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We investigate an SIRS epidemic model with spatial diffusion and nonlinear incidence rates. We
show that for small diffusion rate of the infected class DI , the infected population tends do be
highly localized at certain points inside the domain, forming K spikes. We then study three distinct
destabilization mechanisms, as well as a transition from localized spikes to plateau solutions. Two
of the instabilities are due to coarsening (spike death) and self-replication (spike birth), and have
well-known analogues in other reaction-diffusion systems such as the Schnakenberg model. The
third transition is when a single spike becomes unstable and moves to the boundary. This happens
when the diffusion of the recovered class, DR becomes sufficiently small. In all cases, the stability
thresholds are computed asymptotically and are verified by numerical experiments. We also show
that the spike solution can transit into an plateau-type solution when the diffusion rates of recovered
and susceptible class are sufficiently small. Implications for disease spread and control through
quarantine are discussed.

1. INTRODUCTION

The SIRS epidemic model introduced by Kermack and McKendrick in 1927 [1] is widely used to model the spread
of infectious diseases. The population is divided into three disjoint classes: susceptible (S), infected (I), and recovered
(R), where susceptibles can be infected by those already infected and subsequently recover, and recovered class are
immune to the disease but lose immunity over time. These assumptions are modelled using the following system of
ODEs:  St = −βSI + γR,

It = βSI − νI,
Rt = νI − γR,

(1)

where β is the infection rate, ν is the recovery rate, and γ is the rate of immunity loss. Kermack and McKendrick’s
work has motivated the use of mathematics in the study of epidemiology [2–4].

While spatially-homogeneous dynamics are by now well studied, modelling spatial interactions is still an active area
of research. Most disease outbreaks have a strong spatial characterisitic, and many studies emphasize the importance
of the spatial dimension for modelling these outbreaks. For example, [5] looked at spatio-temporal patterns in HIV
outbreaks in Malawi over two decades (1994-2010). The authors found that the disease initially spread in several
localized hot-spots and they identified several geographically differentiated HIV/AIDS epidemics rather than a single
one. These initial outbreaks were followed by a complex spatio-temporal dynamics. Similar spatial clusters of HIV
outbreaks were found in a recent study [6] in Phayao Province, Thailand, and in South Africa [7].

In recent decades, numerous methodologies have been used to describe spatial distribution of diesease. This include
the use of cellular automata [8, 9], metapopulations [10–12], networks [13, 14] and partial differential equations
[15, 16]. Generally speaking, incorporating spatial structure leads to very rich dynamics in epidemic models, such as
formation of disease hot-spots.

In this paper we study spatially-localized outbreaks for the SIRS model with spatial dispersion. As will be shown
below, such outbreaks can occur when the infection rate β is nonlinear. For simplicity, we will assume that β is
proportional to I, although other types of nonlinearity, such as Holling functional response also lead to hot-spot
formation. We model spatial dispersion using diffusion. This results in the following system, St = DSSxx − χSI2 + γR,

It = DIIxx + χSI2 − νI,
Rt = DRRxx + νI − γR.

(2)

Here DS , DI , DR are diffusion coefficients of each class of population, χI is the rate of infection. We study the
epidemic system on 1-D interval [−L,L] with Neumann boundary conditions, so that Sx = Ix = Rx = 0 at x = ±L.
For simplicity, we also assume the timescale of infection and recovery is much shorter than the average life span, so
birth and death rates for each class are neglected.

The second key assumption we make is that the infected class I diffuses more slowly than others. There are two
scenarios where this is biologically plausible. The first scenario, common in many species is that the disease itself
reduces the species mobility. A second scenario, applicable to humans, is an intentional quarantene policy to limit
the spread of infection. Such a policy is well known to be effective in controlling disease outbreaks and is often used
a first-line defense against quickly-spreading infections.
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We therefore write DI = ε2 where ε is small. By further rescaling [17], we may set χ = 1, ν = 1. This leads to the
following singularly perturbed reaction diffusion system:

 St = DSSxx − SI2 + γR,
It = ε2Ixx + SI2 − I,
Rt = DRRxx + I − γR.

(3)

Under these assumptions, this system has localized disease concentrations corresponding to spike-type solutions.
Such spike patterns have been studied in great detail since 1990’s in simpler reaction-diffusion systems consisting of
two components, such as Gierer-Meinhardt system, Gray-Scott model, Schnakenberg model and Keller-Segel model
and its variants. We refer reader to [18–30] and references therein. The introduction of a third component leads to
interesting new phenomena not present in two-component reaction-diffusion systems [31].

Let us summarize the main results in this paper. Simulations and analysis show that the behavior of the system
is highly dependent on diffusion rate DR, relative to the diffusion rate of infected class, ε2. We isolate two distinct
regimes: either DR � O(ε2) or DR ≤ O(ε2).

