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Abstract

In this thesis we analyse three different reaction-diffusion models These are: the Gray-Scott
model of an irreversable chemical reaction, the Gierer-Meinhardt model for seashell patters,
and the Haus model of mode-locked lasers. In the limit of small diffusivity, all three models
exhibit localised spatial patterns. In one dimension, the equilibrium state typically concentrates
on a discrete number of points. In two dimensions, the solution may consist of stripes, spots,
domain-filling curves, or any combination of these. We study the regime where such structures
are very far from the spatially homogenous solution. As such, the classical Turing analysis of
small perturbations of homogenous state is not applicable. Instead, we study perturbations
from the localised spike-type solutions.

In one dimension, the following instbailities are analysed: an overcrowding instability, whereby
some of the spikes are annihilated if the initial state contains too many spikes; undercrowding
(or splitting) instability, whereby a new spike may appear by the process of splitting of a spike
into two; an oscillatory height instability whereby the spike height oscillates with period of
O(1) in time; and an oscillatory drift instability where the center of the spike exhibits a slow,
periodic motion. Explicit thresholds on the parameters are derived for each type of instability.

In two dimensions, we study spike, stripe and ring-like solutions. For stripe and ring-like
solutions, the following instabilities are analysed: a splitting instability, whereby a stripe self-
replicates into two parallel stripes; a breakup instability, where a stripe breaks up into spots;
and a zigzag instability, whereby a stripe develops a wavy pattern in the transveral direction.
For certain parameter ranges, we derive explicit instability thresholds for all three types of
instability. Numerical simulations are used to confirm our analytical predictions. Further
numerical simulations are performed, suggesting the existence of a regime where a stripe is
stable with respect to breakup or splitting instabilities, but unstable with respect to zigzag
instabilities. Based on numerics, we speculate that this leads to domain-filling patterns, and
labyrinth-like patterns.

For a single spike in two dimensions, we derive an ODE that governs the slow drift of its
center. We reduce this problem to the study of the properties of a certain Green’s function. For
a specific dumbell-like domain, we obtain explicit formulas for such a Green’s function using
complex analysis. This in turn leads to conjecture that under certain general conditions on
parameters, the equilibrium location of the spike is unique, for an arbitrary shaped domain.
Finally, we consider another parameter regime, for which the exponentially weak interaction
of the spike with the boundary plays a crucial role. We show that in this case there can exist
a spike equilibrium solution that is located very near the boundary. Such solution is found to
be unstable in the direction that is transversal to the boundary. As the effect of the boundary
is increased, the interior spike locations undergo a series of destabilizing bifurcations, until all
interior spike equilibria become unstable.
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Introduction

Reaction-diffusion systems are multi-component models involving diffusion and non-linear in-
teraction among the components. Such systems are commonplace in many areas of physics,
chemistry and biology. They are used as a model for such diverse phenomena as cell differen-
tiation, reaction of chemicals, propogation of flame fronts, laser interference patterns and sea
shell patterns.

In this thesis we study three different reaction-diffusion models. The first model, studied in §1
and §2, is the Gray-Scott system [28], [29], initially formulated with no diffusion. It models an
irreversible reaction involving two reactants in a gel reactor, where the reactor is maintained
in contact with a reservoir of one of the two chemicals in the reaction. With diffusion, in
dimensionless units it can be written as





VT = DV ∆V − (F + k)V + UV 2 in Ω,
UT = DU∆U + F (1 − U) − UV 2 in Ω,

∂U
∂ν = ∂V

∂ν = 0 on ∂Ω,

(1)

where Ω is a bounded domain; the unknowns U(X,T ), V (X,T ) represent the concentrations of
the two biochemicals; DU , DV are the diffusion coefficients of U and V respectively; F denotes
the rate at which U is fed from the reservoir into the reactor, and k is a reaction-time constant.

This model is known to have a rich solution structure for various parameter ranges. For example
spikes, travelling waves, self-replication of pulses, oscillating spikes, and spatio-temporal chaos
have all been observed. See [28], [29], [52], [53] for experimental work. For numerical and
analytical results, see for instance [18], [20], [35], [53], [52], [57] [58], [59], [63], [64], [65], [66],
[67], [79], [80]. [85].

