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We study the algebraic connectivity for several classes of random semi-regular graphs. For large
random semi-regular bipartite graphs, we explicitly compute both their algebraic connectivity and
as well as the full spectrum distribution. For an integer d ∈ [3, 7], we find families of random
semi-regular graphs that have higher algebraic connectivity than a random d-regular graphs with
the same number of vertices and edges. On the other hand, we show that regular graphs beat semi-
regular graphs when d ≥ 8. More generally, we study random semi-regular graphs whose average
degree is d, not necessary an integer. This provides a natural generalization of a d-regular graph
in the case of a non-integer d. We characterise their algebraic connectivity in terms of a root of a
certain 6th-degree polynomial. Finally, we construct a small-world-type network of average degree
2.5 with a relatively high algebraic connectivity. We also propose some related open problems and
conjectures.

1. INTRODUCTION

Algebraic connectivity (AC; also called the spectral gap) of a graph is a fundamental property that measures how
fast information diffuses throughout the graph [1, 2]. It corresponds to the second smallest eigenvalue of the graph
Laplacian matrix (the smallest eigenvalue is always zero). In many applications, it is desirable to maximize the
algebraic connectivity (i.e. speed of diffusion) subject to certain constraints; this and related problems have a long
history [3–9]. For example in communications, the “cost” of a network increases with the number of links. It is
therefore desirable to have as few edges as possible, while at the same time maximizing the algebraic connectivity.
This leads to a natural question: For a fixed average degree d, what is the graph that maximizes algebraic connectivity
as the number of vertices n→∞?

Numerous papers address various aspects of this question, see e.g. [6–9]. This is one of those situations where the
best answer is elusive [10], but a decent answer can be found relatively quickly [3, 4]. Graphs with high algebraic
connectivity are related to expander graphs, and are important in many applications [11, 12]. In this paper, we study
the algebraic connectivity of sparse random graphs in the case when the number of edges m scales linearly with the
number of vertices n, i.e. m = O(n). In other words, we fix the average degree d = 2m/n = O(1) while letting
n→∞.

It is well known that a random Erdos-Renyi graph (where m edges are taken at random) needs O(n log n) edges
to be fully connected [13, 14], and as such, they are poor candidates for maximizing algebraic connectivity in this
sparse regime (since AC of a disconnected graph is zero). A good candidate are d−regular graphs for which every

FIG. 1. Types of graphs considered in this work. (a) Random semi-regular bipartite graph with (d1, d2) = (2, 3). (b) Random
semi-regular graph with (p, d1, d2) = (0.4, 2, 3). Both graphs have the same average degree of d = 2.4. (c) Small-world network
consisting of a ring and with edges added at random between the odd-numbered vertices. It has an average degree of d = 2.5.
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vertex has degree d. It is well known that random regular d−graphs have an algebraic connectivity that asymptotes
to µ ∼ d − 2

√
d− 1 as n → ∞ with fixed d [15–19]. For integer d ≥ 3, this is quantity is bounded away from zero,

which assures these graphs have good expander properties [20, 21]. A natural question is whether one can do better
than regular graph, but without “too much work” (in, say, O(n) time). In this paper we give an affirmative answer
when d ≤ 7: we introduce a class of semi-regular random graphs (whose vertices have degree either d1 or d2 6= d1)
which are as easy to construct as random d-regular graphs, but which have better AC.

Another question is whether “expander-type” graphs (which we define to be graphs with AC bounded away from 0
as n→∞) are possible when the average degree d is less than 3, with n→∞. For 2 < d < 3, the answer is yes, and
it is provided by semi-regular graphs of degrees 2 and 3, whose average degree is 2 + p (with 0 < p < 1). We show
that AC of such graphs asymptotes to µ ∼ p2/4 in the limit of small p and large n, with n → ∞ independent of p.
(The answer is no when d ≤ 2 since any graph needs at least n− 1 edges to be connected).

Our first result is on random semi-regular bipartite graphs, where each vertex has degree either d1 or d2, and we
compute their asymptotic AC in the limit n → ∞. In particular, we will exhibit a family of semi-random bipartite
graphs having the same average degree as random d-regular graphs, but which have higher algebraic connectivity
when d ≤ 7.