The regime DR � O(ε2) is studied in Sections 2, 3, 5. In this regime, the steady-state population consists of K
hot-spots of disease, uniformly distributed inside the interval [−L,L]. Depending on system parameters, the K-spike
steady state can undergo two types of instabilities. The first type, analyzed in Section 5 5.1 is referred to as spike
competition instability. As a result of such an instability, some of the hot-spots are “absorbed” by others, resulting in
fewer hot-spots. The second type of instability, studied in 5 5.2 is referred to as self-replication instability, whereby
a spike splits into two, resulting in more spikes. These instabilities are illustrated in Figure 1. Figure 1(a) shows
8 spikes that gradually coarsen into 2 as DS is gradually increased. On the other hand, with one-spike equilibrium
as initial condition, replication occurs and more spikes appear as we gradually decrease DS . This is shown in Fig
1(b). We derive explicit thresholds for DS such that the spike competition occurs when DS > Dcom

SK , K ≥ 2; and
self-replication instability occurs when DS < Drep

SK , K ≥ 1. Formulas for Dcom
SK and Drep

SK are given in Section 5.

The second regime we study is when DR is small: DR ≤ O(ε2). In this case, a single spike can become unstable,
and depending on other parameters, two phenomena can occur. If DR is sufficiently small, a single spike moves to
the boundary (depending on how big DS is), as illustrated in Figure 2. This phenomenon is studied in Section 4.
On the other hand, when both DR and DS are small, the spike “fattens up” and becomes a mesa-type pattern, i.e.
a contiguous region of high concentration of disease connected via a sharp interface to a region of low concentration.
Numerically we observe two types of inhomogeneous equilibrium depending on the value of DS and an example of
such a steady state pattern is shown in Figure 3. Spike-type solution exists for sufficiently large DS , but transition
to interface-type patterns for small DS . This process is illustrated in Figure 3(left). Interface patterns are studied
in Section 6.

(a) (b)

FIG. 1. Instabilities of steady state spike solutions induced by slowly increasing DS or decreasing DS . Here DR = 1, L =
2.5, ε = 0.05, N = 15 and γ = 1. Left: Coarsening (competition) instability when DS is increased (Ds = 1 + 10−5t). Colour
plot of I is shown. Right: Self-replication instability when DS is slowly decreased (Ds = 6− 10−5t).
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(a) DR = 1 (b) DR = 0.0036

FIG. 2. Stable and unstable motion of a single spike. Here, DR is as indicated while other parameters are fixed at DS =
5, L = 1, ε = 0.06, N = 5 and γ = 1. In (a), one-spike equilibrium moves to the center, which shows that the center spike is
stable. In (b) the spike moves to boundary instead of moving to center, so that a single spike is unstable.

FIG. 3. Transition from spike to mesa when DR = 0, ε = 0.04, N = 10, L = 1, γ = 1 with DS as a control parameter. Left:
DS is gradually decreased from 0.5 to 0.05. Middle, Right: Profile of I(x) for DS as indicated.

2. SINGLE-SPIKE SOLUTION

We start by constructing a single interior spike solution to (3). Such a solution corresponds to a localized concen-
tration of the infected population I at some point x0 in the interior of the domain, x0 ∈ (−L,L) . The extent of the
spike is of O(ε). We therefore introduce the inner variable

y =
x− x0
ε

. (4)

In the inner region, equlibirum solution of (3) then becomes
Syy − ε2

DS
SI2 + ε2

DS
γR = 0,

Iyy + SI2 − I = 0,

Ryy + ε2

DR
I − ε2

DR
γR = 0.

(5)
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We then expand S, I,R as

S = S0 + εS1 +O(ε2),

I = I0 + εI1 +O(ε2), (6)

R = R0 + εR1 +O(ε2).

Upon substituting (6) into (5) and collecting higher-order terms in ε, we obtain, to leading order, S0yy = 0,
I0yy + S0I

2
0 − I0 = 0,

R0yy = 0.
(7)

This shows that S0 and R0 are constants to be determined. We then rescale

I0 =
1

S0
w(y), (8)

where so that w satisfies the well-known ground-state

w′′ − w + w2 = 0, w → 0 as y → ±∞

whose explicit solution is given by

w(y) =
3

2
sech2

(y
2

)
.

To determine R0 and S0, we must match the inner and the outer region. In the outer region we approximate

I ∼
(∫ L
−L Idx

)
δ(x−x0) and SI2 ∼

(∫ L
−L SI

2dx
)
δ(x−x0). We further estimate

(∫ L
−L Idx

)
∼ 1

S0
ε
∫∞
−∞ wdy ∼ 6ε/S0

and similarly,
∫ L
−L SI

2dx ∼ 6ε/S0, so that

0 = DSSxx + γR− 6ε/S0δ(x− x0),
0 = DRRxx − γR+ 6ε/S0δ(x− x0).