The second model, studied in §3 and §4, is the Gierer-Meinhardt system. Introduced in [54], it
is used to model various localization processes including biological morphogenesis and sea-shell
patterns (cf. [26], [54], [33]). In dimensionless form, it can be written as:

At = ε24A−A+
Ap

Hq
, x ∈ Ω , t > 0 , (2a)

τHt = D4H −H +
Ar

Hs
, x ∈ Ω , t > 0 , (2b)

∂nA = ∂nH = 0 , x ∈ ∂Ω . (2c)

Here Ω is a bounded domain, A and H represent the activator and the inhibitor concentrations,
ε2 and D represent the diffusivity of the activator and inhibitor, τ is the inhibitor time constant,
∂n denotes the outward normal derivative, and the exponents (p, q, r, s) satisfy

p > 1, q > 0, r > 0, s ≥ 0,
p− 1

q
<

r

s+ 1
. (3)

The last model, studied in §5, is the continious limit of the Haus master equation (see [23] [31],
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[41]), which describes the operation of a mode-locked laser:

ET =

(
N − 1 − a

1 + b|E|2
)
E + Eθθ (4a)

NT = γ

[
A−N −NL−1

∫ L

0
|E|2dθ

]
. (4b)

A common feature of these models is that their solution exhibits spikes: a highly localized
structure in space, which is concentrated on a discrete number of points of the domain. An
example of such a solution is shown in the lower right corner of Figure 1.

Background of Gray-Scott and Gierer-Meinhardt models

The modern theory of pattern formation begins with the seminal 1952 paper by Turing [71],
which uses the linear analysis to determine threshold conditions for the instability of spatially
homogeneous equilibria of general two-component reaction-diffusion systems. However Turing’s
method is limited to patterns which are near-homogenous in space. As such, it fails to pre-
dict the stability and dynamics of spike-type solutions which are ubiquitous in many reaction-
diffusion systems. The stability and dynamics of spike solutions – where Turing’s approach is
not applicable – is the main topic of this thesis.

A more recent criteria for pattern formation was proposed by Gierer and Meinhardt [26], [43]
and independantly by Segel and Jackson [68]. They postulate that the following two conditions
are essential for pattern formation: local self-enhancement and long-range inhibition. Let us
illustrate how these two conditions are built into Gierer-Meinhardt (2) and Gray-Scott models
(1).

For the Gierer-Meinhardt model, the local self-enhancement of the activator A occurs in the
regions where Ap/Hq is sufficently large (i.e. bigger than A). However A cannot increase
indefinitely, since eventually the term Ar/Hs will become large, which will induce an increase
in the inhibitor H, which in its turn will cancel the destabilizing effect of the Ap/Hq term.
Thus the chemical H acts as a long-range inhibitor. For this reason, models of GM type are
often referred to as an activator-inhibitor system. Note also that the chemical A acts as an
autocatalysist, so that the activator is autocalytic.

By contrast, The Gray-Scott model is referred to as an activator-substrate system. Here, the
chemical U can be interpreted as a substrate depleted by V . The long-range inhibition here is
due to a depletion of U . Instead of autocatalysis as in GM model, activation here is due to the
presence of the source term in the equation for U .

For the GM model, we suppose that the ratio ε2/D is small. This implies that H diffuses much
slower than A; and so near the region of local self-enhancement, one can assume that H is
constant. It then follows from an ODE analysis that A must decay exponentially outside the
O(ε) region of self-enhancement. This is the reason for the occurence of spikes in this model. An
analogous argument applies to the Gray-Scott model, where spike-type patterns occur provided
that Dv/Du is small. Note that these assumptions are in agreement with the original work of
Turing, where the instability was obtained provided that the ratio of diffusivity coefficients is
sufficiently large or sufficiently small.
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History of Gierer-Meinhardt model

Historically, the Gierer-Meinhardt model was first proposed in a slightly different form as a
simple model of a biological morphogenesis in a fresh water polyp hydra (see [26], [43]). When
the stem of a hydra is cut into two, the part that is left without a head grows one. Moreover,
the new head appears on the side of the stem that was the closest to the original head. It was
suggested that this process is due to the graduated distribution of the inhibitor inside the stem
of the hydra. In addition, Gierer-Meinhadt model in one dimension has been proposed as a
model for sea-shell patterns [54]. Many variants of this model have been proposed and studied
numerically in [54]. These models involve additional chemical species, saturation effects, etc.
The model (2) is the simplest model in this hierarchy.

Mathematically, the first rigorous analysis of the GM model was performed in the so-called
shadow regime, for which D is assumed to be very large. In such a case, the chemical H
becomes slave to A and, to a large degree, the analysis becomes similar to the famous PDE
problem,

ε24u− u+ up = 0, x ∈ Ω,

∂nu = 0, x ∈ ∂Ω,
(5)

This problem is by now well understood. In particular, a variational structure can be found in
this limit. Using such variational formulation, Gui and Wei [27] have shown that as ε→ 0, the
solution to (5) concentrates at a finite number of points, and moreover these points are related
to a ball-packing problem: they are the centers of circles of the same size that are tangent to
each other and to the boundary of the domain.

