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Abstract. Precursor gradients in a reaction-diffusion system are spatially varying coefficients5
in the reaction-kinetics. Such gradients have been used in various applications, such as the head6
formation in the Hydra, to model the effect of pre-patterns and to localize patterns in various spatial7
regions. For the 1-D Gierer-Meinhardt (GM) model we show that a simple precursor gradient in8
the decay rate of the activator can lead to the existence of stable, asymmetric, two-spike patterns,9
corresponding to localized peaks in the activator of different heights. This is a qualitatively new10
phenomena for the GM model, in that asymmetric spike patterns are all unstable in the absence of11
the precursor field. Through a determination of the global bifurcation diagram of two-spike steady-12
state patterns, we show that asymmetric patterns emerge from a supercritical symmetry-breaking13
bifurcation along the symmetric two-spike branch as a parameter in the precursor field is varied.14
Through a combined analytical-numerical approach we analyze the spectrum of the linearization15
of the GM model around the two-spike steady-state to establish that portions of the asymmetric16
solution branches are linearly stable. In this linear stability analysis a new class of vector-valued17
nonlocal eigenvalue problem (NLEP) is derived and analyzed.18

1. Introduction. We analyze the existence, linear stability, and bifurcation19

behavior of localized steady-state spike patterns for the Gierer-Meinhardt reaction-20

diffusion (RD) model in a 1-D domain where we have included a spatially variable21

coefficient for the decay rate of the activator. We will show that this spatial hetero-22

geneity in the model, referred to as a precursor gradient, can lead to the existence of23

stable asymmetric two-spike equilibria, corresponding to steady-state spikes of differ-24

ent height (see the right panel of Fig. 2). This is a qualitatively new phenomenon for25

the GM model since, in the absence of a precursor field, asymmetric steady-state spike26

patterns for the GM model are always unstable [29]. A combination of analytical and27

numerical methods is used to determine parameter ranges where stable asymmetric28

steady-state patterns for the GM model with a simple precursor field can occur. We29

will show that these stable asymmetric equilibria emerge from a symmetry-breaking30

supercritical pitchfork bifurcation of symmetric spike equilibria as a parameter in the31

precursor field is varied.32

Precursor gradients have been used in various specific applications of RD theory33

since the initial study by Gierer and Meinhardt in [8] for modeling head development34

in the Hydra. For other RD systems, precursor gradients have also been used in the35

numerical simulations of [11] to model the formation and localization of heart tissue36

in the Axolotl, which is a type of salamander. Further applications of such gradients37

for the GM model and other RD systems are discussed in [11], [12], [21], and [9].38

With a precursor field, or with spatially variable diffusivities, the RD system does not39

generally admit a spatially uniform state. As a result, a conventional Turing stability40

approach is not applicable and the initial development of small amplitude patterns41

must be analyzed through either a slowly-varying assumption or from full numerical42

simulations (cf. [13], [22], [23], [20]).43

In contrast to small amplitude patterns, in the singularly perturbed limit of a44

large diffusivity ratio O(ε−2) � 1, many two-component RD systems in 1-D admit45
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spike-type solutions. In this direction, there is a rather extensive analytical theory on46

the existence, linear stability and slow dynamics of spike-type solutions for many such47

RD systems in 1-D (see [5], [6], [14], [15], [24] [25], [26], and the references therein).48

To establish parameter regimes where spike-layer steady-states are linearly stable,49

one must analyze the spectrum of the operator associated with a linearization around50

the spike-layer solution. In this spectral analysis one must consider both the small51

eigenvalues of order O(ε2) associated with near-translation invariance and the large52

O(1) eigenvalues that characterize any instabilities in the amplitudes of the spikes.53

These latter eigenvalues are associated with nonlocal eigenvalue problems (NLEPs),54

for which many rigorous results are available (cf. [4], [30], [28]).55

Despite these advances, the effect of spatially heterogeneous coefficients in the56

reaction kinetics on spike existence, stability, and dynamics is much less well under-57

stood. With a precursor gradient, spike pinning can occur for the GM model (cf. [27],58

[31]) and for the Fitzhugh-Nagumo model (cf. [2], [10]), while a plant hormone (auxin)59

gradient is predicted to control the spatial locations of root formation in plant cells60

[1]. In other contexts, a spatial heterogeneity can trigger a self-replication loop con-61

sisting of spike formation, propagation, and annihilation against a domain boundary62

[19]. More recently, clusters of spikes that are confined as a result of a spatial het-63

erogeneity have been analyzed in 1-D in [16] and [18] for the GM and Schnakenberg64

models, respectively, and in [17] for 2-D spot clusters of the GM model. In these65

recent approaches the RD system with clustered spikes is effectively approximated by66

a limiting equation for the spike density.67

In our study we will consider the dimensionless GM model in 1-D with activator68

a and inhibitor h, and with a smooth precursor µ(x) > 0 in the decay rate of the69

activator, given for ε� 1 by70

at = ε2axx − µ(x)a+
a2

h
, |x| < L , t > 0 ; ax(±L, t) = 0 ,(1.1a)71

τht = hxx − h+ ε−1a2 , |x| < L , t > 0 ; hx(±L, t) = 0 .(1.1b)7273

Although our analytical framework can be applied more generally, we will exhibit74

stable asymmetric spike-layer steady-states only for the specific precursor field75

(1.2) µ(x) = 1 + bx2 ,76

where b > 0 is a bifurcation parameter. In our formulation in (1.1), we have for77

convenience fixed the inhibitor diffusivity at unity and will use the domain length L78

as the other bifurcation parameter.79

In §2 we use a matched asymptotic approach to derive a differential algebraic80

system of ODEs (DAEs) for a collection of spikes for (1.1), under the assumption that81

the quasi-equilibrium spike pattern is stable on O(1) time-scales. The DAE system82

is written in terms of 1-D Green’s functions, or equivalently as a tridiagonal system.83

In §3 we provide two alternative approaches for computing global branches of two-84

spike equilibria of the DAE system, for the µ as given in (1.2), and we formulate a85

generalized matrix eigenvalue problem characterizing the linear stability of branches86

of equilibria. Numerical results for steady-state spike locations and spike heights,87

denoting maxima of the inhibitor field, corresponding to global bifurcation branches88

of two-spike equilibria are shown in §3.2 in terms of the precursor parameter b and the89

domain half-length L. We show that the asymmetric branches of two-spike equilibria90

emerge from a symmetry breaking pitchfork bifurcation from the symmetric branch at91

a critical value b = bp(L). For b > 0.076, we show that this bifurcation is supercritical,92
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Fig. 1: Left: steady-state spike locations x1 = −r− and x2 = r+ for L = 5 versus b
in (1.2). Right: height H+ of the rightmost spike versus b. Solid lines: linearly stable
to both the small eigenvalues and the large (NLEP) eigenvalues when τ � 1. Dash-
dotted lines: unstable for the small eigenvalues but stable for the large eigenvalues
when τ � 1. Dashed line: stable to the small eigenvalues but unstable to the large
eigenvalues when τ � 1. Dotted line: unstable to both the small and large eigenvalues
when τ � 1. Red dots: zero-eigenvalue crossings for the NLEP. Green squares: the
stable steady-state observed in the full PDE simulation of (1.1) shown in Fig. 2.
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Fig. 2: Time-dependent PDE simulations of (1.1) with L = 5, ε = 0.05, and τ = 0.25
for a precursor µ(x) = 1 + bx2 with b = 0.12. Initial condition is a quasi-equilibrium
two-spike solution with spike locations x1(0) = −1 and x2(0) = 3. Spike heights (left
panel), denoting maxima of the inhibitor field, and spike locations (middle panel)
versus time. Right: the steady-state asymmetric two-spike equilibrium, stable to the
small and large eigenvalues, corresponding to the green squares in Fig. 1.

and that the bifurcating branches of asymmetric equilibria are linearly stable as a93

steady-state solution of the DAE dynamics.94

In §4 we derive a vector-valued NLEP characterizing spike amplitude instabilities95

of steady-state spike patterns of (1.1). For the case of symmetric two-spike equilibria,96

the vector-valued NLEP can be diagonalized, and we obtain necessary and sufficient97

conditions for the linear stability of these patterns when τ in (1.1) is sufficiently small.98

The resulting stability thresholds are shown in the global bifurcation plots in §3.2.99

However, for asymmetric two-spike equilibria, we obtain a new vector-valued NLEP100
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that cannot be diagonalized, and for which the NLEP stability results in [30] are not101

directly applicable. For this new NLEP we determine analytically parameter values102

corresponding to zero-eigenvalue crossings, and for τ = 0 we numerically compute any103

unstable eigenvalues by using a discretization of the vector-valued NLEP combined104

with a generalized matrix eigenvalue solver.105

In 5 we confirm our global bifurcation and linear stability results through full106