(9)

To solve (9), we introduce the modified Green’s function G(x;x0), which satisfies
Gxx − γ

DR
G = −δ(x;x0),

Gx(x+0 )−Gx(x−0 ) = −1,
Gx(±L) = 0.

(10)

A simple calculation gives

G(x;x0) =


cosh

(√
γ
DR

(x+L)

)
cosh

(√
γ
DR

(x0−L)
)

√
γ
DR

sinh(2
√

γ
DR

L)
, −L < x < x0

cosh

(√
γ
DR

(x0+L)

)
cosh

(√
γ
DR

(x−L)
)

√
γ
DR

sinh(2
√

γ
DR

L)
, x0 < x < L.

(11)

The solution to (9) is then given by

R(x) =
6ε

S0DR
G(x;x0) (12)

and

S(x) = −DR

DS
R(x) +

DR

DS
R0 + S0, (13)

where R0 = 6ε
S0DR

G(x;x0) and S0 is to be determined.
To find S0, we use the conservation of mass. Let N be the total population, so that

N ≡
∫ L

−L
S + I +Rdx. (14)
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Note that by adding three equations in (3) and integrating over the domain, N is independent of time. We will also
take

N = 2N0L, (15)

where N0 is an arbitrary constant depending on initial conditions, so that N scales with domain size; N0 can be
thought of an average density.

We now substitute (8), (12) and (13) into the mass conservation condition (14, 15) to obtain that

S2
0 −N0S0 + E = 0, (16)

where

E =
3ε

L

1 +
1

γ
− DR

γDS
+ 2

√
DR

γ

L

DS

cosh(
√

γ
DR

(x0 + L)) cosh(
√

γ
DR

(x0 − L))

sinh(2
√

γ
DR

L)

 . (17a)

Solving (16) we get two roots when N2
0 − 4E > 0. Asymptotically in ε, they are

S0− ∼
E

N0
, (17b)

which is of O(ε) and

S0+ ∼ N0, (17c)

which is of O(1). Plots of these two roots are shown in Fig 4. The two roots connect at a fold point corresponding
to a double root of (16).

We now summarize our first result:

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

N

0

0.5

1

1.5

2

2.5

3

3.5

S
0

S
0-

S0
*

S
0+

FIG. 4. Plot of two roots to (16) vs. total population N . Here ε = 0.05, L = 1, DR = 1, DS = 1 and γ = 1. The dashed curve
denotes S0+ and the solid curve denotes S0−. S∗

0 is the fold point where (16) has double root.

Result 2.1 With DI = ε2 and 0 < ε� 1, the SIRS system (3) has the following single-spike steady state:

S(x) ∼ − 6ε

S0DS
G(x;x0) +

6ε

S0DS
G(x0;x0) + S0,

I(x) ∼ 1

S0
w

(
x− x0
ε

)
,

R(x) ∼ 6ε

S0DR
G(x;x0),

(18)

where G(x;x0) is given by (11), w(y) = 3
2 sech2(y2 ) and S0 is a constant determined by the total population mass as

given in (17).
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3. NONLOCAL EIGENVALUE PROBLEM

We now study the stability of one-spike solution. We first linearize around the steady state by taking

S(x, t) = S(x) + eλtϕ(x),

I(x, t) = I(x) + eλtψ(x),

R(x, t) = R(x) + eλtξ(x).

Assuming |ϕ| , |ψ| , |ξ| � O(1) we obtain the linearized problem λϕ = DSϕxx − I20ϕ− 2S0I0ψ + γξ,
λψ = ε2ψxx + I20ϕ+ (2S0I0 − 1)ψ,
λξ = DRξxx + ψ − γξ.

(19)

In the inner region, we let y = x−x0

ε where x0 is the spike position. To leading order, we then obtain ϕyy ∼ 0 so
that ϕ(x) ∼ ϕ0 is constant to be determined. The equation for ψ is

λψ = ψyy − ψ + 2w(y)ψ + I20ϕ0. (20)

In the outer region, we approximate {
DSϕxx − λϕ+ γξ = c1δ(x;x0),
DRξxx − (γ + λ)ξ = c2δ(x;x0).

(21)

where

c1 =

(
ϕ0

∫
I20dx+ 2S0

∫
I0ψdx

)
, c2 = −

∫
ψdx. (22)

We write

ξ(x;x0) = − c2
DR

G

(
x;x0,

√
γ + λ

DR

)
, (23)

where G(x;x0, µ) is the Green’s function that satisfies{
Gxx − µ2G = −δ(x;x0),
Gx(±L) = 0,

(24)

and is explicitly given by

G =
1

µ sinh(2µL)

{
cosh (µ(x+ L)) cosh (µ(x0 − L)) , −L < x < x0
cosh (µ(x0 + L)) cosh (µ(x− L)) , x0 < x < L.

