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Predator-swarm interactions

• Collective behaviour occur at all levels of living organisms, from bacterial colonies to
fish schools to to human cities.

• Hypothesis: swarming behaviour is an evolutionary adaptation that confers certain
benefits on the individuals or group as a whole [Parrish,Edelstein-Keshet 1999;
Sumpter 2010, Krause&Ruxton2002, Penzhorn 1984]

• Benifits:

- efficient food gathering [Traniello1989]

- heat preservation in penguins huddles [Waters,Blanchette&Kim 2012]

- predator avoidance in fish shoals [Pitcher&Wyche 83] or zebra [Penzhorn84]

∗ evasive maneuvers,

∗ confusing the predator,

∗ safety in numbers

∗ increased vigilance

• Counter-hypothesis: swarming can also be detrimental to prey

- Makes it easier for the predator to spot and attack the group as a whole
[Parrish,Edelstein-Keshet 1999].





Minimal model of predator-swarm interaction

• [Chen, K, J. Royal Soc. Interface 2014]:
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• We take prey-prey and prey-redator interactions to be Newtonian

- makes the analysis possible!

• c : predator ”strength”. We will use it as control parameter.

• p : predator ”sensitivity”.





Continuum limit

Coarse grain:
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Let N → ∞ we get
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The key to the story: x−y
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Define characterisitic coordinates:
dX

dt
= v(X, t); X(X0, 0) = X0. (6)

Along characteristics,
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• Conclusion 1: ρ → aM/π as t → ∞

- ρ → const regardless of the swarm shape!

• Conclusion 2: Radial steady state is an annulus of constant density!



Ring state (“confused” predator)
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• Define
R1 =

√

b/a; R2 =
√

(1 + b)/a. (9)

The system (3-5) admits a steady state for which z = 0, ρ is a positive constant inside
an annulus R1 < |x| < R2, and is otherwise.

• Main result: The ring is stable whenever 2 < p < 4 and
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• Increasing c past chopf triggers hopf bifurcation!



Key calculation 2

• The density quickly approaches a constant, so the swarm is fully characterised by the
motion of its boundaries.

• To determine its stability, it’s enough perturb the boundary and the predator at the
center:

Inner boundary: x = R1e
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λt (11)

Outer boundary: x = R2e
iθ + ε2e

λt (12)

Predator: z = 0 + ε3e
λt (13)

• Get a 3x3 eigenvalue problem
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Implications
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, 2 < p < 4 (15)

• chopf is an increasing function of b (prey-predator repulsion)

- increasing b makes it harder for the predator to catch the prey.

• chopf is a decreasing function of a (prey-prey attraction strength)

- increasing a makes it easier for the predator to catch the prey.

- Swarming behaviour makes it easier for predator to catch prey (i.e. swarming is
bad for prey)!

- Example: in [Fertl&Wursig95] the authors observed groups of about 20-30
dolphins surrounding a school of fish and blowing bubbles underneath it in an
apparent effort to keep the school from dispersing, while other members of the
dolphin group swam through the resulting ball of fish to feed.



- Swarming may be result of other factors such as food gathering, ease of mating,
energetic benifits, or even constraints of physical environment are responsible for
prey aggregation.

• When c crosses chopf , chasing dynamics result. But the prey may still escape!

- Linear stability is a precursor to capturing the prey, but is insufficient to explain the
capturing process itself!

- Further (non-linear) analysis is needed to explain prey capture.

- Chasing dynamics “look similar” to shephard chasing sheep:



Boundary evolution method

• Because of choice of nonlinearity, the density approaches a constant for large t

• So in principle, tracking the boundary is sufficient to track the whole swarm!

• Since density is constant:
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• Integrate by parts, using constant density ρ = a/π,
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• Discretize ∂D and evolve both predator and ∂D according to the above.

• Note: the entire calculation is along the curve (so only 1D integrals!!)

• Use Forward Euler to update to points on the boundary.

- This was found to be unstable, regardless of the choice of time step ∆t. The is
because the points along the boundary tend to

cluster together as time evolves. This is a result of the points being pushed back
along the boundary and aggregating at the tail.

- Solution: reparameterize based on arc length at every time step.



Predator inside an infinite sea of prey

• Recall the steady state is an annulus of radii R1 =
√

b
a R2 =

√
1+b
a with the

predator at the center.

• Take the double-limit a → 0 and b = O(1); then note that R2 → ∞ while R1 remains
O(1). Discarding the O(a2) terms as well as the exterior boundary, we obtain
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where Di is the interior boundary.

• Rescale space to make a = b, rescale time t = at̂ and dropping the hat we get
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π

∫

∂Di
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• Couple this with some law of motion for the predator z :

- Moving in a straight line

- Moving in a circle



Predator moving in straight line

Predator moving in straight line

Assume predator moving east with a constant speed ω along the x-axis:

z = ωt (19)

• Moving frame coordinates:
x = x̃ + ωt (20)

• Dropping tilde, we get

v(x) =
1

π

∫

∂Di

ln |x− y| n̂dS(y) +
x

|x|2
− ω (21)

• The “steady state” satisfies v = 0 on ∂Di. To compute the steady state, evolve in
time until convegence.



• Open question: what can we say about steady state analytically?



• An “infinite” tail forms when ω > ωc ≈ 0.25. Conjecture: it is a result of a saddle point
colliding with the boundary.



• The predator approaches the boundary as ω increases. (precursor to catching prey?)
Open question 2: Do the asymptotics of large ω. Can you show the predator
remains inside the boundary for any ω?



Predator moving in a circle

Predator moving in a circle

• Assume the predator is moving with angular velocity ω along a circle of radius R :

z = Reiωt

• Go into rotating frame, x = x̃eiωt, drop tilde:

v(x) =
1

π

∫

∂Di

ln |x− y| n̂dS(y) +
x−R

|x− R|2
− iωx.

• Predator moving in a line corresponds to the limit R → ∞.





Increasing ω

• As ω is increased, the tail starts to “wiggle”.



Topological changes

• Formation of the tail and its development is indicated by changes in vector field.



Conclusions

• We presented an analytically tractable model of predator-prey interactions.

• Many open questions remain. The most important one: find shape of inner boundary
for a predator moving in a straight line in the infinite sea of prey.

• Many models of collective animal behaviour found in literature include terms such as
zone of alignment, angle of vision, acceleration etc. These terms may result in a more
“realistic-looking” motion, although it can be difficult in practice to actually measure
precisely how “realistic” it is. Moreover the added complexity makes it very difficult
to study the model except through numerical simulations. Our minimal model shows
that these additional effects are not necessary to reproduce complex predator-prey
interactions.

• Papers and movies (http://mathstat.dal.ca/˜tkolokol/papers)

- Yuxin Chen and Theodore Kolokolnikov, A minimal model of predator-swarm
dynamics, Journal of the Royal Society Interface 11:20131208 (2014)

- Hayley. Tompkins and T. Kolokolnikov, Swarm shape and its dynamics in a
predator-swarm model, to appear, SIAM Undergraduate Research Online.

Thank you!
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