PDE simulations of (1.1). As an illustration of our results, in Fig. 1 we plot the spike107

locations and spike heights corresponding to steady-state branches of symmetric and108

asymmetric two-spike equilibria in terms of the precursor parameter b for a domain109

half-length L = 5. The two branches of asymmetric two-spike equilibria result from110

an even reflection of solutions through the origin x = 0. In the right panel of Fig. 1,111

where we plot the spike heights, we show the linear stability properties for the small112

eigenvalues, as obtained from the linearization of the DAE system, and for the large113

eigenvalues, as determined from computations of the vector-valued NLEP. The time-114

dependent PDE simulations shown in Fig. 2 confirm that a quasi-equilibrium two-spike115

pattern tends to a stable asymmetric equilibrium on a long time scale. The paper116

concludes with a brief discussion in §6.117

2. Derivation of the DAE System. We now derive a DAE system for the118

spike locations for an N -spike quasi-equilibrium pattern, which is valid in the absence119

of any O(1) time-scale instability of the pattern. Since this analysis is similar to that120

given in [15] with no precursor field and in [27] for a precursor field, but with only121

one spike, we only briefly outline the analysis here.122

The spike locations xj , for j = 1, . . . , N , are assumed to satisfy |xj+1−xj | � O(ε),123

with |x1 +L| � O(ε) and |L−xN | � O(ε). As shown in [15] and [27], in the absence124

of any O(1) time-scale instability of the spike amplitudes, the spikes will evolve on125

the long time-scale σ = ε2t, and so we write xj = xj(σ).126

To derive a DAE system for xj(σ), for j = 1, . . . , N , we first construct the solution127

in the inner region near the j-th spike. We introduce the inner expansion128

(2.1) a = A0 + εA1 + . . . , h = H0 + εH1 + · · · ,129

where Ai = Ai(y, σ) and Hi = Hi(y, σ) for i = 0, 1 and y = ε−1(x − xj). Upon130

substituting (2.1) into (1.1), and using at = −εx′jA0y +O(ε2) where x′j ≡ dxj/dσ, we131

collect powers of ε to obtain the following leading-order problem on −∞ < y <∞:132

(2.2) A0yy − µjA0 +A2
0/H0 = 0 , H0yy = 0 ,133

where µj ≡ µ(xj). At next order, we conclude on −∞ < y <∞ that134

LA1 ≡ A1yy − µjA1 +
2A0

H0
A1 =

A2
0

H2
0

H1 + yµ′(xj)A0 − x′jA0y ,(2.3a)135

H1yy = −A2
0 .(2.3b)136137

138

From (2.2) we get that H0 = H0j(σ), where H0j , independent of y, is to be139

determined. In addition, the spike profile is given by140

(2.4) A0 = µjH0jw
(√
µjy
)

where w(z) =
3

2
sech2(z/2) ,141

where w(0) > 0 with w′(0) = 0, is the well-known homoclinic solution to142

(2.5) w′′ − w + w2 = 0 , −∞ < z <∞ , w → 0 as |z| → ∞ .143
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Since LA0y = 0, the solvability condition for (2.3a) is that144

x′j

∫
A2

0y dy = µ′(xj)

∫
yA0A0y dy +

∫
A2

0

H2
0j

H1A0y dy

=
µ′(xj)

2

∫
y
(
A2

0

)
y
dy +

1

3H2
0j

∫ (
A3

0

)
y
H1 dy

= −µ
′(xj)

2

∫
A2

0 dy −
1

3H2
0j

∫
A3

0H1y dy ,

(2.6)145

where we have used integration by parts and the shorthand notation
∫

=
∫∞
−∞. From146

a further integration by parts on the last term on the last line in (2.6), and using the147

fact that H1yy = −A2
0 is even, we obtain that148

(2.7) x′j = −µ
′(xj)

2
I1 −

1

6H2
0j

I2

(
lim

y→+∞
H1y + lim

y→−∞
H1y

)
,149

in terms of the integral ratios I1 and I2 defined by150

(2.8) I1 ≡
∫
A2

0 dy∫
A2

0y dy
, I2 ≡

∫
A3

0 dy∫
A2

0y dy
.151

By multiplying the ODE for A0 in (2.2) first by A0y and then by A0, we integrate the152

two resulting expressions to obtain an algebraic system for I1 and I2, which yields153

(2.9) I1 =
5

µj
, I2 = 6H0j .154

Upon using (2.9) in (2.7), we conclude for each j = 1, . . . , N that155

(2.10) x′j = −5

2

µ′(xj)

µ(xj)
− 1

H0j

(
lim

y→+∞
H1y + lim

y→−∞
H1y

)
.156

To determine H0j for j = 1, . . . , N and the remaining term in (2.10) we need to157

determine the outer solution.158

Now in the outer region, defined away from O(ε) regions near each xj , a is ex-159

ponentially small. In the sense of distributions we then use A0 = H0jµjw(
√
µjy) to160

calculate across each x = xj that161

(2.11)
1

ε
a2 →

(∫
A2

0 dy

)
δ(x−xj) = µ

3/2
j H2

0j

(∫
w2(z) dz

)
δ(x−xj) = 6µ

3/2
j H2

0jδ(x−xj) ,162

owing to the fact that
∫
w2 z =

∫
w dz = 6. In this way, the outer problem for h is163

(2.12) hxx − h = −6

N∑
j=1

H2
0jµ

3/2
j δ(x− xj) , |x| ≤ L ; hx(±L, σ) = 0 .164

The solution to (2.12) is165

(2.13) h(x) =

N∑
i=1

H2
0iµ

3/2
i G(x;xi) ,166
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where G(x;xi) is the 1-D Green’s function satisfying167

(2.14) Gxx −G = −δ(x− xi) , |x| ≤ L ; Gx(±L;xi) = 0 .168

To match with the inner solutions near each xj , we require for each j = 1, .., N that169

(2.15) h(xj) = H0j , lim
y→∞

H1y + lim
y→−∞

H1y = hx(xj+) + hx(xj−) .170

In this way, by using (2.15) in (2.13) and (2.10) we obtain the following DAE system171

for slow spike motion:172

dxj
dσ

= −5

2

µ′(xj)

µj
− 12

Hj

µ3/2
j H2

j 〈Gx〉j +

N∑
i=1

i 6=j

µ
3/2
i H2

i Gx(xj ;xi)

 ,(2.16a)173

Hj = 6

N∑
i=1

µ
3/2
i H2

i G(xj ;xi) ,(2.16b)174

175

where µj ≡ µ(xj), 〈Gx〉j ≡ [Gx(xj+;xi) +Gx(xj−;xi)] /2, and G(x;xj) is the Green’s176

function satisfying (2.14). In (2.16), we have relabeled H0j by Hj .177

A simple special case of (2.16) is for the infinite-line problem with L → ∞, for178

which G(x;xi) = 1
2e
−|x−xi|. For this case, we calculate 〈Gx〉j = 0 and Gx(xj ;xi) =179

− 1
2 sign(xj − xi)e−|xj−xi|. In this way, we can rewrite (2.16) as180

dxj
dσ

= −5

2

µ′(xj)

µj
+

1

Hj

N∑
i=1

i6=j

Si sign(xj − xi)e−|xj−xi| ,(2.17a)181

Hj =
1

2

N∑
i=1

Sie
−|xj−xi| , Hj =

(
Sj

6µ
3/2
j

)1/2

.(2.17b)182

183
184

From (2.16a), we observe that the DAE dynamics for the j-th spike is globally185

coupled to all of the other spikes through full matrices. We now proceed as in [15] to186

derive an equivalent representation of (2.16a) that is based only on nearest neighbor187

interactions. To do so, we first write (2.16) compactly in matrix form as188

(2.18)
dx

dσ
= −5

2
µp − 2H−1PG−1h , G−1h = 6Uh2 ,189

where G and P are defined in terms of the Green’s function by190

(2.19a)

G ≡

 G(x1;x1) · · · G(x1;xN )
...

. . .
...

G(xN ;x1) · · · G(xN ;xN )

 , P ≡

 〈Gx〉1 · · · Gx(x1;xN )
...

. . .
...

Gx(xN ;x1) · · · 〈Gx〉N

 .191

In (2.18), U and H are diagonal matrices with diagonal entries (U)jj = µ(xj) and192

(H)jj = Hj for j = 1, . . . , N , and we have defined193

(2.19b) h ≡

 H1

...
HN

 , h2 ≡

 H2
1

...
H2
N

 , µp ≡


µ′(x1)
µ(x1)

...
µ′(xN )
µ(xN )

 .194
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As shown in Appendix A of [15] (see also Appendix A of [14]), the inverse B ≡ G−1 of195

the Green’s matrix and the product PG−1 are each triangular matrices of the form196

(2.20a)

B =


c1 d1 0

d1
. . .

. . .

. . .
. . . dN−1

0 dN−1 cN

 , 2PB ≡ A =


e1 −d1 0

d1
. . .

. . .

. . .
. . . −dN−1

0 dN−1 eN

 ,197

where the matrix entries are given by198

c1 = coth(x2 − x1) + tanh(L+ x1) , cN = coth(xN − xN−1) + tanh(L− xN ) ,

cj = coth(xj+1 − xj) + coth(xj − xj−1) , j = 2, . . . N − 1 ,

e1 = tanh(L+ x1)− coth(x2 − x1) , eN = coth(xN − xN−1)− tanh(L− xN ) ,

ej = coth(xj − xj−1)− coth(xj+1 − xj−1) , j = 2, . . . N − 1 ,

dj = − csch(xj+1 − xj) , j = 1, . . . , N − 1 .

(2.20b)

199

For the infinite-line problem, we calculate for the limit L→∞ that200

c1 →
2

1− e−2(x2−x1)
, cN →

2

1− e−2(xN−xN−1)
, as L→∞ ,

e1 →
2

1− e2(x2−x1)
, eN → −

2

1− e2(xN−xN−1)
, as L→∞ .