. (25)

To solve for ϕ, we make a change of variables. Let

ϕ =
DRγ

λ(DR −DS)− γDS
ξ + ϕh. (26)

Then ϕh satisfies:

DSϕhxx − λϕh =

(
c1 −

γc2
λ(DR −DS)− γDS

)
δ(x;x0)

so that

ϕh = − 1

DS

(
c1 −

γc2
λ(DR −DS)− γDS

)
G

(
x;x0;

√
λ

Ds

)
Therefore we estimate

ϕ0 = ϕ(x0) ∼ −c2
γ

λ(DR −DS)− γDS
G

(
x0;x0,

√
γ + λ

DR

)
− 1

DS

(
c1 −

γc2
λ(DR −DS)− γDS

)
G

(
x0;x0;

√
λ

Ds

)
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and

c1 = ε

(
ϕ0

S2
0

∫
w2dy + 2

∫
wψdy

)
; c2 = −ε

∫
ψdy. (27)

After some algebra, this leads to the following non-local eigenvalue problem (NLEP),

(L0 − λ)ψ = w2 2∫∞
−∞ w2dy − (λ+ 1)

S2
0

εP

∫ ∞
−∞

wψdy, (28)

where L0ψ = ψyy − ψ + 2wψ (29)

and where

P =
γ
√

DR
λ+γ

λ(DR −DS)− γDS

cosh
(√

λ+γ
DR

(x0 + L)
)

cosh
(√

λ+γ
DR

(x0 − L)
)

sinh
(

2
√

λ+γ
DR

L
)

−
λ+ 1 + DSγ

λ(DR−DS)−γDS√
λDS

cosh
(√

γ
DS

(x0 + L)
)

cosh
(√

γ
DS

(x0 − L)
)

sinh
(

2
√

γ
DS
L
) .

(30)

For the special case when x0 = 0, this expression simplifies to

P (λ) =
γ
√

DR
λ+γ

λ(DR −DS)− γDS

coth
(√

λ+γ
DR

L
)

2
−
λ+ 1 + DSγ

λ(DR−DS)−γDS√
λDS

coth
(√

γ
DS
L
)

2
. (31)

In general, the NLEP problem (28) is difficult to tackle since P has such a complicated dependence on λ. However

there are two cases for which stability of (28) is well established: namely, large or small
S2
0

ε . Note that S0 is given by

(17) and has two branches, S0+ and S0−, refer to Figure 4. Consider the case of large N. Then
S2
0+

ε � 1 whereas
S2
0−
ε � 1. In the former case, (28) reduces to a local eigenvalue problem (L0 − λ)ψ ∼ 0. This problem is well known

to admit a positive eigenvalue λ = 5/4 so that this branch is unstable. For the latter case (S0 = S0−), the problem
(28) reduces to the following well-known NLEP problem:

λψ = L0ψ − 2w2

∫∞
−∞ wψdy∫∞
−∞ w2dy

, S0 ∼ O(ε). (32)

This is well-known to be stable as was first proven in [19].
Finally, a lengthy but a straightforward algebraic computation shows that at the fold point where S0+ = S0−,

there is a zero eigenvalue whose corresponding eigenfunction is given by ψ = w. This suggests that the entire branch
S0+ is unstable whereas the entire branch S0− is stable, although the proof of this fact is not in the cards due to the
complex structure of P (λ). This structure is analogous to the well-known properties of the Grey-Scott model in the
low-feed regime [32].

Another approach is to consider the limit of large DR and/or DS (various so-called shadow limits). We do not
observe any additional instabilities of a single spike in this regime so we will not pursue it further here.

4. SPIKE MOTION.

We now study the motion of the interior spike, which is determined by small eigenvalues. We rewrite the system
as following:  St = DSSxx − SI2 + γR,

It = ε2Ixx + SI2 − I,
Rt = DRRxx + I − γR

(33)

with Neumann boundary conditions and DS , DR � O(ε2). To study the motion of the spike, we expand around

the center x0 by writing x = x0 + εy, and let x0 = x0(ε2t), S(y, t) = S
(
x−x0(ε

2t)
ε

)
, I(y, t) = I

(
x−x0(ε

2t)
ε

)
, and
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R(y, t) = R
(
x−x0(ε

2t)
ε

)
. Then system (33) becomes

 −ε
3x′0Sy = DSSyy − ε2SI2 + ε2γR,

−εx′0Iy = Iyy + SI2 − I,
−ε3x′0Ry = DRRyy + ε2I − ε2γR.