Before stating our result, let us define what we mean by such graphs. Consider a bipartite graph with one part
having n1 vertices of degree d1, and the second part having n2 vertices of degree d2, such that every edge is between
these two parts, and no edges are within each part. Then n1d1 = n2d2. Such graph has n = n1 + n2 vertices so that

n1 =
d2

d1 + d2
n, n2 =

d1
d1 + d2

n (1.1)

and therefore the average degree is

d =
2d1d2
d1 + d2

. (1.2)

We call such a graph a (d1, d2) semi-regular bipartite graph. We now introduce the following random model.
Random semi-regular bipartite (RSRB) graph model: Take two bags. In the first bag, put d1 copies of n1

vertices labelled 1 . . . n1. In the second bag, put d2 copies of n2 vertices labelled n1 + 1 . . . n1 + n2. Start with an
empty graph of n1 + n2 vertices. Then randomly pick two vertices without replacement – one from each bag – and
add an edge between them to the graph. Repeat until the bags are empty. Refer to Figure 1(a) and Matlab code in
Appendix A.

We remark that this model (and the theory below) generally allows for multiple edges. If desired, they can be
eliminated through a random rewiring postprocessing step1. These cases are sufficiently rare that the postprocessing
step does not effect the asymptotic results in the large n limit. We now state our main results for RSRB graphs.

Main Result 1.1. Consider a (d1, d2) RSRB graph. In the limit n→∞, its spectrum density asymptotes to

ρ(x) =


1
π
d1d2
d1+d2

√
(x2−r2−)(r2+−x2)

(d1d2−x2)|x| , |x| ∈ (r−, r+)
|d2−d1|
d1+d2

δ (x) , |x| < r−
0, |x| > r+

(1.3)

where δ is the Dirac-delta function and

r± =

(
d1 + d2 − 2±

√
(d1 + d2 − 2)

2 − (d2 − d1)
2

)1/2

. (1.4)

In other words, the number of eigenvalues inside any interval (a, b) asymptotes to
∫ b
a
ρ(x)dx as n→∞.

Moreover, its algebraic connectivity asymptotes to

µ ∼ d1 + d2
2

−

((
d2 − d1

2

)2

+ r2+

)1/2

, n� 1 (1.5)

1 Given a multiple edge (a, b) or a self loop (a = b), choose another edge (c, d) at random. Then replace edges (a, b) and (c, d) by edges
(a, c) and (b, d) . Repeat until all multiple edges/loops are eliminated. This operation preserves degree distribution and edge count.
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FIG. 2. (a) Full spectrum of random semi-regular bipartite graph with (d1, d2) = (2, 3). Numerics correspond to the histograph
of eigenvalues of a single such graph with 1000 vertices, computed numerically using Matlab. Asymptotics corresponds to the
formula (1.3). The height of the lollypop corresponds to the weight delta function at the origin. (b) Comparison of algebraic
connectivity between (3, 3) regular bipartite, (2, 6) semi-regiular bipartite graphs, and the asymptotic theory. The two classes
have the same number of vertices and edges, and (2, 6) is 15% better than (3,3) (both for asymptotics and numerics).

Figure 2(a) shows the shape of the distribution (1.3) for the case d1 = 2, d2 = 3 (having an average degree of
d = 2.4), and compares it to an numerical histogram of eigenvalues of a 1000-vertex graph for this case. Very good
agreement is observed.

Note that in the case d1 = d2, formula (1.3) reduces to the well-known Mackay distribution of the spectrum of a
regular graph [15]:

ρ(x) =

{
1
π
d
2

√
4(d−1)−x2

d2−x2 , |x| < 2
√
d− 1

0, |x| > 2
√
d− 1.

(1.6)

Moreover, formula (1.5) simplifies to the classical result µ ∼ d − 2
√
d− 1 for the algebraic connectivity of a random

regular graph of d vertices 2.

Consider a random cubic graph (d1 = d2 = 3) and contrast it with an RSRB graph with d1 = 2, d2 = 6. Both cases
have the same average degree of d = 3. Formula (1.5) gives the asymptotic values of µ ∼ 0.17157 for the former, and
µ ∼ 0.19577, for the latter. Thus, (2, 6) RSRB graph is about 15% better than a random cubic graph with respect to
its expander properties, while having the same number of vertices and edges. Figure 2(b) shows a histogram for µ of
1000 randomly constructed such graphs, comparing these two cases with n = 2000. Very good agreement between
numerics and asymptotics is observed in both cases.

More generally, the following table shows all possible combinations of d1, d2 such that d = 2d1d2
d1+d2

is an integer

between 3 and 8, and the corresponding value of µ (1.5).