(2.21)201

Finally, upon substituting (2.20) into (2.18), we obtain the following more tractable,202

but equivalent, tridiagonal representation of the DAE dynamics (2.16):203

(2.22)
dx

dσ
= −5

2
µp −H−1Ah , Bh = 6Uh2 .204

3. Global Bifurcation Diagram of Spike Equilibria. In this section we205

analyze bifurcation behavior for two-spike equilibria of (2.22) and study their stability206

properties in terms of equilibrium points of the DAE system (2.22). From (2.22), the207

equilibria satisfy the nonlinear algebraic system F(x1, x2, H1, H2) = 0 for F ∈ R4,208

given component-wise by209

F1 ≡ −
5

2

µ′(x1)

µ(x1)
− e1 + d1

H2

H1
, F2 ≡ −

5

2

µ′(x2)

µ(x2)
− e2 − d1

H1

H2
,

F3 = 6 [µ(x1)]
3/2

H2
1 − c1H1 − d1H2 , F4 = 6 [µ(x2)]

3/2
H2

2 − d1H1 − c2H2 .

(3.1)

210

The linear stability properties of an equilibrium state (r+, r−, H+, H−) of the DAE211

dynamics (2.22) is based on the eigenvalues ω of the matrix eigenvalue problem212

(3.2) Jv = ωDv ,213

where J ≡ DF is the Jacobian of F and D is the rank-defective diagonal matrix with214

matrix entries (D)11 = 1, (D)22 = 1, (D)33 = 0, and (D)44 = 0. Since rank(D) = 2,215

(3.2) has two infinite eigenvalues. The signs of the real parts of the remaining two216

matrix eigenvalues classify the linear stability of the equilibrium point for (2.22).217
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We will refer to these eigenvalues as the “small eigenvalues” for spike stability in218

accordance with the term used in [14] in the absence of a precursor field.219

We now outline a simple approach for computing branches of solutions to F = 0220

in terms of a parameter in the precursor field µ(x). An alternative formulation is221

given in §3.1 below. For the first approach, we introduce the spike height ratio s by222

(3.3) s ≡ H2

H1
,223

and reduce (3.1) to the three-component system N (x1, x2, s) = 0 with N ∈ R3 defined224

by225

N1 ≡ −
5

2

µ′(x1)

µ(x1)
− e1 + d1s , N2 ≡ −

5

2

µ′(x2)

µ(x2)
− e2 −

d1
s
,(3.4a)226

N3 = s2 [µ(x2)]
3/2

(c1 + d1s)− [µ(x1)]
3/2

(d1 + c2s) .(3.4b)227228

In terms of solutions to Nj = 0 for j = 1, . . . , 3 the spike heights are229

(3.4c) H1 =
(c1 + d1s)

6 [µ(x1)]
3/2

, H2 = sH1 .230

In (3.4) and (3.1), the constants c1, c2, d1, e1, and e2 are defined by (see (2.20b)):231

c1 = coth(x2 − x1) + tanh(L+ x1) , c2 = coth(x2 − x1) + tanh(L− x2) ,

e1 = tanh(L+ x1)− coth(x2 − x1) , e2 = coth(x2 − x1)− tanh(L− x2) ,

d1 = − csch(x2 − x1) .

(3.5)232

For the special case where µ(x) is even, i.e. µ(x) = µ(−x), we label “symmetric”233

spike equilibria as those solutions of (3.4) for which s = 1 and x2 = −x1. For234

this case, c1 = c2, e2 = −e1, and N3(−x2, x2, 1) = 0. Moreover, we calculate that235

e2 + d1 = tanh(x2) − tanh(L − x2), and so (3.4) reduces to finding a root x2 on236

0 < x2 < L to the scalar equation S(x2) = 0 given by237

(3.6) S(x2) ≡ µ′(x2)

µ(x2)
− 2

5
[tanh(L− x2)− tanh(x2)] .238

It readily follows that when µ(x) > 0 and µ′(x) > 0, there is always a root to S = 0239

with 0 < x2 < L/2. Our bifurcation results shown below are for the quadratic240

precursor field µ(x) = 1 + bx2 with b ≥ 0, as given in (1.2). For this special choice241

of µ, instead of computing x2 = x2(b) in (3.6) using Newton iterations, we can solve242

S = 0 in (3.6) in the explicit form b = b(x2), where243

(3.7) b =
[tanh(L− x2)− tanh(x2)]

x2 (5− x2 [tanh(L− x2)− tanh(x2)])
.244

By varying x2 on 0 < x2 < L/2 in (3.7), and keeping only points where b > 0,245

we obtain a simple parametric representation of the symmetric two-spike equilibrium246

solution branch with x1 = −x2. The common spike heights are given by247

(3.8) Hc ≡ H1,2 =
1

6 [µ(x2)]
3/2

[tanh(x2) + tanh(L− x2)] .248
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The linear stability with respect to the DAE dynamics (2.22) at each value of b on this249

symmetric solution branch is obtained from a numerical computation of the matrix250

spectrum of the generalized eigenvalue problem (3.2).251

To parameterize asymmetric two-spike equilibria for the special case µ = 1 + bx2,252

we isolate b from setting N1 = N2 = 0 in (3.4a). By equating the resulting two253

expressions for b, we obtain an equation relating x1 and x2, in which we treat s as a254

parameter. The remaining equation is N3 = 0 from (3.4b). In this way, for s 6= 1, we255

calculate solutions x1 = x1(s), x2 = x2(s) to the two-component coupled system256 (
x22 − x21

)
(e1 − d1s)

(
e2 +

d1
s

)
− 5

[
x2 (e1 − d1s)− x1

(
e2 +

d1
s

)]
= 0 ,

s2 [µ(x2)]
3/2

(c1 + d1s)− [µ(x1)]
3/2

(d1 + c2s) = 0 ,

(3.9a)257

in which µ(x) = 1 + bx2, where b is given by258

(3.9b) b =
d1s− e1

5x1 + x21(e1 − d1s)
.259

The spike heights are then obtained from (3.4c) in terms of the parameter s. This re-260

formulation of (3.4) gives a convenient approach for parameterizing solution branches261

of asymmetric two-spike equilibria in terms of the spike height ratio s. For the finite262

domain case L < ∞, the coefficients c1, c2, e1, e2, and d1, are given in (3.5), while263

when L = ∞, we use c1 = c2 = 2/(1 − e−2(x2−x1)) and e1 = −e2 = 2
1−e2(x2−x1) .264

Finally, at each point on these solution branches the spectrum of the generalized265

eigenvalue problem (3.2) is computed to determine the linear stability of asymmetric266

spike equilibria to the small eigenvalues.267

Although this approach works well for moderate values of s, for either very large268

or small values of s the nonlinear algebraic system (3.9) is rather poorly conditioned.269

As a result we need an alternative approach to compute two-spike equilibria.270

3.1. Two-Spike Equilibria: An Alternative Parameterization. An alter-271

native approach to parameterize symmetric and asymmetric two-spike equilibrium272

solution branches for the special case where µ(x) is even is described in Appendix A.273

This approach leads to a nonlinear algebraic system in terms of r+, r−, and `, where274

` is the symmetry point in the interval −r− < ` < r+ at which hx = 0. Here x2 = r+275

and x1 = −r− are the two steady-state spike locations with spike heights H±. As276

shown in Appendix A, with this formulation we must solve277

(3.10a) f(r+, `) = 0 , f(r−,−`) = 0 , ξ(r+, `)− ξ(r−,−`) = 0 ,278

for r± and `, where f(r, `) and ξ(r, `) are defined by279

(3.10b) f(r, `) =
µ′(r)

µ(r)
+

4

5

〈gx(r, r; `)〉
g(r, r; `)

, ξ(r, `) =
µ−3/2(r)

6

g(`, r; `)

g2(r, r; `)
,280

where 〈gx(r, r; `)〉 indicates the average of gx across x = r. Here g(x, r; `) is the 1-D281

Green’s function, with Dirac point r and left domain endpoint `, satisfying282

(3.11) gxx − g = −δ(x− r) , ` < x < L ; gx = 0 at x = ` , L .283

In the infinite domain case, where L =∞, we calculate that284

(3.12) g(r, r; `) =
1

2

(
1 + e2(`−r)

)
, g(`, r; `) = e`−r , 〈gx(r, r; `)〉 = −1

2
e2(`−r) ,285
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so that (3.10b) becomes286

(3.13) f(r, `) =
2br

1 + br2
− 4

5
(
1 + e2(r−`)

) , ξ(r, `) =
2(1 + br2)−3/2

3

e`−r

(1 + e2(`−r))2
.287

The spike heights for the inhibitor are defined in terms of r± by288

(3.14) H± =
µ−3/2(r±)

6g(r±, r±;±`)
=

(1 + br2±)−3/2

3(1 + e2(±`−r±))
.289

Alternatively, for the finite domain case, we calculate from (3.11) that290

g(r, r; `) =
cosh(r − `) cosh(r − L)

sinh(L− `)
, g(`, r; `) =

cosh(r − L)

sinh(L− `)
,

〈gx(r, r; `)〉 =
sinh(2r − L− `)

2 sinh(L− `)
,

(3.15)291

so that (3.10b) becomes292

(3.16)

f(r, `) =
2br

1 + br2
+

2 sinh(2r − L− `)
5 cosh(r − `) cosh(r − L)

, ξ(r, `) =
(1 + br2)−3/2 sinh(L− `)
6 cosh2(r − `) cosh(r − L)

.293

For this finite domain case, the spike heights are given by294

(3.17) H± = −
(1 + br2±)−3/2 sinh(±`− L)

6 cosh(±`− r±) cosh(r± − L)
.295
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Fig. 3: Left: steady-state spike locations r+ and −r− for L = 2 versus b in (1.2).
Right: height H+ of the rightmost spike versus b. Solid lines: linearly stable to
both the small eigenvalues and the large (NLEP) eigenvalues when τ � 1. Dash-
dotted lines: unstable for the small eigenvalues but stable for the large eigenvalues
when τ � 1. Dashed line: stable to the small eigenvalues but unstable to the large
eigenvalues when τ � 1. Red dot: zero-eigenvalue crossing of the NLEP on the
symmetric branch. Bifurcation from symmetric to asymmetric equilibria is subcritical.

