has a unique solution for provided that $m_{0} \neq 0$.

Numerical simulations, 1D

- First, use standard ODE solver to integrate the corresponding discrete particle model,

$$
\frac{d x_{j}}{d t}=\frac{1}{N} \sum_{\substack{k=1 \ldots N \\ k \neq j}} F\left(\left|x_{j}-x_{k}\right|\right) \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|}, \quad j=1 \ldots N
$$

- How to compute $\rho(x)$ from x_{i} ? [Topaz-Bernoff, 2010]
- Use x_{i} to approximate the cumulitive distribution, $w(x)=\int_{-\infty}^{x} \rho(z) d z$.
- Next take derivative to get $\rho(x)=w^{\prime}(x)$

[Figure taken from Topaz+Bernoff, 2010 preprint]

Numerical simulations, 2D

- Solve for x_{i} using ODE particle model as before [$2 N$ variables]
- Use x_{i} to compute Voronoi diagram;
- Estimate $\rho\left(x_{j}\right)=1 / a_{j}$ where a_{j} is the area of the voronoi cell around x_{j}.
- Use Delanay triangulation to generate smooth mesh.
- Example: Take

$$
\rho(r)=\left\{\begin{array}{c}
1+r^{2}, r<1 \\
0, r>0
\end{array}\right.
$$

Then by Custom-designed kernel in 2D is:

$$
F(r)=\frac{1}{r}-\frac{8}{27} r-\frac{r^{3}}{3}
$$

Running the particle method yeids...

Numerical solutions for radial steady states for $F(r)=\frac{1}{r}-r^{q-1}$

- Radial steady states of radius R satisfy $\rho(r)=2 q \int_{0}^{R}\left(r^{\prime} \rho\left(r^{\prime}\right) I\left(r, r^{\prime}\right) d r^{\prime}\right.$ where $c(q)$ is some constant and $I\left(r, r^{\prime}\right)=\int_{0}^{\pi}\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \sin \theta\right)^{q / 2-1} d \theta$.
- To find ρ and R, we adjust R until the operator $\rho \rightarrow c(q) \int_{0}^{R}\left(r^{\prime} \rho\left(r^{\prime}\right) K\left(r, r^{\prime}\right) d r^{\prime}\right.$ has eigenvalue 1 ; then ρ is the corresponding eigenfunction.

Discussions/open problems

- We found bound states of constant density with $F(r)=r^{1-n}-r$.
- may be of relevance for biology (minimizes overcrowding)
- Can we get explicit results for Morse force in 2D?
- To get explicit results in $2 D$, we need that $F(r) \sim 1 / r$ as $r \rightarrow 0$.
- Morse force looks like $F(r) \sim$ const. as $r \rightarrow 0$. This is a more "difficult" singularity in 2D.
- Open question: global stability for $F(r)=r^{1-n}-r$? [can show for $n=1$ or for radial initial conditions if $n \geq 2$.]
- Open question: Uniqueness of (radial) steady states for $F(r)=r^{1-n}-r^{q-1}, \quad q \neq 2$? [can show it is bounded for all q; can show uniqueness if $q=2$]
- What about $q<2$?
- Most of the results generalize to n dimensions.
- This talk is downloadable from my website (preprint will be available by spring), http://www.mathstat.dal.ca/~tkolokol/papers