2 This also shows that a random regular graph and random bipartite regular graphs have the same algebraic connectivity, at least to
leading order in n.
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All RSRB graphs with integer average degree d = 3, . . . , 8

d 3 4 5 6 7 8

d1 3 2 4 3 5 3 6 4 7 4 8 6 5

d2 3 6 4 6 5 15 6 12 7 28 8 12 20

µasympt 0.1715 0.1957 0.5358 0.5535 1 1.0890 1.5278 1.5587 2.1010 2.1435 2.7084 2.6887 2.6671

µnumerics 0.178 0.205 0.553 0.572 1.027 1.122 1.565 1.596 2.150 2.205 2.766 2.745 2.729

std 0.006 0.006 0.011 0.010 0.015 0.017 0.018 0.018 0.021 0.020 0.026 0.022 0.022

diff % 3.8% 4.7% 3.1% 3.2% 2.7% 3.0% 2.4% 2.4% 2.3% 2.87% 2.1% 2.1% 2.2%

The row µasympt is the asymptotic formula given by (1.5). Row µnumerics corresponds to Monte Carlo simulations
of µ. It shows the average µ for 200 randomly chosen RSRB graphs with n = 1000 edges. The row “diff %” is
µnumerics−µasympt

µasympt
× 100. Uniformly good agreement with between asymptotics and numerics is observed.

Parameters with higher AC are in shown in bold. For d ≤ 7, RSRB with d1 6= d2 have higher algebraic connectivity
than the d-regular graph. On the other hand, for d ≥ 8, d-regular graphs win.

It is interesting to note that for any integer d ≥ 3, equation (1.2) always has a solution with integers 2 ≤ d1 < d2.
When d is prime, this solution is unique and is given by d1 = (d+ 1)/2, d2 = d (d+ 1) /2. More generally, the number
of such solutions is precisely the number of pythegorean triples of leg d (sequence A046079 in OEIS).

RSRB graphs above have a constraint n1d1 = n2d2. In particular the minimum attainable average degree of such
graphs is d = 2.4 corresponding to (d1, d2) = (2, 3) . We can remove this constraint by instead introducing the
probability of having degree d1 or d2 as follows.
Random semi-regular (RSR) model: Given p, d1, d2, and n, let n1 = b(1− p)nc and let n2 = n − n1. In the

same bag, put d1 copies of n1 vertices labelled 1 . . . n1 and d2 copies of n2 vertices labelled n1 + 1 . . . n. Create edges
by drawing two vertices from the bag at random (without replacement), until only one or zero vertices are left in the
bag. See Appendix A for Matlab code.

An example of RSR graph is shown in Figure 1(b). Note that such a graph has an average degree of d = (1− p) d1+
pd2. We have the following.

Main Result 1.2. Consider a (p, d1, d2) random semi-regular graph. Let

F (R, x) = x (d2 − d1) (1−Rx) p+
(
Rx2(d2 − 1)− 1

) (
R2x2 (d1 − 1) +Rx (d2 − d1)−R+ 1

)
. (1.7)

Let x be the smallest root of the system F = 0 = ∂F/∂R.Then in the limit n→∞, the AC is given by µ = d2−1/x.

In general, eliminating R from the system F = 0 = ∂F/∂R is a straightforward computer algebra computation
using a resultant, and yields in a 6th degree polynomial for x. It is too ugly to write down here for general d1, d2 –
see Appendix A for Maple code. In the case d1 = 2, d2 = 3, RSR graph has average degree 2 +p, and µ is the smallest
root of

0 = µ (µ− 4)
(
µ2 − 4µ− 1

)
+ 2µ

(
3µ3 − 33µ2 + 89µ− 19

)
p+

(
−15µ2 − 30µ+ 1

)
p2 + 8p3. (1.8)

Figure 3 compares µ given by (1.8) with numerical computations of µ for randomly chosen (p, 2, 3) RSR graphs.
Note that the numerical result approaches the asymptotic value of µ as the number of edges n is increased.