To compute branches of two-spike equilibria as either b or L is varied, we write296

(3.10) for r± and ` in the form F (u, ζ) = 0, where297

(3.18) F (u, ζ) ≡

 f(r+, l)
f(r−,−l)

ξ(r+, l)− ξ(r−,−l)

 , with u ≡ (r+, r−, l)
T , ζ ≡ (b, L)T .298
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Fig. 4: Similar caption as in Figs. 1 and 3. Left: steady-state spike locations r+
and −r− for L = 3 versus b. The pitchfork bifurcation is now supercritical. Right:
height H+ of the rightmost spike versus b. Solid lines: linearly stable to both the
small eigenvalues and the large (NLEP) eigenvalues when τ � 1. Dash-dotted lines:
unstable for the small eigenvalues but stable for the large eigenvalues when τ � 1.
Dashed line: stable to the small eigenvalues but unstable to the large eigenvalues
when τ � 1. There are only very small (nearly indistinguishable) zones along the
asymmetric branches that are unstable to the small eigenvalues. Red dots are where
the NLEP has a zero-eigenvalue crossing.

Families of solutions and branch points (corresponding to symmetry-breaking299

pitchfork bifurcations) of this nonlinear system were computed using the two soft-300

ware packages AUTO (cf. [7]) and coco (cf. [3]), thereby validating the diagrams301

provided in Figs. 1, 3, 4, 5, 6 and 7. In Appendix A we give explicit formulas for the302

Jacobian of F with respect to u and the parameter vector ζ, since providing analyt-303

ical Jacobians significantly improves the performance and accuracy of continuation304

routines as opposed to using numerical Jacobians based on centered differences.305

3.2. Numerical Bifurcation Results for Two-Spike Equilibria. For L = 2,306

in the left panel of Fig. 3 we plot the numerically computed steady-state spike loca-307

tions versus the precursor parameter b. In the right panel of Fig. 3, we plot the308

corresponding height H+ of the rightmost steady-state spike versus b. In addition,309

in our plot of H+ versus b we indicate by various line shadings the linear stability310

properties of the steady-state solutions. We first observe that asymmetric two-spike311

equilibria emerge from a subcritical symmetry-breaking bifurcation from the branch312

of symmetric two-spike equilibria at the critical value b ≈ 0.034. However, the asym-313

metric solution branches are all unstable with regards to the small eigenvalues, as314

indicated by the dash-dotted black curves in the right panel of Fig. 3. Below in the315

left panel of Fig. 9 we show from a numerical computation of a vector-valued NLEP316

that these asymmetric branches are all stable on an O(1) time-scale when τ is suf-317

ficiently small. These linear stability properties are qualitatively similar to that for318

two-spike equilibria of the GM model with no precursor field (cf. [29]).319

In the left and right panels of Fig. 4 and Fig. 1 we plot similar global bifurcation320

results for two-spike equilibria when L = 3 and L = 5, respectively. For these values321

of L, we observe that the symmetry-breaking bifurcation is now supercritical and that322

a large portion of the bifurcating asymmetric two-spike branch of equilibria is linearly323

stable with regards to the small eigenvalues. Moreover, as shown below in the middle324
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Fig. 5: Left: steady-state spike locations r+ and −r− for L = 10 versus b. Right:
height H+ of the rightmost spike versus b. Solid lines: linearly stable to both the
small eigenvalues and the large (NLEP) eigenvalues when τ � 1. Dash-dotted lines:
unstable for the small eigenvalues but stable for the large eigenvalues when τ � 1.
Dashed line: stable to the small eigenvalues but unstable to the large eigenvalues
when τ � 1. Dotted line: unstable to both the small and large eigenvalues when
τ � 1. Red dots are where the NLEP has a zero-eigenvalue crossing. In the right
panel we have not shown the hairpin turn that occurs when b ≈ 1.67 that provides
the connection between an interior spike and a boundary spike solution.

and right panels of Fig. 9, these asymmetric solution branches are all linearly stable325

for τ sufficiently small with regards to the large eigenvalues for the range of values326

of H+ between the two red dots shown in the right panel of Fig. 4 for L = 3 and of327

Fig. 1 for L = 5. Overall, this establishes a parameter regime where linearly stable328

asymmetric two-spike equilibria occur. For L = 3, this theoretical prediction of stable329

asymmetric two-spike equilibria is confirmed below in Fig. 12 of §5 from full PDE330

simulations of (1.1). For L = 5, a similar validation of the linear stability theory331

through full PDE simulations was given in Fig. 2 of §1.332

In Fig. 5 we plot global bifurcation results for two-spike equilibria when L = 10.333

The right panel of Fig. 5 shows a parameter regime where stable asymmetric two-334

spike equilibria can occur when τ � 1. However, in contrast to the global bifurcation335

diagrams when L = 2, 3, 5, we observe that when L = 10 there are two zero-crossings336

for the NLEP on each asymmetric solution branch, with the pattern being unstable337

to both the small and large eigenvalues for some intermediate range of b. This linear338

stability behavior with respect to the large eigenvalues is confirmed below in the339

left panel of Fig. 10 through numerical computations of the spectrum of a vector-340

valued NLEP. Moreover, we observe from Fig. 5 that asymmetric patterns originating341

from a symmetry-breaking bifurcation of symmetric two-spike equilibria are path-342

connected through a saddle-node point of high curvature to an unstable two-spike343

steady-state consisting of a boundary spike of large amplitude and an interior spike344

of small amplitude.345

Similar results are shown in Fig. 6 for the infinite line problem where L =∞. For346

this case, stable asymmetric patterns occur near the symmetry-breaking bifurcation347

point. Moreover, as for the case where L = 10, along the asymmetric solution branch348

there is an intermediate range of b where the pattern is unstable to both the small349

and large eigenvalues. This instability range of b for the large eigenvalues is observed350

This manuscript is for review purposes only.



STABLE ASYMMETRIC SPIKE EQUILIBRIA WITH A PRECURSOR FIELD 13

0 0.1 0.2 0.3 0.4

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

Fig. 6: Left: steady-state spike locations r+ and −r− for L = ∞ versus b. Right:
height H+ of the rightmost spike versus b. Solid lines: linearly stable to both the
small eigenvalues and the large (NLEP) eigenvalues when τ � 1. Dash-dotted lines:
unstable for the small eigenvalues but stable for the large eigenvalues when τ � 1.
Dashed line: stable to the small eigenvalues but unstable to the large eigenvalues when
τ � 1. Dotted line: unstable to both the small and large eigenvalues when τ � 1.
Red dots are where the NLEP has a zero-eigenvalue crossing. Observe that there is an
intermediate range of b along the asymmetric branches where the pattern is unstable
to both the small and large eigenvalues. The asymmetric patterns re-stabilize for
larger b and results in a spike of large amplitude and another of negligible amplitude.
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Fig. 7: Symmetry-breaking bifurcation point bp versus L where the asymmetric
branches of two-spike equilibria bifurcate from the symmetric branch. The red dot
indicates the critical values bc ≈ 0.0760, Lc ≈ 2.597, r±,c ≈ 0.793 where this bifur-
cation switches between subcritical and supercritical. The bifurcation curve has a
vertical asymptote b ≈ 0.095 as L→∞.

in Fig. 10 below from our computations of the spectra of the vector-valued NLEP.351

However, when L =∞, there is no boundary spike solution and, as observed in Fig. 6,352

the asymmetric solution branch no longer terminates at a finite value of b.353

3.3. Computation of a Degenerate Bifurcation Point. From the global354

bifurcation diagrams in Fig. 3 and Fig. 4 we observe that the symmetry-breaking355

bifurcation switches from subcritical to supercritical on the range 2 < L < 3. We now356
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describe a procedure to accurately compute the critical precursor parameter b = bc357

and critical domain half-length L = Lc where this switch occurs. The significance358

of these critical values is that for L > Lc the asymmetric solution branch is linearly359

stable with regards to the small eigenvalues near the bifurcation point.360

To formulate our procedure for computing these critical values we first define361

(3.19) W (`) ≡ ξ(r+(`), `)− ξ(r−(`),−`) ,362

where r± = r±(`) satisfy363

f(r±,±`) = 0 .364

Here ξ(r, `) and f(r, `) are defined in (3.10b). The asymmetric branch corresponds to a365

non-zero root of W (`) and the symmetry-breaking bifurcation occurs when W ′(0) = 0.366