Similar equilibrium state exists for the GM model with large D. However such equilibrium
state was shown to be unstable in [83] and [84] as long as D � 1. A more intricate picture
emerges as D is decreased. In one dimension Iron, Ward and Wei [40] derived certain thresholds
D2 > D3 > . . . such that a K spike symmetric equilibrium solution is stable only if D < DK .
Similar therholds were also derived in two dimensions in [77]. Moreover, instead of a ball-
packing problem, the locations of spike centers are now related to certain properties of Green’s
functions.

History of Gray-Scott model

Let us mention some cornerstones in the development of the Gray-Scott model. It was originally
introduced in [28], [29] to describe a reaction in a well-stirred tank. The stirring rate was
assumed to be large enough to ignore the effects of diffusion, i.e. Dv = 0 = Du. Even in this
simple form, the ODE stability analysis reveals the presence of a Hopf bifurcation.

The next major developement was due to Pearson in 1993 [65]. He examined the Gray
Scott model in two dimensions, in the limit Dv,Du small. Using numerical simulations he
observed complex pattern formation and reported many possible patterns, including spots,
self-replication and labrynthian patterns. As Pearson himself observed, it is doubtful whether
the Turing analysis, including the weakly-nonlinear Turing analysis, can predict such patterns,
since they appeared to be far from the homogenous state. He suggested that new techniques
are needed to study such patterns. Many of these patterns, including self-replicating spots,
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were detected experimentally in 1994 by Lee, McCormick, Pearson and Swinney [52], where a
gel reactor was used to achieve a large diffusivity ratio Du/Dv.

The numerical and laboratory experiments Pearson and Swinney et al. have spurred the de-
velopment of new analytical techniques to understand the these patterns. The first analytical
results were derived by Doelman and his co-workers in a series of papers starting with [20]. Their
theory explains analytically certain stability properties of spike-type solutions in 1-D in what we
shall call here the intermediate regime. See §1.3 for more details. Independently of Doelman’s
work, Muratov and Osipov have also obtained many similar results for the Gray-Scott model
in this regime (see [57]- [60]). In addition, they have developed a theory for pulse-splitting in
one, two and three dimensions. In [63] and [64], for a different regime of the Gray-Scott model,
Nishuira and Ueyama have proposed a theoretical framework which predicts pulse splitting in
one dimension. Central to their theory is a certain alignment property which he demonstrated
numerically for certain parameters of the Gray Scott model.

Turing’s analysis

Let us now review Turing’s approach for the analysis of the stability of spatially homogeneous
stead-state solutions to reaction-diffusion systems. This approach is the usual first step for
analysing biological and chemical pattern formation in both well-estabilished models such as
the Brusselator [62], the Oregonator [25], and in a viriety of other systems, such as described
in Murray [61].

We consider a general reaction-diffusion system in 1-D:

ut = Muxx + F (u).

Here, we assume that u is a vector with n components, andM is a matrix of diffusion coefficients.
Consider the homogenous solution state u0 satisfying

F (u0) = 0,

and consider a small perturbation from this state

u = u0 + eλtφ(x), |φ| � 1.

We then obtain the following linearized system:

λφ = Mφxx + ∇F (u0)φ.

Substituting φ = vemix we then obtain the following n dimensional eigenvalue problem:

λv = [−m2M + ∇F (u0)]v.

In particular, we see that when M is a positive definite matrix, λ < 0 whenever m is large
enough. Similarly, if ∇F (u0) is a negative definite matrix, λ < 0 when m is near zero. In
between these two extremes, there may exist modes m for which the sign of λ is positive. Such
modes correspond to unstable sinusoidal-type perturbations of the homogenous state. When m
is of O(1), the sign of λ depends on the balance of the diffusion and the nonlinear terms.
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Figure 1: Example of Turing instability. Initial conditions at t = 0 consist of the homogenous
steady state, with very small random perturbations. After some transient period, the solution
converges to spike-type steady state, shown here at t = 1000. Note that the final state is very
far from the initial homogenous equilibrium. Here, A = 2.3, ε = 0.03,D = 1, l = 2π.

Let us now perform Turing’s analysis on the one-dimensional Gray-Scott model. We first
transform the system (1). Set

ε2 =
DV

(F + k)
, D =

DU

F
, A =

√
F

F + k
, τ =

F + k

F
, (6)

T =
1

F + k
t,

V (X,T ) =
√
Fv(x, t), U(x, t) = u(x, t).