The following table gives the value of µ for several choices of p, d1, d2 for which the average degree d = 4, and
comparison with numerics:

RSR model with d = 4

d1 4 3 3 2 2 2

d2 4 5 6 5 6 7

p 0.5 1/3 2/3 0.5 0.4

µasympt 0.5359 0.44261 0.39162 0.3333 0.25352 0.20748

µnumerics 0.551 0.488 0.451 0.286 0.217 0.174

std 0.010 0.020 0.022 0.062 0.051 0.045

diff % 2.8% 10% 15% -14% -14% -19%

Here, µasympt is as given by Main Result 1.2; µnumerics is the average of 200 simulations with n = 1000. As apparent
from this table, RSR model performs worse than RSRB of average degree 4 (including 4−regular graphs). This
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FIG. 3. Comparison between RSR, RSRB asymptotics, and RSR numerics, with average degree 2 < d ≤ 3. Numerics represent
AC of 1000 randomly chosen RSR graphs with p ∈ (0, 1) and (d1, d2) = (2, 3). Here, µ is plotted against d = 2+p. Asymptotics
for RSR correspond to roots of (1.8). Asymptotics for RSRB are given by (1.5).

appears to be true for any average degree d. However one advantage of RSR graphs is that they produce graphs with
an average degree 2 < d < 3, with µ bounded away from zero as n → ∞. The smallest average degree that RSRB
model can have is 2.4 corresponding to (d1, d2) = (2, 3) . In fact, (1.8) shows that µ ∼ p2/4 when the average degree
is 2 + p with d1 = 2, d2 = 3, and 0 < p� 1.

2. DERIVATION OF MAIN RESULTS

Derivation of spectral density (1.3). Following [15, 22] we use the trace method. It is based on the fact that
trace(As) =

∑s
j=1 λ

s
j .Define φs = 1

n trace(As). Then φs represents the average number of closed walks of length s on
the graph whose adjacency matrix is A. In the limit n→∞, the eigenvalue distribution therefore satisfies

∫
xsρ(x)dx = φs. (2.9)

As in [15, 22], the derivation consists of (a) computing φs; and (b) inverting the integral equation (2.9) to determine
ρ(x).

To compute φs, we write

φs =
d1

d1 + d2
φA,s +

d2
d1 + d2

φB,s,

where φA,s is the number of closed walks of length s starting from a vertex of degree d2, and φB,s is that number for
vertices of degree d1. A key insight [15] that allows the asymptotic determination of φA,s and φB,s is that locally, a
large random regular graph looks like a tree because the probability of encountering a cycle of length s is vanishinly
small as n→∞ (for fixed s). The same is true of semi-regular random graphs. For the RSRB graphs, each successive
level alternates between vertices of degree d1 and d2. We therefore decompose these trees as illustrated in the following
diagram, for the case d1 = 2 and d2 = 3:
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d1 = 2, d2 = 3

Accordingly, φA,s and φB,s satisfy the recursion

φA,s = d2

s−2∑
j=0

φA,jAs−2−j , φB,s = d1

s−2∑
j=0

φB,jBs−2−j ,

As = (d1 − 1)

s−2∑
j=0

AjBs−2−j , Bs = (d2 − 1)

s−2∑
j=0

BjAs−2−j , (2.10)

with A0 = B0 = φA,0 = φB,0 = 1. Let A(x) =
∑
Asx

s be the generating function for As and similarly for
B, φA, φB , φ. From recursion relations (2.10), the corresponding generating functions satisfy

A = 1 + (d1 − 1)x2AB,

B = 1 + (d2 − 1)x2BA,

φA = 1 + d2x
2φAA, (2.11)

φB = 1 + d1x
2φBB,

φ =
d1

d1 + d2
φA +

d2
d1 + d2

φB

Solving (2.11), while keeping in mind that φ (0) = 1,we find that

φ(x) =
d1d2
d1 + d2

d1+d2
d1d2

−
√

(d2 − d1)
2
x4 + (4− 2d1 − 2d2)x2 + 1− 1

d1d2x2 − 1
.

In principle, φs can be computed from φ(x) by Taylor-expanding near the origin; the first few terms are φ0 = 1, φ2 =
2 d1d2
d1+d2

, φ4 = 2 d1d2
d1+d2

(d1 + d2 − 1). In [15] explicit computation of φs was combined with Tchebychev polynomials to
compute the McKay distribution for d-regular random graphs. Here, we use a simpler and more powerful technique
using complex variables introduced in [23].

Write φs using Cauchy’s integral formula as

φs =

∫
z−s−1φ(z)

dz

2πi
,

where the integration is around a circle |z| = ε, with ε sufficiently small to avoid any branch cuts of φ. Using the fact
that φ(z) is even, we then have

φs =
1

π

π∫
0

ε−sφ
(
εeiθ

)
e−siθdθ

=
i

π

1/ε∫
−1/ε

1

x
φ

(
1

x

)
xsdx



7

Taking ε→ 0 and recalling (2.9) we obtain

∫
ρ(x)xsdx =

i

π

∞∫
−∞

1

x
φ

(
1

x

)
xsdx.