To compute this point, denote r = r±(0), that is, the location of a symmetric spike367

which satisfies f(r, 0) = 0. Upon differentiating (3.19) implicitly and evaluating at368

` = 0 we obtain that r′−(0) = −r′+(0) = −r′, so that the bifurcation occurs when the369

following system is satisfied:370

(3.20) ` = 0 , f = 0 ; r′ = − f`
fr

; ξrr
′ + ξ` = 0 .371

In the left panel of Fig. 14 of Appendix A we include the Maple code that computes372

this bifurcation point. For example, when L = 2 we obtain from solving (3.20) that373

b = 0.03406 and r = 0.835585.374

Since W (`) is an odd function we have for small ` that375

W (`) ∼ `W ′(0) + `3
W ′′′(0)

6
+O(`5) ,376

with all even derivatives of W being zero. The criticality of the bifurcation depends on377

the sign of W ′′′(0). A positive sign corresponds to a supercritical bifurcation, whereas378

a negative sign corresponds to a subcritical bifurcation. The change of bifurcation379

occurs when W ′′′(0) = W ′(0) = 0. To compute W ′′′(0), we differentiate implicitly380

and set ` = 0. We readily calculate that381

W ′(0) = ξrr
′ + ξ` , W ′′(0) = ξrrr

′2 + 2ξr`r
′ + ξrr

′′ + ξ`` ,382

W ′′′(0) = ξrrrr
′3 + 3ξrr`r

′2 + 3ξr``r
′ + 3ξrrr

′r′′ + 3ξr`r
′′ + ξrr

′′′ + ξ``` .383384

The values of r, r′ and r′′ are obtained by differentiating f implicitly. This yields385

r′ = − f`
fr
, r′′ = −frrr

′2 + 2fr`r
′ + f``

fr
,386

r′′′ = −frrrr
′3 + 3frr`r

′2 + 3fr``r
′ + 3frrr

′r′′ + 3fr`r
′′ + f```

fr
,387

388

which are then evaluated at ` = 0. In this way, the set of equations389

(3.21) l = 0 , f = 0 ; W ′(0) = 0 , W ′′′(0) = 0 ,390

must be solved numerically to obtain the higher-order bifurcation point. The right391

panel of Fig. 14 of Appendix A shows the Maple implementation. Although the system392
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(3.21) is very large (its length is about 20,000 bytes in Maple), its numerical solution393

is found instantaneously, yielding394

(3.22) L = Lc ≡ 2.5972 b = bc ≡ 0.07596 , r = rc ≡ .792655 .395

We conclude that the symmetry-breaking bifurcation is supercritical when L > 2.5972396

and is subcritical when L < 2.5972.397

4. NLEP Stability Analysis. We now examine the stability on an O(1) time-398

scale of steady-state spike equilibria of (1.1), labeled by ae and he. We will derive399

a new vector-valued nonlocal eigenvalue problem governing instabilities of the spike400

amplitudes on an O(1) time-scale. From this vector-NLEP, we will analyze in de-401

tail the linear stability of the two-spike equilibria constructed in §3 to these “large402

eigenvalues” for the choice µ = 1 + bx2.403

To formulate the linear stability problem, we first introduce the perturbation404

(4.1) a(x, t) = ae + eλtφ(x) , h(x, t) = he + eλtψ(x) ,405

into (1.1) and linearize. This leads to the singularly perturbed eigenvalue problem406

ε2φxx − µ(x)φ+
2ae
he

φ− a2e
h2e
ψ = λφ , |x| ≤ L ; φx(±L) = 0 ,(4.2a)407

ψxx − (1 + τλ)ψ = −2

ε
aeφ , |x| ≤ L ; ψx(±L) = 0 .(4.2b)408

409

410

In the inner region near a spike at x = xj , we have from (2.4) that411

ae ∼ µjHjw
(√
µjyj

)
he ∼ Hj , where yj = ε−1(x− xj) ,412

µj ≡ µ(xj), and w(z) = 3
2 sech2(z/2). Here Hj is the spike height obtained from the413

steady-state of (2.22). Next, we introduce the localized eigenfunction414

(4.3) Φj(yj) = φ(xj + εyj) ,415

and obtain from (4.2a) that on −∞ < yj <∞, and for each j = 1, . . . , N ,416

(4.4)
d2Φj
dy2j

− µjΦj + 2µjw
(√
µjyj

)
Φj − µ2

j

[
w
(√
µjyj

)]2
Ψj = λΦj ,417

where Ψj is a constant to be determined. Then, we let z ≡ √µjy, and define Φ̂j(z) ≡418

Φj
(
z/
√
µj
)
, so that (4.4) becomes419

(4.5)
d2Φ̂j
dz2

− Φ̂j + 2w(z)Φ̂j − µj [w(z)]
2

Ψj =
λ

µj
Φ̂j , −∞ < z <∞ .420

To determine Ψj , we must construct the outer solution for ψ in (4.2b). In the421

sense of distributions we calculate for ε→ 0 that422

(4.6)
2

ε
aeφ→ 2Hj

√
µj

(∫ ∞
−∞

w(z)Φ̂j(z) dz

)
δ(x− xj) .423
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In this way, we obtain that the outer solution for ψ in (4.2b) satisfies424

ψxx − θ2λψ = −2

n∑
j=1

Hj
√
µj

(∫ ∞
−∞

w(z)Φ̂j(z) dz

)
δ(x− xj) , |x| ≤ L ,(4.7a)425

ψx(±L) = 0 , θλ ≡
√

1 + τλ .(4.7b)426427

In (4.7b) we must choose the principal branch of θλ. The constants Ψj for j = 1, . . . , N428

are obtained from the matching condition that Ψj = ψ(xj) for j = 1, . . . , N .429

By solving (4.7) on each subinterval we readily derive a linear algebraic system430

for Ψ ≡ (Ψ1, . . . ,ΨN )
T

in the form431

(4.8) BλΨ =
2√

1 + τλ
U1/2H

(∫ ∞
−∞

wΨ dz

)
,432

where the diagonal matrices U andH have diagonal entries (U)jj = µ(xj) and (H)jj =433

Hj for j = 1, . . . , N . In (4.8), Bλ is defined by434

(4.9a) Bλ =


c1λ d1λ 0

d1λ
. . .

. . .

. . .
. . . dN−1λ

0 dN−1λ cNλ

 ,435

where the matrix entries are given by436

c1λ = coth(θλ(x2 − x1)) + tanh(θλ(L+ x1)) ,

cNλ = coth(θλ(xN − xN−1)) + tanh(θλ(L− xN )) ,

cjλ = coth(θλ(xj+1 − xj)) + coth(θλ(xj − xj−1)) , j = 2, . . . N − 1 ,

djλ = − csch(θλ(xj+1 − xj)) , j = 1, . . . , N − 1 .

(4.9b)437

438

Next, upon substituting (4.8) into (4.5), we obtain the following vector-valued439

NLEP for Φ̂ ≡ (Φ̂1, . . . , Φ̂N )T on −∞ < z <∞;440

LΦ̂− w2

∫∞
−∞ wEλΦ̂ dz∫∞
−∞ w2 dz

= λU−1Φ̂ ; Φ̂→ 0 as |z| → ∞ ,(4.10a)441

Eλ ≡
12√

1 + τλ
UB−1λ U

−1
(
U3/2H

)
, LΦ̂ ≡ Φ̂′′ − Φ̂ + 2wΦ̂ .(4.10b)442

443

We then diagonalize Eλ by finding the eigenvalues Eλe = χλe and obtain that444

(4.11) Eλ = VΛV−1 ,445

where V is the matrix of eigenvectors of Eλ and Λ is the diagonal matrix of eigenvalues446

with (Λ)jj = χλ,j , for j = 1, . . . , N . Then, by defining Φ̃ = V−1Φ̂, we obtain the447

following vector-valued NLEP defined on −∞ < z <∞ with Φ̃→ 0 as |z| → ∞:448

(4.12) LΦ̃− w2Λ

∫∞
−∞ wΦ̃ dz∫∞
−∞ w2 dz

= λCΦ̃ ; C ≡ V−1U−1V .449
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The key difference between this NLEP analysis and that for the Gierer-Meinhardt450

model with no precursor field in [15] and [14] is that the NLEP cannot be diagonalized451

into N separate scalar NLEPs, one for each eigenvalue of Λ. From (4.12) we observe452

that the NLEPs are coupled through the matrix C.453

We now study (4.12) for our two-spike symmetric and asymmetric equilibria con-454

structed in §3 for µ = 1 + bx2.455

4.1. NLEP Analysis: Symmetric 2-Spike Equilibria. For the symmetric456

two-spike case with x2 = −x1, we use U = µ(x2)I and H = HcI, to get from (4.10b)457

that458

(4.13)

Eλ =
12√

1 + τλ
[µ(x2)]

3/2
HcB−1λ , where [µ(x2)]