(34)

Applying the same expansion (6) and collecting ε order, we obtain that S1yy = 0,
−x′0I0y = I1yy + χS1I

2
0 + 2χS0I0I1 − I1,

R1yy = 0,
(35)

in which S0, I0, R0 are expressed in (17b), (12) and (13). Multipy the second equation by I0y and integrate to obtain
the solvability condition

x′0

∫ ∞
−∞

I20ydy =
1

3

∫ ∞
−∞

I30S1ydy. (36)

From (35), we know that S1 is linear so that S1y is a constant. To determine S1y, we match to the outer region. We
expand

S(x;x0) = S(x0 + εy;x0) (37)

= S(x0) + εyS′(x0),

where S(x;x0) in outer region is expressed in (12). We then match it with the expansion (6) to have

S1 =

(
− 6ε

S0DS
G′(x0;x0)

)
y, (38)

where G(x;x0) is expressed in (11). Therefore we have

S1y = − 6ε

S0DS

{
G(x+0 ;x0), −L < x < x0
G(x−0 ;x0), x0 < x < L.

(39)

Substituting (39) into the equation (36) gives the equation that describes the motion of the interior spike:

x′0 = − 6ε

DSS2
0

sinh
(

2
√

γ
DR

x0

)
sinh

(
2
√

γ
DR

L
) , (40)

where S0 is expressed in (17b). Write

S0 = εŜ, (41)

then we have

dx0
dt

= − 6ε

DSŜ2

sinh
(

2
√

γ
DR

x0

)
sinh

(
2
√

γ
DR

L
) . (42)

It’s obvious to see that equation (42) has one equilibrium x0 = 0, and the corresponding eigenvalue is

λ = − 12ε

DSŜ2

√
γ
DR

sinh
(

2
√

γ
DR

L
) < 0. (43)

Therefore the equilibrium centered at x0 = 0 is stable with respect to spike motion.



9

4.1. Boundary effects and spike motion

From formula (43), it is clear that the eigenvalue is stable, provided that DR is not too small. However numerical
experiments show that the spike becomes unstable and moves to the boundary when DR is of O(ε2). To understand
this, note that for small DR, (17b) simplifies to

S0 ∼
6ε(1 + 1

γ )

N
(44)

and Ŝ ∼ 6(1+ 1
γ )

N . Therefore (43) simplifies to

λ ∼ −2

3

εN2

DS(1 + 1
γ )2

√
γ

DR
exp

(
−2L

√
γ

DR

)
, DR � 1. (45)

As such, the effect of 〈Sx〉 becomes exponentially small. On the other hand, there are also exponentially weak
boundary effects due to the interaction of the pulse with the boundary that we disregarded in the computation
leading to (36). These boundary terms appear when integrating by parts in (36). To compute them, we replace (36)
by a more precise expression

−x′0
∫
I20ydy = (I0yI1y − I0I1)|y=

L−x0
ε

y=
−L−x0

ε

+

∫
I0yI

2
0S1dy. (46)

The computation of the boundary terms is relatively standard and we summarize it here. Note that

w(y) ∼ 6e−y as y →∞ (47)

so that

I0 ∼
6

S0
exp (−y) . (48)

For x near L, we change variables:

x = L+ εz

so that y = L−x0

ε + z and

I0 ∼
6

S0
exp

(
−L− x0

ε

)
exp(z). (49)

Near z = 0, equation for I1 satisfies I1zz − I1 ∼ 0, so that I1 = A exp z + B exp(−z). Since I ′(L) = 0, we must
therefore have

I1 ∼
6ε

S0
exp

(
−L− x0

ε

)
exp(−z), (50)

so that

(I0xI1x − I0I1)|x=L = −72ε

S2
0

exp

(
−2

L− x0
ε

)
. (51)

Performing a similar computation at x = −L, and evaluating the remaining terms as before, we obtain

x′0 ∼ −
6ε

DS

sinh
(

2
√

γ
DR

x0

)
sinh

(
2
√

γ
DR

L
) 1

Ŝ2
+ 60ε

{
exp

(
2
x0 − L
ε

)
− exp

(
2
−L− x0

ε

)}
(52)

so that

λ ∼ −12ε

DS

√
γ
DR

sinh
(

2
√

γ
DR

L
) 1

Ŝ2
+ 240 exp

(
−2L

ε

)
. (53)
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This expression clearly shows that the boundary term can play a destabilizing effect when the first term on the right
hand side of (53) is exponentially small. This happens precisely when DR is small. Setting λ = 0, substituting

Ŝ ∼ 6(1+ 1
γ )

N and solving for Ds yields the critical value

D∗S ∼
εN2

1440

√
γ

DR
exp

(
2L

(
1

ε
−
√

γ

DR

))
(54)

with a single spike centered at center being unstable when DS > D∗S , and stable otherwise. This phenomenon is
illustrated in Figure 3. Take L = 2, γ = 1, N = 5 and DR = 0.005298. Then (54) yields D∗S = 5.00. It follows that a
single spike is unstable at the origin when DR < 0.005298 and is stable otherwise. This is confirmed in Figure 3.