This yields the formula for ρ, namely

ρ(x) = − 1

π
Im

{
1

x
φ

(
1

x

)}
. (2.12)

This formula was derived in [23] using an equivalent technique (Stieltjes inversion). Next we compute

1

x
φ

(
1

x

)
=

1

x

d1d2
d1 + d2

d1+d2
d1d2

x2 −
√

(x2 − r2−)(x2 − r2+)− x2

d1d2 − x2
, (2.13)

where r± are given by (1.4). It follows that Im
{

1
xφ
(
1
x

)}
= 0 for |x| /∈ (r−, r+) and x 6= 0. On the other hand when

|x| ∈ (r−, r+) we obtain

ρ(x) =
1

π

1

|x|
d1d2
d1 + d2

√
(r2+ − x2)(x2 − r2−)

d1d2 − x2
, |x| ∈ (r−, r+) . (2.14)

This recovers the formula (1.3) except for the delta mass at the center which is due to the singularity there. To
compute the weight of the delta mass, one can integrate the overall density and impose that

∫
ρ = 1. While the exact

integration of (2.14) is possible, it is easier and more instructive to compute the number of zero eigenvalues directly
as follows.

Suppose that d2 > d1. Label the components of the eigenvector x1 . . . xn1 and y1 . . . yn2 , corresponding to vertices
of degree d1 and d2, respectively. A zero eigenvalue satisfies

∑
xj∈nbr(yk) xj = 0, k = 1 . . . n2 and

∑
yj∈nbr(xk)

yj = 0,

k = 1 . . . n1. Look for solutions of the form where yj = 0, j = 1 . . . n2. This corresponds to solving n2 linear equations∑
xj∈nbr(yk) xj = 0, for the n1 unknows x1 . . . xn1

. This is an under-determined system, since n2 < n1. Generically,

it has n1 − n2 independent solutions. Therefore the weight of the delta function at zero should be n1−n2

n . Using

(1.2) yields n1−n2

n = d2−d1
d1+d2

, which recovers the weight of the delta function in (1.3). We also verified using computer

algebra that this indeed agrees with the full integration of (2.14), namely, that
∫ r+
r−

ρ(x)dx = d1
d1+d2

, d2 > d1, so

that indeed
∫∞
−∞ ρ = 1. This completes the derivation of the spectral density (1.3).

Finally, another derivation of the delta weight, as pointed out by James Mingo, is to use Proposition 3.8 in [24].
It says that if 1

xφ
(
1
x

)
has a singularity at x = a, then the associated measure ρ(x) has a delta mass at x = a whose

weight is given by limx→a
∣∣(x− a) 1

xφ
(
1
x

)∣∣ . Here, a = 0 and the mass weight is then given by limx→0

∣∣φ ( 1x)∣∣ =

d1d2
d1+d2

√
r2−r

2
+

d1d2
= |d2−d1|

d1+d2
in agreement with direct computation. �

Derivation of AC formula for RSRB (1.5) Next we derive the formula for algebraic connectivity (1.5). For
d-regular graphs, the Laplacian graph is given by dI −A where I is the identity and A is the adjacency matrix. This
allows to characterize the AC in terms of second-largest eigenvalue λ of A: µ = d− λ. Of course this is not true if the
graph is not regular. The trick is to regularize the graph by adding enough self-loops to vertices until all
vertices have the same degree. Each self-loops counts as a single additional edge (i.e. adding a loop to vertex
j corresponds to adding ”1” to the j-th diagonal entry of the associated adjacency matrix) and crucially, adding
self-loops does not change the Laplacian of the graph.