3/2
Hc = tanh(x2) + tanh(L−x2) ,459

as obtained from (3.8). We readily calculate the matrix spectrum of Bλ as460

Bλv1 = κ1λv1 ; v1 = (1, 1)T , κ1λ ≡ tanh(θλx2) + tanh(θλ(L− x2)) ,

Bλv2 = κ2λv2 ; v2 = (1,−1)T , κ2λ ≡ coth(θλx2) + tanh(θλ(L− x2)) .
(4.14)461

In this way, for symmetric two-spike equilibria, we obtain that (4.12) is equivalent to462

the two scalar NLEPs, with NLEP multipliers χ1,λ and χ2,λ, defined by463

LΦ̃− w2Λ

∫∞
−∞ wΦ̃ dz∫∞
−∞ w2 dz

=
λ

[µ(x2)]
3/2

Φ̃ , −∞ < z <∞ ; Φ̃→ 0 as |z| → ∞ ;

(4.15a)

464

(Λ)11 ≡ χ1,λ =
2√

1 + τλ

(
tanh(x2) + tanh(L− x2)

tanh(θλx2) + tanh(θλ(L− x2))

)
,(4.15b)465

(Λ)22 ≡ χ2,λ =
2√

1 + τλ

(
tanh(x2) + tanh(L− x2)

coth(θλx2) + tanh(θλ(L− x2))

)
,(4.15c)466

467

where θλ =
√

1 + τλ.468
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Fig. 8: Critical values bc of the precursor parameter b (left panel) and the spike
location x2c (right panel) versus L where the NLEP (4.15) with multiplier χ2,λ has
a zero-eigenvalue crossing for the linearization of a symmetric two-spike steady-state.
For x2 < x2c, or equivalently for b > bc, a competition instability on an O(1) time-
scale occurs.

This manuscript is for review purposes only.



18 T. KOLOKOLNIKOV, F. PAQUIN-LEFEBVRE, M. J. WARD

We first consider the competition mode corresponding to v2 = (1,−1)T where the469

multiplier of the NLEP in (4.15a) is χ2,λ, which depends on λ through the product470

τλ, so that χ2,λ = χ2,λ(τλ). From Proposition 3.6 of [24], we conclude for this471

competition mode that there is a unique eigenvalue in Re(λ) > 0 for any τ > 0 when472

χ2,λ(0) < 2. By using (4.15c), we calculate that χ2,λ(0) < 2 when473

2 tanh(x2) + 2 tanh(L− x2) < coth(x2) + tanh(L− x2) ,474

which, after some algebra, reduces to475

(4.16) coth(x2) coth(L) > 2 =⇒ 0 < x2 < x2c ≡
1

2
log

(
2 + cothL

2− cothL

)
,476

provided that L > Lc ≡ log(2 +
√

3) ≈ 1.3169. We conclude that a competition477

instability occurs whenever spikes become too close. When L < Lc, a competition478

instability occurs for any x2 > 0. Equivalently, from (3.7), we conclude that on the479

range L > Lc a competition instability occurs along the symmetric branch of equilibria480

whenever the precursor parameter b satisfies b > bc, where481

(4.17) bc =
[tanh(L− x2c)− tanh(x2c)]

x2c (5− x2c [tanh(L− x2c)− tanh(x2c)])
.482

In Fig. 8 we plot bc and x2c versus L on the range L > Lc ≈ 1.3169. Numerical483

values for bc for different L correspond to the red dots on the symmetric branches484

of equilibria shown in Fig. 1, and in Figs. 3, 4, 5, 6. For b < bc, or equivalently for485

x2 > x2c, Proposition 3.6 of [24] can be used to prove that the two-spike symmetric486

steady-state is linearly stable on O(1) time-scales whenever τ in (1.1) is below a Hopf487

bifurcation threshold τH . We refer the reader to [24] for the proof of this statement.488

Next, we briefly consider the NLEP (4.15) for the synchronous mode v1 = (1, 1)T ,489

where the NLEP multiplier χ1,λ is given in (4.15b). We calculate that χ1,λ(0) = 2,490

for any τ > 0 and b > 0. As a result, from Theorem 2.4 of [28] (see also [30]) we491

conclude that the NLEP for the synchronous mode has no eigenvalues in Re(λ) > 0492

when τ = 0, or when τ is sufficiently small. As similar to the analysis in [28] with493

no precursor, a Hopf bifurcation can occur when τ exceeds a threshold, which now494

depends on b and L. We do not calculate this Hopf point numerically here.495

We summarize our NLEP stability result for the symmetric two-spike steady-state496

branch as follows:497

Proposition 1. Consider the two-spike symmetric steady-state solution for (1.1)498

with precursor µ(x) = 1+bx2, where the spike locations x1 and x2, with x2 = −x1 are499

given in terms of b by (3.7). Suppose that L > Lc ≡ log(2 +
√

3) ≈ 1.3169 and define500

the critical half-distance x2c between the spikes and the critical precursor parameter501

bc by (4.16) and (4.17), respectively. Then, for any b with b > bc, or equivalently502

for any x2 with x2 < x2c, the NLEP (4.15) with multiplier χ2,λ for the competition503

mode has a unique unstable eigenvalue in Re(λ) > 0. Alternatively, if b < bc, and504

for 0 ≤ τ < τH , the two-spike symmetric steady-state is linearly stable on O(1) time-505

scales to the competition mode. Finally, the NLEP (4.15) for the synchronous mode,506

with multiplier χ1,λ, has no unstable eigenvalues when τ > 0 is sufficiently small.507

4.2. NLEP Analysis: Asymmetric 2-Spike Equilibria. We will analyze the508

NLEP (4.10) for two-spike asymmetric equilibria for the special case where τ = 0. To509
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do so, we set F3 = F4 = 0 in (3.1) to calculate that510

(4.18) U3/2H = Z , where Z ≡ 1

6

(
c1 + d1s 0

0 c2 + d1/s

)
,511

with s = H2/H1. As a result, since U and Z are diagonal matrices, we can write the512

NLEP in (4.10) when τ = 0 as513

(4.19) LΦ̂− w2

∫∞
−∞ wEλΦ̂ dz∫∞
−∞ w2 dz

= λU−1Φ̂ ; Eλ ≡ 2UB−1λ ZU
−1 .514

Next, upon defining A by A = Z−1Bλ, we calculate its matrix spectrum Av = κv,515

which can be written as Bλv = κZv. By using (4.9) for Bλ with τ = 0, and (4.18)516

for Z, we conclude that κ must satisfy517

(4.20a) det

(
c1 − κ(c1 + d1s) d1

d1 c2 − κ
(
c2 + d1

s

) ) = 0 ,518

which yields that κ satisfies the quadratic equation519

(4.20b) κ2
(
c1c2 + c2d1s+ d21 +

c1d1
s

)
−κ

(
2c1c2 + d1sc2 +

d1c1
s

)
+ c1c2−d21 = 0 .520

Observe that κ1 = 1 is always an eigenvalue, and so κ2 can readily be found. A simple521

calculation yields that the matrix spectrum of Z−1Bλ is522

κ1 = 1 , v1 =

(
1
s

)
,

κ2 =
c1c2 − d21

c1c2 + d21 + d1 (c2s+ c1/s)
, v2 =

(
−d1

c1 − κ2(c1 + d1s)

)
.

(4.21)523

Next, we define the eigenvector matrix V, the diagonal matrix Λ, and the matrix C524

by525

(4.22)

V ≡
(

1 −d1
s c1 − κ2(c1 + d1s)

)
, Λ ≡

(
2 0
0 2/κ2

)
, C ≡ V−1U−1V ,526

so that Eλ = 2UA−1U−1 = (UV) Λ (UV)
−1

. Finally, by setting Φ̃ = (UV)−1Φ̂, we527

obtain the vector-valued NLEP (4.12), where Λ and C are defined explicitly in (4.22).528

In the context of spike stability, the vector-valued NLEP (4.12) is a new linear529

stability problem, for which the NLEP stability results for the scalar case in [30], [28],530

and [4] are not directly applicable. Analytically, it is challenging to provide necessary531

and sufficent conditions to guarantee that the NLEP (4.12) has no eigenvalues in532

Re(λ) > 0. However, one can analyze any zero-eigenvalue crossings, by using the533

well-known identity L0w = w2. By setting Φ̃ = (0, w)T , we observe from (4.12)534

that a zero-eigenvalue crossing will occur when κ2 = 2. By using (4.21) for κ2, a535

zero-eigenvalue crossing occurs when536

(4.23) c1c2 + 3d21 = 2|d1|
(
c2s+

c1
s

)
.537

Here c1, c2 and d1 are determined in terms of the steady-state spike locations x1538

and x2 by (3.5), while s = H2/H1 parameterizes the branch of asymmetric two-spike539

equilibria in either (3.4), or equivalently (3.9). An interpretation of the zero-eigenvalue540

crossing is given in the following remark.541
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Remark 4.1. Equilibria of the DAE system (2.22) are solutions to the nonlinear542

algebraic system F(x1, x2, H1, H2) = 0 for F ∈ R4, as given in (3.1). For a fixed x1543

and x2, we claim that the linearization of the subsystem F3 = F4 = 0 in (3.1) for the544

spike amplitudes is not invertible when the NLEP has a zero-eigenvalue crossing. To545

see this, we calculate along solutions to (3.1) that546

J3 ≡
(
F3H1 F3H2

F4H1
F4H2

)
=

(
12µ

3/2
1 H1 − c1 −d1
−d1 12µ

3/2
2 H2 − c2

)
=

(
c1 + 2d1s −d1
−d1 c2 + 2d1/s

)
.