The boundary effect discussed here is similar to destabilization discussed in [33]. However the difference here is
that this effect is primarily driven by having a small DR, and is very specific to having three components. Although
the asymptotics of (54) are valid as long as DR � O(ε2), similar destabilization phenomenon also happens when
DR = O(ε2). Although the asymptotics of (54) break down in such a case, numerics show that the destabilization
phenomenon persists as DS is increased.

5. INSTABILITY THRESHODLS OF MULTI-SPIKE EQUILIBRIUM

In this section we study K-spike patterns, where K ≥ 1. We analyze two types of instabilities, one is referred to
as spike competition or coarsening instability, whereby some of the spikes are annihilated if the initial state contains
too many spikes. The other is referred to as self replication, whereby a new spike may appear by the process of spike
splitting. In this chapter we derive explicit thresholds for these instabilities.

5.1. Coarsening

When there are too many spikes, some of them get absorbed by others. This is known as coarsening or competition
instability. To determine the instability threshold for spike competition, we apply the method in [34, 35] and compute
the critical value at which an asymmetric spike pattern bifurcates from symmetric branch. To do this, consider a
single interior spike on the domain [−l, l]. Duplicating the domain K times we obtain K spikes on the domain of size
2L = 2lK. From (13) we have:

S(l) = S0 +
3ε

DSS0

√
DR

γ

 1

tanh
(√

γ
DR

l
) − 1

sinh
(√

γ
DR

l
)
 , (55)

where S0 = S0− is given in (17b) with x0 = 0. Plots of S(l) when DS = 1 and DS = 3 are shown in Fig 5. The
bifurcation point corresponds to the minimum point of the curve l → S(l). Setting S′(l) = 0 then yields the critical
stability threshold. Solving for DS as a function of other parameters, and upon substituting l = L/K we obtain the
critical threshold
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(b)S(l) when DS = 3

FIG. 5. Plots of function S(l) versus l for DS = 1 and DS = 3. Other parameters are fixed and they are: ε = 0.02, DR =
2, γ = 1, N0 = 4.
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Dcom
SK ∼

N2
0

(
L
K

)3
3ε
(

1 + 1
γ

)2
1− 1

tanh2
(√

γ
DR

L
K

) +
cosh

(√
γ
DR

L
K

)
sinh2

(√
γ
DR

L
K

)


+
N2

0

(
L
K

)2
3ε
(

1 + 1
γ

)2
√
DR

γ

 1

tanh
(√

γ
DR

L
K

) − 1

sinh
(√

γ
DR

L
K

)
 .

(56)

The K-spike solution is unstable and some of the spikes will disappear when DS > Dcom
SK . The plot of Dcom

SK as a
function of DR is shown in Figure 6. Note that Dcom

SK has the following asymptotics as DR →∞:

Dcom
SK ∼

N2
0

(
L
K

)3
3ε
(

1 + 1
γ

)2 , as DR →∞, (57)

which is shown in Fig 6. We now summarize the following result:

Result 5.1 Consider a K-spike solution for the system (3) on an interval of length 2L with K > 1. Then in the
limit of ε→ 0, this solution is stable provided that DS < Dcom

SK , where Dcom
SK is given by (56). When DS > Dcom

SK , the
K-spike solution becomes unstable due to competition (or coarsening) instability and some of the spikes disappear.

FIG. 6. Plot of stability threshold Dcom
S2 vs. DR for single spike solutions. Here ε = 0.02, L = 1, N0 = 2.5, and γ = 1. The

curve denotes analysis value Dcom
S2 obtained by (56), and the dashed line is the asymptote of the curve. The dots are obtained

by numeric simulations, and they have a good agreement with analysis.

5.2. Self-replication

Unlike coarsening instability, self-replication is related to disappearence of the single spike equilibrium solution.
The mechanism has been studied in detail for Gray-Scott model [22, 23, 36–39], and it is similar here. We start by
changing variables

S(x) =
ε√
DS

S̃(x), I(x) =

√
DS

ε
Ĩ(x), x = εy, (58)

so that the system (3) transforms to 
√
DS
ε S̃yy −

√
DS
ε S̃Ĩ2 + γR = 0,

Ĩyy + S̃Ĩ2 − Ĩ = 0,
DR
ε2 Ryy +

√
DS
ε Ĩ − γR = 0.

(59)
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Next, assume that DS , DR are O(1). Then to leading order, in the inner region we obtain the following problem,
referred to as the core problem, {

S̃yy − S̃Ĩ2 = 0,

Ĩyy + S̃Ĩ2 − Ĩ = 0,
(60a)

this core problem is identical to the core problem for both the Grey-Scott model [22, 23, 36, 39], and the Schnakenberg
model [27]. Assuming that the spike is symmetric, we define

A := S̃y(∞) =

∫ ∞
0

S̃Ĩ2dy. (60b)

By plotting the numerical bifurcation diagram of (60b), it was found in [23, 39] that the steady state disappears when
A > Ac ≈ 1.35, and this disappearence leads to self-replication. To determine A in terms of the other parameters of
the problem, we perform an asymptotic matching to the outer region. We estimate

∫
SI2 =

∫
I and

DRRxx − γR = −
(∫

Idx

)
δ(x), DSSxx + γR = −

(∫
Idx

)
δ(x).