For a (d1, d2) semi-regular graph, assume that d1 < d2 and add d2 − d1 loops to all vertices of degree d1. This
results in a d2-regular graph with loops. As before let φs be the number of closed walks of size s. Let λ be the local
expansion rate, that is, the rate at which φs grows: λ = lim

s→∞
φs+1/φs. Then by analogy to regular graphs, the AC

is given by µ = d2 − λ. To compute λ, we decompose closed loops similarly to (2.11). The decomposition now has
loops as illustrated below:
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d1 = 2, d2 = 3

Correspondingly, the associated generating functions satisfy

A = 1 + (d2 − d1)xA+ (d1 − 1)x2AB,

B = 1 + (d2 − 1)x2BA,

φA = 1 + d2x
2φAA, (2.15)

φB = 1 + x (d2 − d1)φB + d1x
2φBB,

φ =
d1

d1 + d2
φA +

d2
d1 + d2

φB

To determine AC, it suffices to determine the growth rate of φs. This growth rate is in turn determined by the
locations of singularities in the associated generating functions [25]. In particular, if

∑
φsz

s = g(z) + h(z)(z − r)p,
where p is non-integer and g, h analytic, then φs grows with the rate r−1 : in other wors, φs+1/φs → r−1 as s→∞.
The location of the singularity can be found without solving the full system, and corresponds to the smallest root of

the discriminant of the system. To illustrate this, consider the Catalan numbers cn = 1
n+1

(
2n

n

)
whose generating

function satisfies c = 1 + xc2. Explicitly, c(x) = 1−
√
1−4x
2x , and has a singularity at x = 1/4, corresponding to the zero

of the discriminant of the quadratic xc2 − c + 1 = 0. It follows that cn+1/cn → 4 as n → ∞ (indeed more precise
asymptotics cn ∼ 1√

π
4nn−3/2 can also be derived from its generating function, although here, we only need the growth

rate).
Let us now get back to the system (2.15). Eliminating B, we find that A satisfies a quadratic,

(d2 − 1) (x (d2 − d1)− 1)x2A2 +
[
x2 (d2 − d1)− x (d2 − d1) + 1

]
A− 1 = 0.

Setting its discriminant to zero, we obtain a quartic polynomial for x, namely

(d1 − d2)
2
x4 + 2 (d1 + d2 − 2) (d2 − d1)x3 +

(
(d1 − d2)2 − 2 (d1 + d2 − 2)

)
x2 + 2 (d1 − d2)x− 1 = 0. (2.16)

The expansion rate is then λ = 1/x, so that µ = d2 − 1/x. Substituting x = 1/(µ− d2) into (2.16), one obtains a
4th degree polynomial for µ,

0 = µ4−2 (d1 + d2)µ3+
(

(d1 + d2)
2

+ 2d1d2 − 2d1 − 2d2 + 4
)
µ2+2 (d1 + d2) (d1 + d2 − 2− d1d2)µ+(d1d2 − d1 − d2)

2

Shift this polynomial to eliminate the µ3 term by substituting µ = y+ d1+d2
2 . Magically, it simultaneously elimintes

the µ1 term resulting in a quadratic for y2:

0 = y4 +
(

4− 2 (d1 + d2)− (d2 − d1)
2
/2
)
y2 +

(d2 − d1)
2

(d1 + d2)

2
+

(d2 − d1)
4

16

Solving for y using quadratic formula yields the solution (1.5). �
Derivation of Result 1.2. Again, we compute the average number of closed walks of length s, φs. As before,

each vertex looks like a tree locally. Each child in this tree has probability (1− p) chance of having degree d1, and
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probability p of having degree d2. As in the derivation of (1.5), assume that d1 ≤ d2, and add d2 − d1 self-loops to
each vertex of degree d1. The walks on these trees then decompose according to the following diagram (here given in
the case d1 = 2, d2 = 3):

d1 = 2, d2 = 3

The corresponding generating function φ(x) =
∑
φsx

s solves the equations

A = 1 + x (d2 − d1)A+ (d1 − 1)x2AR

B = 1 + (d2 − 1)BR

R = (1− p)A+ pB

φA = 1 + x (d2 − d1)φA + d1x
2φAR (2.17)

φB = 1 + d2x
2φBR

φ = (1− p)φA + pφB .

Eliminating A and B yields a cubic F (R;x) = 0 given by (1.7). The AC is then given by µ = d2 − 1/x, where x
is the singularity of R(x) that is closest to the origin. By implicit function theorem, this happens when FR = 0. In
other words, x satisfies F = 0 = ∂F/∂R.�

3. DISCUSSION AND OPEN PROBLEMS

We computed asymptotics of AC for two models of semiregular random graphs: either RSR or RSRB models. While
RSR model is shown to have smaller AC than a random d-regular graph with the same average degree, we found that
RSRB model has higher AC than d-regular when d ≤ 7.