547

A simple calculation shows that det(J3) = 0 if and only if548

(4.24) c1c2 + 3d21 = −2d1

(
c2s+

c1
s

)
,549

which is the condition derived in (4.23) for the zero-eigenvalue crossing of the NLEP.550

The condition (4.23) for a zero-eigenvalue crossing is indicated by the red dots on551

the asymmetric branches of equilibria shown in Fig. 1, and in Figs. 3, 4, 5, 6. For the552

corresponding scalar NLEP case, where C is a multiple of the identity, the rigorous553

results of [30] prove that Re(λ) ≤ 0 if and only if κ2 < 2, and that an unstable real554

eigenvalue exists if κ2 > 2. We now investigate numerically whether these optimal555

linear stability results persist for the vector-valued NLEP.556

4.2.1. Numerical Computation of the Vector-Valued NLEP. We com-557

pute the discrete eigenvalues of the vector-valued NLEP (4.12) for Φ̃ ≡
(

Φ̃1, Φ̃2

)T
,558

where Λ and C are defined in (4.22). To do so, we use a second-order centered finite559

difference discretization of the NLEP, where the nonlocal term is discretized using the560

trapezoidal rule. We discretize (4.12) on 0 ≤ z ≤ zM using the nodal values561

zj = h(j − 1) , h ≡ zM
n− 1

, wj = w(zj) =
3

2
sech2

(zj
2

)
, j = 1, . . . , n ,562

Ψ ≡ (Ψ1,1, . . . ,Ψ1,n,Ψ2,1, . . . ,Ψ2,n)
T
,563564

where Ψ1,j ≈ Φ̃1(zj) and Ψ2,j ≈ Φ̃2(zj) for j = 1, . . . , n. We impose that Φ̃′ = 0 at565

z = 0, zM , which is discretized by centered differences. The resulting block-structured566

matrix eigenvalue problem for the pair Ψ ∈ R2n and λ is given by567

(4.25a) (Kn +Mn) Ψ = λPnΨ ,568

where the matrices Kn ∈ R2n,2n, Mn ∈ R2n,2n and Pn ∈ R2n,2n, are defined by569

(4.25b) Kn ≡
(
K 0
0 K

)
, Mn ≡

(
M 0
0 κ−12 M

)
, Pn ≡

(
c11I c12I
c21I c22I

)
.570

Here I ∈ Rn,n is the identity, and cij for 1 ≤ i, j ≤ 2 are the matrix entries of the571

2× 2 matrix C defined in (4.22). In (4.25b), the n× n tridiagonal matrix K and the572

full n× n matrix M are defined, respectively, by573

K1,2 = Kn,n−1 =
2

h2
, Kii = − 2

h2
− 1 + 2wi , for i = 1, . . . n ,

Ki,i+1 = Ki,i−1 =
1

h2
, for i = 2, . . . , n− 1 ,

(4.25c)574
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and575

(4.25d) M≡ −2h

3


w2

1

(
w1

2

)
w2

1w2 . . . w2
1wn−1 w2

1

(
wn

2

)
...

...
...

...
...

...
...

...
...

...
w2
n

(
w1

2

)
w2
nw2 . . . w2

nwn−1 w2
n

(
wn

2

)

 .576

577

For n = 250 and zM = 15, the matrix spectrum of (4.25) is computed numerically578

using a generalized matrix eigenvalue solver from EISPACK at each point along the579

asymmetric solution branches of two-spike equilibria. In Fig. 9 we plot the first two580

eigenvalues of (4.25), defined as those with the largest real parts, versus the height H+581

of the rightmost spike for L = 2, 3, 5. In terms of H+, we recall that the asymmetric582

branches of equilibria for these values of L were shown in the right panels of Figs. 3,583

4 and 1, respectively. From Fig. 9 we observe that the first two eigenvalues are584

real-valued except for a small range of H+ when L = 2, where they form a complex585

conjugate pair. These numerical results confirm the zero-eigenvalue crossing condition586

(4.23), obtained by setting κ2 = 2, as evidenced by the intersection of the heavy-solid587

curves and the horizontal blue lines in Fig. 9. However, most importantly, the results588

in Fig. 9 establish numerically that the vector-valued NLEP (4.12), which is valid589

for τ = 0, has no unstable discrete eigenvalues whenever κ2 < 2, and that there is a590

unique unstable discrete eigenvalue when κ2 > 2. Increasing the number of gridpoints591

n or the cutoff zM did not alter the results to two decimal places of accuracy.592

For L = 10 and for the infinite domain problem with L = ∞, in Fig. 10 we593

plot the first two eigenvalues of (4.25) versus the precursor parameter b along the594

asymmetric solution branches of Fig. 5 and Fig. 6. From Fig. 10 we observe that along595

these solution branches the NLEP has two zero-eigenvalue crossings, corresponding596

to where κ2 = 2, and that the vector NLEP has a unique unstable eigenvalue between597

these crossings. This linear stability behavior is encoded in the global bifurcation598

diagrams for L = 10 and L = ∞ shown in the right panels of Fig. 5 and Fig. 6,599

respectively.600

5. Validation from PDE Simulations. In this section, we validate our global601

bifurcation and linear stability results for the precursor field µ(x) = 1+bx2 from time-602

dependent PDE simulations of (1.1). In our simulations, we give initial conditions603

for (1.1) that correspond to a two-spike quasi-equilibrium solution, where the spike604

heights satisfy the constraint in (2.22) for given spike locations x1 and x2 at t = 0.605

For L = 5 and b = 0.12, the results from the PDE simulations shown in Fig. 2606

confirm that a quasi-equilibrium two-spike pattern tends to a stable asymmetric two-607

spike equilibrium on a long time scale, as predicted by the bifurcation diagram shown608

in the right panel of Fig. 1. The other parameter values are shown in caption of Fig. 2.609

In contrast, if b = 0.18, from the PDE simulation results shown in Fig. 11 we observe610

that a two-spike quasi-equilibrium solution undergoes a competition instability leading611

to the destruction of a spike. For this parameter set, there is no stable asymmetric612

two-spike steady-state pattern as observed from the right panel of Fig. 1.613

Similarly, for L = 3 and b = 0.09, we observe from the full numerical results614

shown in Fig. 12 that the quasi-equilibrium two-spike pattern converges as t increases615

to a stable asymmetric steady-state pattern. As shown in the bifurcation diagram616

given in the right panel of Fig. 4 there is a stable asymmetric two-spike steady-state617

for these parameter values.618
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Fig. 9: Plot of the first (heavy solid) and second (dashed) eigenvalues (ordered by the
largest real parts), as computed from the discretization of the vector-valued NLEP
(4.12) versus the height H+ of the rightmost spike along the asymmetric solution
branches shown in Figs. 3, 4 and 1 for domain half-lengths L = 2 (left), L = 3
(middle) and L = 5 (right), respectively. Numerical evidence shows that when κ2 < 2,
the vector NLEP has no unstable eigenvalues, and that a unique positive eigenvalue
occurs when κ2 > 2. Here κ2 is defined in (4.21) and the zero-eigenvalue crossing
occurs when κ2 = 2, leading to (4.23). The thin horizontal blue line is the zero-
eigenvalue crossing.
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Fig. 10: Plot of the first (heavy solid) and second (dashed) eigenvalues (ordered by
the largest real parts), as computed from the discretization of the vector-valued NLEP
(4.12) versus the precursor parameter b along the asymmetric solution branches shown
in Figs. 5 and 6 for a domain half-length L = 10 (left panel) and an infinite domain
L = ∞ (right panel), respectively. The NLEP has two zero-eigenvalue crossings
(intersection with the horizontal blue line) on each portion of the asymmetric branch
at parameter values where κ2 = 2 (see Fig. 5 and Fig. 6). Between the zero-eigenvalue
crossings the vector NLEP has a unique unstable real eigenvalue.

Finally, for L = 10, in Fig. 13 we show results for two-spike solutions computed619

from PDE simulations of (1.1) for b = 0.15 and for b = 0.20. In the left panel of620

Fig. 13 we show a stable asymmetric two-spike steady-state for b = 0.15 as computed621

numerically from (1.1), starting from an initial condition chosen to be close to the622

stable asymmetric pattern predicted from the global bifurcation diagram in Fig. 5.623
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Fig. 11: Time-dependent PDE simulations of (1.1) with L = 5, ε = 0.05, and τ = 0.25
for a precursor µ(x) = 1 + bx2 with b = 0.18. Initial condition is a quasi-equilibrium
two-spike solution with spike locations x1(0) = −1 and x2(0) = 3. Plots of A and H
versus x at four different times showing that one spike is annihilated as time increases.
For b = 0.18, the right panel in Fig. 1 shows that there is no stable asymmetric two-
spike pattern. Left: t = 180. Left Middle: t = 335. Right Middle: t = 650. Right:
t = 800.
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Fig. 12: Time-dependent PDE simulations of (1.1) with L = 3, ε = 0.05, and τ = 0.15
for a precursor µ(x) = 1 + bx2 with b = 0.09. Initial condition is a quasi-equilibrium
two-spike solution with spike locations x1(0) = −0.5 and x2(0) = 1.5. Plots of
A and H versus x at three different times showing the convergence towards a stable
asymmetric two-spike pattern as predicted from the right panel of Fig. 4. Left: t = 31.
Middle: t = 301. Right: t = 900. As t increases there is only a slight adjustment of
the pattern.