The solution is then given by

R(x) =

(∫
Idx

)
DR

G(x), (61a)

S(x) = −DR

DS
R(x) +

DR

DS
R(0). (61b)

where as before,

G(x) =

√
DR
γ

2 sinh
(√

γ
DR

l
)
 cosh

(√
γ
DR

(x+ l)
)
, −l < x < 0

cosh
(√

γ
DR

(x− l)
)
, x < x < l.

(61c)

We substitute (61) into the total mass equation (14) to obtain that

N = 2N0l = 2A
√
DS

(
1 +

1

γ
− DR

γDS

)
+

2Al√
DS

√
DR
γ

tanh
(

γ
DR

l
) , (62)

so that self-replication occurs when

A =
N0l
√
DS

DS

(
1 + 1

γ

)
+ l

√
DR
γ

tanh

(√
γ
DR

l

) − DR
γ

> Ac ≈ 1.35. (63)

Equivalently, we rewrite (63) to obtain the following quadratic equation with respect to
√
DS(

1 +
1

γ

)
DS −

N0l

Ac

√
DS +

√
DR
γ l

tanh
(√

γ
DR

l
) − DR

γ
= 0. (64)

Therefore replication of one-spike solution occurs when DS < Drep
S , where

√
Drep
S is the large root of (64). For K

spikes on domain [−L,L] with L = Kl, this leads to the following result:

Result 5.2 Consider a K-spike solution of the system (3) on an interval of length 2L with K ≥ 1. Then in the limit
of ε→ 0, this solution is stable provided that DS > Drep

SK , where DS = Drep
SK is the root of (64), in which l = L

K and
Ac ≈ 1.35 corresponds to the fold point of the problem (60).

Figure 7 shows numerical validation of Result 5.2. The solid curve denotes the asymptotic curve as given in Result
5.2. Above the curve, a single spike is stable. As DS is decreased and crosses the curve, self-replication takes place
resulting in two spikes. The dots denote numeric simulations. Good agreement is observed between numerics and
asymptotics.

For a fixed DR and a given number of spikes K, we have derived both upper and lower thresholds on the DS for
which K spikes are stable. Note that multiple solutions (e.g. two or three spikes) can be stable at the same time.
This is illustrated in Figure 8.
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FIG. 7. Self-replication threshold (Result 5.2). Comparison between numerics and analysis. Solid curve is the analytical result
given by (64). Dots denote numerical simulations. Self-replication is observed as DS is decreased past the solid curve in the
figure. Here ε = 0.005, N = 5, L = 1, and γ = 1.
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FIG. 8. Bifurcation diagram of K-spike patterns for K = 2, 3. The region between solid curves is the stable region for 2-spike
patterns, and the region between dashed curves is the stable region for 3-spike patterns. Above the regions spike competition
instability occurs, below the region, self replication instability occurs. Here ε = 0.03, N0 = 2.5, L = 1, γ = 1.

6. MESA-LIKE STEADY STATES WHEN DR = 0.

As shown in Section 5 5.1, multi-spike configurations lose stability when DR is sufficiently small: even a single
spike eventually becomes unstable (due to an exponentially small eigenvalue becoming positive) and moves towards
the boundary when DR = O(ε2). For even smaller values of DR, we observe numerically that the spike “fattens” as
shown in Figure 9. In the limit of DR → 0, numerics indicate a phase separation of infected population. This can be
thought of as a “quaranteene effect”: when mobility of recovered population and susceptible population is reduced,
the infected population is confined to a certain region of the entire domain with a sharp interface inbetween.

Here we perform the analysis for the limiting case DR = 0 and DS being small, although similar results hold even
when DR = DS and is nonzero. At the steady steate, we then have I = γR so that the model (3) reduces to{

0 = DSSxx − SI2 + I,
0 = ε2Ixx + SI2 − I. (65)

Adding the two equations we we obtain that DSS+ε2I is constant. We then eliminate S from the second equation
to obtain

DSIxx =
DS

ε2
I − CI2 + I3, (66)

where

C = I +
DS

ε2
S (67)



14

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
D

s
 = 0.005

I
S

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
D

s
 = 0.064

I
S

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14
D

s
 = 0.16

I
S

FIG. 9. Steady states of the system (3) with L = 1, DR = 0, ε = 0.04, γ = 1, N0 = 2.79 and with DS as indicated. Solid
curves correspond to the full numerical solution of (3). Dashed lines show the asymptotic approximation (69).