Ramunajan expander graphs are defined [11, 12] as being d-regular graphs whose algebraic connectivity is at least
d − 2

√
d− 1. As illustrated in Figure 2(b) (see also Figure 9 in [11] and related table there), a random d−regular

graph has a decent chance of being Ramunajan graph (around 66% when d = 3 as n→∞ according to simulations in
[11]). We can extend the definition of Ramunajan exander graphs as being any graph of average degree d whose AC
is at least d− 2

√
d− 1. When d = 3, an RSRB (2, 6) graph is actually Ramunajan graph with very high probability

as n → ∞. This is illustrated in Figure 2(b) where n ≈ 2000. Out of 1000 randomly chosen such graphs, only one
had AC less than d− 2

√
d− 1 = 0.1716.

We relied on careful but formal power series computations. While the results were validated using numerics, a
rigorous analysis of the results in this paper is an open problem. Related to this, it is an open question to estimate
the accuracy of asymptotics as a function of n. In particular, the accuracy appears to be significantly degraded for
the RSR graphs when d1 and d2 far from each other. Take for example the case (d1, d2) = (2, 6). Intriguingly, the
distribution for AC appears to have multiple peaks and does not necessary concentrate around the mean, as illustrated
in Figure 4 (note that this does not appear to be the case for RSRB graphs as figure 2(b) illustrates). We pose this
as an open problem.

Challenge 1. Describe the full distribution of AC, particularly for RSR graphs. Explain why it can be multi-peaked
when d1 6= d2.

Another class of graphs having high algebraic connectivity are the complete bipartite graphs Kb,n−b, which have
AC µ = b (with b < n/2). The average degree of such a graph asymptotes to d = 2b as n → ∞, so that µ ∼ d/2.
Contrast this to d-regular random graphs (µ ∼ d − 2

√
d− 1). As was noted in [7], Kd/2,n−d/2 have higher AC than

the d-regular graphs (for asymptotically same number of edges) provided that d < 15 (since d/2 > d−2
√
d− 1 in that
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FIG. 4. Distribution of AC for RSR graphs with (d1, d2) = (2, 6) and with p as indicated. Average degree d = 2 + 4p is also
indicated. We used n = 500 nodes, and 1000 simulations. µnumeric is the average of the distribution whereas µasym is the
asymptotics according to Main Result 1.2. Note the multi-peaked shape of the distribution, and the fact that the distribution
does not concentrate around the mean when d ≤ 5.

case) while the converse is true when d ≥ 15. While complete bipartite graphs have a relatively high AC when d < 15,
they are also fragile, in the sense that removing any single edge causes AC to decrease by one. Random graphs are
more robust with respect to edge deletions as they seem to have some redundancy built-in.

Consider the limit of large d2 for the RSRB model. From (1.2) and (1.5), one obtains that d ∼ 2d1 and µ ∼ d
2 − 1

as d2 →∞. This is one less than the AC of complete bipartite graph Kd/2,n−d/2 (which also has average degree d as

n→∞). More generally, let µd1,d2 be as in (1.5) and let µd = d− 2
√
d− 1, where d = 2d1d2/(d1 + d2) is the average

degree. It can be shown that µd1,d2 < µd for any d1, d2 when d ≥ 10. This discussion suggests the following question.
Challenge 2. Find a family of random graphs which has a higher algebraic connectivity than d-regular random

graphs when average degree d ≥ 10. Explore if more complex degree distribution (e.g. tri-regular) can be better than
semi-regular for say, d = 3.

There are several notions of graph connectivity, with AC being just one. Another notion is using the average of
reliability polynomial [26, 27] to compute the effect of edge deletions on graph connectivity. While the full reliability
polynomial requires exponential time to compute, we performed the following simple experiment to quickly measure
graph robustness. Start with a random 6-regular graph on 500 vertices (i.e. containing 1500 edges). Then delete
edges at random one by one until the graph becomes disconnected. Over 100 simulations, it took on average 460
edge deletions until the graph became disconnected (and in every instance, disconnectivity first occurred when a
single vertex lost all of its edges). We then repeated this experiment with (d1, d2) = (4, 12) RSRB graph with 500
vertices (which also contains 1500 edges but has higher AC than 6-regular random graph). It took on average 325
edge deletions until the disconnection was achieved. These preliminary experiments indicate that d-regular graphs
are more reliable with respect to edge deletions than semi-regular bipartite graphs, even though the latter might have
a higher AC. We state this as a conjecture.