For b = 0.20, where no such stable asymmetric pattern exists from Fig. 5, the PDE624

simulations shown in the other three panels in Fig. 13 confirm the instability and625

show the annihilation of the small spike as time increases.626

6. Discussion. For the GM model (1.1) with a precursor field µ(x) = 1 + bx2,627

we have shown that a linearly stable asymmetric two-spike steady-state pattern can628

emerge from a supercritical pitchfork bifurcation at some critical value of b along a629

symmetric branch of two-spike equilibria. For this symmetry-breaking bifurcation, the630

critical value of b depends on the domain half-length L. From a linearization around631
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Fig. 13: Left panel: steady-state of time-dependent PDE simulations of (1.1) with
L = 10, ε = 0.10, and τ = 0.15 for µ(x) = 1 + bx2 with b = 0.15. Other panels: PDE
simulations of (1.1) when b is increased to b = 0.20 (other parameters the same). For
b = 0.20, the NLEP stability theory in Fig. 10 predicts no stable asymmetric two-
spike steady-state. The PDE numerical results show a collapse of the small spike. Left
middle: t = 0. Right middle: t = 0.61. Right: t = 1.2. For the PDE simulations with
b = 0.15 and b = 0.20, the initial condition was a 2% perturbation of the asymmetric
steady state shown in the global bifurcation diagram Fig. 5.

the steady-state of a DAE system of ODEs for the spike locations and spike heights, we632

have shown numerically that some portions of the asymmetric branches of equilibria633

are linearly stable to the small eigenvalues. Moreover, from a combined analytical634

and numerical investigation of the spectrum of a novel class of vector-valued NLEP,635

we have shown that portions of the branches of asymmetric two-spike equilibria are636

linearly stable to O(1) time-scale spike amplitude instabilities. Overall, our combined637

analytical and numerical study establishes the qualitatively novel result that linearly638

stable asymmetric two-spike equilibria can occur for the GM model with a precursor639

field. Asymmetric two-spike equilibria in 1-D for the GM model are all unstable in640

the absence of a precursor field [29].641

Although we have only exhibited stable asymmetric patterns for the GM model642

with a specific precursor field with two spikes, the analytical framework we have643

employed applies to multiple spikes, to other precursor fields, and to other singularly644

perturbed RD systems. In particular, the equilibria of the DAE system (2.18) could be645

used to compute the bifurcation diagram of symmetric and asymmetric spike equilibria646

for more than two spikes.647

There are two open directions that warrant further investigation. One specific648

focus would be to extend NLEP stability theory for scalar NLEPs to establish an-649

alytically necessary and sufficient conditions for the vector-valued NLEP (4.12) to650

admit no eigenvalues in Re(λ) > 0. In this NLEP we would allow C in (4.12) to be651

an arbitrary matrix with positive eigenvalues. A second open direction would be to652

extend the 1-D theory for the GM model with a precursor field to a 2-D setting in653

order to construct stable asymmetric spot patterns in a 2-D domain.654
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Appendix A. Alternative Formulation of Two-Spike Equilibria.658
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In this appendix we briefly outline the derivation of the coupled system (3.10)659

characterizing two-spike equilibria for the special case where µ(x) is even in x. We660

center the spikes at x2 = r+ and x1 = −r−, and we let ` be the unknown location, with661

x1 < ` < x2, where hx(`) = ax(`) = 0. We label the spike heights as H± = h(±r±).662

To proceed, we first construct a steady-state spike at x = r+ on the interval663

(`, L) with hx = 0 and ax = 0 at x = `, L. A similar construction is made for the664

interval (−L, `) with a spike at x = −r−. Then, since µ(x) is even, we can write the665

two steady-state conditions in a compact unified form, with the remaining equation666

resulting from adjusting h(`) so that h(x) is continuous across x = `.667

For the right interval ` < x < L with a spike at x = r+, we proceed as in the668

derivation of (2.16) to obtain that r+ satisfies669

(A.1) − µ′(r+)

µ(r+)
− 4

5

〈g1x〉|x=r+
g1|x=r+

= 0 ,670

where 〈g1x〉 is the average of g1x across x = r+. Here g1(x, r+) is the 1-D Green’s671

function satisfying672

(A.2) g1xx − g1 = −δ(x− r+) , ` < x < L ; g1x = 0 at x = ` , L .673

The inhibitor field h(x) and the spike height H+ = h(r+) are given by674

(A.3) h(x) = 6H2
+µ

3/2
+ g1(x, r+) , H+ =

µ
−3/2
+

6g1|x=r+
,675

where µ+ ≡ µ(r+). Similarly, for the left interval −L < x < ` with a spike at676

x = −r−, we obtain that r− satisfies677

(A.4) − µ′(−r−)

µ(−r−)
− 4

5

〈g2x〉|x=−r−
g2|x=−r−

= 0 ,678

where g2(x, r−) satisfies679

(A.5) g2xx − g2 = −δ(x+ r−) , −L < x < ` ; g2x = 0 at x = ` , −L .680

The inhibitor field h(x) and the spike height H− = h(−r−) are given by681

(A.6) h(x) = 6H2
−µ

3/2
− g2(x, r−) , H− =

µ
−3/2
−

6g2|x=−r−
,682

where µ− = µ(−r−).683

Since µ(x) is even, we have µ(−r−) = µ(r−) and µ′(−r−) = −µ′(r−). Next, we684

set x̃ = −x in (A.5) and label g̃2(x̃, r−) ≡ g2(−x̃, r−), so that (A.4) becomes685

(A.7) − µ′(r−)

µ(r−)
− 4

5

〈g̃2x̃〉|x̃=r−
g2|x̃=r−

= 0 ,686

where g̃2(x̃, r−) satisfies687

(A.8) g̃2x̃x̃ − g̃2 = −δ(x̃− r−) , −` < x̃ < L ; g2x̃ = 0 at x̃ = −` , L .688

To combine (A.1) and (A.7) into a unified expression it is convenient to define689

g(x, r; `) as in (3.11), so that g1(x, r+) = g(x, r+; `) and g̃2(x, r−) = g(x, r−;−`). In690
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this way, (A.1) and (A.7) reduce to f(r+, `) = 0 and f(r−,−`) = 0, where f(r, `) is691

defined in (3.10b). The condition that the inhibitor field is continuous across x = `,692

as obtained by equating the two expressions for h(`) in (A.3) and (A.6), yields the693

continuity condition ξ(r+, `) = ξ(r−,−`) as written in (3.10b).694

The computation of two-spike equilibria reduces to finding roots of F (u, ζ) = 0,695

as defined in (3.18) as the parameter vector ζ ≡ (b, L)T is varied. To compute paths696

of solutions we employ the software packages AUTO (cf. [7]) and coco (cf. [3]) and697

provide the Jacobian matrices698

DuF =

∂f
∂r (r+, `) 0 ∂f

∂l (r+, `)

0 ∂f
∂r (r−,−`) −∂f∂` (r−, `)

∂ξ
∂r (r+, `) −∂ξ∂r (r−,−`) ∂ξ

∂l (r+, `) + ∂ξ
∂l (r−,−`)

 ,(A.9)699

DζF =

 ∂f
∂b (r+, `)

∂f
∂L (r+, `)

∂f
∂b (r−,−`) ∂f

∂L (r−,−`)
∂ξ
∂b (r+, `)− ∂ξ

∂b (r−,−`) ∂ξ
∂b (r+, `)− ∂ξ

∂L (r−,−`)

 .(A.10)700

701

By using (3.16) for f and ξ, we can calculate the entries in the Jacobians analytically702

as703

∂f

∂r
=

[
4 cosh(2r − `− L)− 2(tanh(r − `) + tanh(r − L)) sinh(2r − `− L)

5 cosh(r − L) cosh(r − `)

]
+

2b(1− br2)

(1 + br2)2
,

∂f

∂`
=

2

5

[
sinh(2r − `− L) tanh(r − `)− cosh(2r − `− L)

cosh(r − L) cosh(r − `)

]
,

∂f

∂b
=

2r

(1 + br2)2
,

∂f

∂L
=

2

5

[
sinh(2r − `− L) tanh(r − L)− cosh(2r − `− L)

cosh(r − L) cosh(r − `)

]
,

∂ξ

∂r
=

sinh(`− L)

6(1 + br2)5/2

[
3br + (1 + br2)(2 tanh(r − `) + tanh(r − L))

cosh2(r − `) cosh(r − L)

]
,

∂ξ

∂`
=

(1 + br2)−3/2

6

[
2 tanh(r − `) sinh(L− `)− cosh(L− l)

cosh2(r − `) cosh(r − L)

]
,

∂ξ

∂b
= −r

2(1 + br2)−5/2

4

[
sinh(L− `)

cosh2(r − `) cosh(r − L)

]
,

∂ξ

∂L
=

(1 + br2)−3/2

6

[
cosh(L− `) + sinh(L− `) tanh(r − L)

cosh2(r − `) cosh(r − L)

]
.

(A.11)704

Finally, in Fig. 14 we include the Maple code used to compute the symmetry-705

breaking bifurcation point as well as parameter set where this bifurcation switches706

from subcritical to supercritical. This was described in (3.20) and (3.21) of §3.3.707
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