is a constant to be determined.
Equation (66) admits a heteroclinic solution connecting the steady state I = 0 to a positive steady state I+

provided that the Maxwell-line condition holds:
∫ I+
I0

(
DS
ε2 I − CI

2 + I3
)
dI = 0. This is equivalent to cubic having

equidistant roots, that is,

DS

ε2
I − CI2 + I3 = I

(
I − I+

2

)
(I − I+) (68)

so that

I+ =

√
2DS

ε2
, C =

3

2
I+. (69a)

In this case there is an interface solution on the domain [0, L] given by

γR = I ∼ I+
(

1

2
tanh

(
I+

2
√

2

(l − |x|)√
DS

)
+

1

2

)
; (69b)

S ∼ ε2

DS
I+

(
1− 1

2
tanh

(
I+

2
√

2

(l − |x|)√
DS

))
. (69c)

Here, l is the location of the interface. A back-to-back interface solution such as shown in figure 3 is obtained by
extending this solution to [−L,L] using even reflection. Finally, the interface location l is determined using the mass

conservation condition, N0L =
∫ L
0

(S + I +R)dx. In the limit ε→ 0, this yields

LN0 = I+

{(
1 +

1

γ

)
l +

(
3

2
L− 1

2
l

)(
ε2

D

)}
so that solving for l we obtain

l =
N0 − I+ 3

2

(
ε2

D

)
I+

(
1 + 1

γ −
(
ε2

D

))L. (69d)

This result is valid as long as O(ε) � l < L. In this case, the interface has an exponentially weak effect on the
boundary, and the agreement with the numerics is nearly perfect. Figure illustrates this. Solution (69) is shown
super-imposed on the numerical solution; the difference is imperceptible in the “eye-ball norm”as long as l = O(1).
The asymptotics break down when l becomes small (figure 9, right), and the interface transforms into a spike solution.

Note that the infected class subdivides the domain into outbreak portion (x < l) and disease-free portion (x > l).
The susceptible population is three times smaller within the outbreak portion of the domain when compared with
the disease-free portion.

For simplicity, we took DR = 0 here. Numerical simulations indicate that similar interface solutions persist for
sufficiently small DR, although it changes l as well as the interface shape. We defer their study to future work.



15

00.10.20.30.40.50.60.70.80.91
D

S

0

0.5

1

1.5

2

2.5

 I

DS3
*DS1

* DS2
*
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numeric results, and dashed curves is the asymptotic result corresponding to self-replication thresholds of Result 5.2.

7. DISCUSSION

In this paper we studied the consequence of adding spatial diffusion to the relatively-standard SIRS model. Under
certain reasonable assumptions, the resulting system (3) has a very rich solution space, exhibiting hot-spots as well
as interface-type solutions, depending on whether DR is large or small, respectively.

Occurrence of disease clusters has been widely documented in epidemiology literature, see e.g. [5–7, 40, 41].
Our study underscores the importance of diffusion in formation of hot-spots and disease spread. One of the key
assumptions leading to hot-spot formation was that the diffusion of infected class is relatively slow compared to the
susceptible class. While it is difficult to measure (or even quantify) diffusion rates, one study [7] did find a strong
positive correlation between HIV hot-spot location and proximity to a large road. A multitutde of other causes have
been proposed (see [40] and references therein). This includes the level of male circomcision; religiosity (less HIV
prevalence in muslum communities in Africa); urbanization level with wider HIV prevalence in rural areas, among
others; preponderence of drug use [41].

The hot-spot regime DR � DI is very similar to the previous analysis for the two-component reaction-diffusion
systems, such as the Schnakenberg model [27, 35], and the behaviour is qualitatively similar to the SI model with
diffusion introduced in [16] (which itself is a generalization of the Schnakenberg model). However, from the analysis
point of view, the third component introduces a novel non-local eigenvalue problem (see Section 3). On the other
hand, the regime DR ≤ DI requires completely new analysis. On one hand, the resolution of an exponentially small
boundary layer in Section 4 4.1 is crucial for computing stability thresholds of a single interior spike in this regime.
On the other, this regime also leads to mesa-type solutions of Section 6. The analysis there is similar to interface
solutions derived in [42, 43] for the Gray-Scott model. However it appears to be more robust: such interface solutions
exist for a wide range of parameters here, rather than a very narrow range studied in [42, 43].

In Figure 10 we plot the total mass of infected population versus DS . As DS is decreased, the mobility of susceptible
population is reduced and initially leads to a decrease of overall disease load. However as DS is decreased further,
eventually a self-replication threshold is triggered. This results in an immediate increase of infection hot-spots and
an overall increase in infected population. This underscores a highly nonlinear relationship between mobility and
disease outbreaks.
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