Conjecture 1. For a given average degree d, the most reliable graph is a d-regular graph.
Generally speaking, cubic graphs of high girth are good candidates for high-AC graphs [7]. Since RSRB can have

higher AC, they are also natural candidates for searching high-girth graphs. We pose this as a challenge.
Challenge 3. For fixed average degree d and fixed number of vertices n, find graphs (not necessarily d-regular)

with highest possible girth.
A d-regular graph with the smallest possible n for a given girth g is called a cage. There is an extensive literature

for looking for high-girth graphs; see [28, 29] for an overview. There are powerful methods to do computer searches
for high-girth d-regular graphs [30, 31]. As an example, consider (2, 6) RSRB graphs, whose average degree is d = 3.
Do (2, 6) semi-regular graphs give better cages than cubic graphs with the same number of vertices? The answer is,
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it depends. Note that that (2, 6) graphs can be obtained from 6-regular graphs by inserting a vertex in the middle of
each edge; conversely, any (2, 6) graph yields a 6-regular graph by vertex contraction: just delete all 2-degree vertices.
According to [28, 32], a 6-regular 5-cage graph has 40 vertices. By vertex insertion, this yields a girth 10 (2, 6)
semi-regular graph with 80 vertices. On the other hand, there are three cubic graphs having girth 10 and only 70
vertices [28]. So cubic is better for girth 10.

Similarly, a 6-regular cage of girth 6 has 62 vertices [28], which induces a (2,6) graph of girth 12 and 124 vertices.
On the other hand, a cubic graph of girth 12 has at least 126 vertices [28, 33]. So (2,6) semi-regular graph wins for
girth 12.

The techniques in this paper are rather general, and can be used to derive algebraic connectivity for many other
random graph families. As an example, consider the “small-world”-type graph illustrated in Figure 1(c). Start with
a cycle of n vertices. Then connect all odd-numbered vertices to each other at random. See Appendix A for Matlab
code that generates such a graph. The resulting graph has an average degree of 2.5. To compute its AC, as in the
derivation of (1.5), we add a self-loop to even-numbered vertices so that each vertex has degree 3. We leave it as an
excercise to the reader that the average walk-counting sequence φs has the generating function which satisfies

A = 1 + x2(AÂ+AB)

Â = 1 + 2x2ÂB

B = 1 + xB + x2AB

φo = 1 + x2φo

(
Â+ 2B

)
(3.18)

φe = 1 + xφe + 2x2φeA

φ =
1

2
φo +

1

2
φe

Looking at the radius of convergence of the generating functions as before, we find that in the limit n → ∞ its AC
asymptotes to the smallest root of the polynomial

µ9 − 24µ8 + 249µ7 − 1454µ6 + 5184µ5 − 11400µ4 + 14848µ3 − 10368µ2 + 3108µ− 136 = 0,

explicitly given by µ = 0.0521926. This is validated using Monte Carlo simulations: the average AC of 1000 random
such graphs with n = 1000 vertices is 0.0557 (std=0.0029), the difference of about 7%. This is significantly higher
than a RSR graph with (p, d1, d2) = (0.5, 2, 3), which also has average degree of 2.5, but whose AC is µ ∼ 0.044241.

APPENDIX A: MATLAB AND MAPLE CODE

RSRB model (Figure 1(a)):

d1=2; d2=3; n1=30; n2=20;
bag1=mod([0:n1*d1-1], n1)+1;
bag2=mod([0:n2*d2-1], n2)+1+n1;
bag2=bag2(randperm(numel(bag2)));
G=graph(bag1, bag2);
plot(G);
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RSR model (Figure 1(b)):

p=0.4; d1=2; d2=3; n=50;
n1=(1-p)*n; n2=p*n;
v1=mod([0:n1*d1-1], n1)+1;
v2=mod([0:n2*d2-1], n2)+1+n1;
bag=[v1, v2];
bag=bag(randperm(numel(bag)));
G=graph(bag(1:end/2), bag(end/2+1:end));
plot(G);

Small-world-like model (Figure 1(c)):

n=52;
v1=[1:n];
v2=[2:n,1];
bag=[1:2:n];
bag=bag(randperm(numel(bag)));
v1=[v1,bag(1:end/2)];
v2=[v2,bag(end/2+1:end)];
G=graph(v1,v2);
t=(1:n)/n*2*pi;
plot(G, ’XData’, cos(t), ’YData’, sin(t));
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Maple code to compute AC of RSR graphs:
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