It is easy to see that (1) is equivalent to the following




vt = ε24v − v +Av2u
τut = D4u− u+ 1 − v2u

, x ∈ Ω

∂nv = 0 = ∂nu, x ∈ ∂Ω.
(7)

First we find the spatially homogenous steady state solution (v0, u0). It satisfies:

v0 = v2
0u0A, u0 = 1 − v2

0u0.
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Depending on the parameter A, there are either one or three solutions. A trivial solution is
v0 = 0, u0 = 1. Two other solutions, which exist when A > 2, satisfy

v0u0A = 1, v2
0 −Av0 + 1 = 0,

so that

v±0 =
A±

√
A2 − 4

2
, u±0 =

1

Av±0
.

Next, we linearize around these equilibirium states. We let

v = v0 + φeλt cos(mx), u = u0 + ηeλt cos(mx).

To satisfy the Neumann boundary condition, we require that ml = jπ where j is a non-negative
integer. We then obtain:

λφ = −ε2m2φ− φ+ 2u0v0Aφ+ v2Aη,

τλη = −Dm2η − η − 2u0v0φ− v2η.

This can be written as λ~v = M~v where ~v = (φ, η)t and

M =

[
−ε2m2 − 1 + 2u0v0A v2

0A
− 1

τ 2u0v0 − 1
τ (Dm2 + 1 + v2

0)

]
.

First, we consider the trivial solution v0 = 0, u0 = 1. Then the eigenvalues of M become
−ε2m2 − 1,− 1

τ (Dm2 + 1). Thus both eigenvalues are negative and so the trivial solution is
stable with respect to all modes m. Next, we consider v0 = v±0 . Then we obtain:

M =

[
−ε2m2 + 1 v2A

− 1
τ

2
A − 1

τ (Dm2 + 1 + v2
0)

]
.

Note that trM = 1 − ε2m2 − 1
τ (Dm2 + Av0). There are two cases to consider. First, suppose

that trM < 0 for all m. This occurs provided that

τ <
A2

2

(
1 ±

√
1 − 4

A2

)
. (8)

In additon we have:

f(m) ≡ detM =
1

τ

{
ε2Dm4 +m2

(
(1 + v2)ε2 −D

)
+ v2

0 − 1
}
.

Assuming the trace is negative, we will have instability whenever f(m) < 0. Next, we calculate:

f(0) =
v2
0 − 1

τ
=
Av0 − 2

τ
=

1
2A

2
(
1 ±

√
1 − 4

A

)
− 2

τ
.

Since A > 2, it follows that f(0) > 0 for v+
0 and f(0) < 0 for v−0 . We conclude that the zero

mode is unstable for v−0 . Thus the v−0 solution does not generate heterogenous patterns. On
the other hand, when ε� D and m = O(1), we have f(m) ∼ −Dm2 + f(0). It follows that for
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v+
0 , f will become negative at the point when m2 = f(0)

D > 0. This shows the existence of the
instability band for v+

0 . Since f(m) → ∞ as m → ∞, we know that all modes m are stable
when m is large enough. More precisely, when m� 1 we have

f(m) ∼ ε2Dm4 −m2D,

so the upper bound for the instability band satisfies:

m ∼ 1

ε
.

Finally, note from (6) that we must have τ > 1. In particular, since A > 2, the condition (8) is
satisfied for the v+

0 solution whenever τ ∈ [1, 2].

The second case, when trM > 0, occurs when τ is sufficiently large. In this case there is always
an unstable eigenvalue. In addition, if f(m) > 0 then these eigenvalues are purely imaginary
when trM = 0. Thus a Hopf bifurcation occurs when τ is increased past a certain threshold.
The corresponding perturbations then oscillate in time.

To conclude, Turing’s analysis yields that v+
0 is unstable with respect to an instability band

m1 < m < m2 where

m1 =
1√
D

√√√√1

2
A2

(
1 +

√
1 − 4

A

)
− 2, m2 =

1

ε
,

whereas v−0 is unstable with respect to the zero mode. The trivial homogenous state is stable
with respect to all modes.

Above we have shown the Turing instability under the assumption that D is large. It is easy
to show that the instability band shrinks as D is decreased until it dissapears at some therhold
value of D = DT . For values of D near this threshold, it is possible to perform the weakly non-
linear analysis, by expanding D and m near DT . This yields the so-called amplitude equations,
which are useful to analyse the stability and other properties of the sinusoidal patterns. There
is a large body of literature devoted to this topic; see for example [62], [13] for comprehensive
reviews.

While Turing’s analysis above shows that the Gray-Scott model exhibits patterns, it says noth-
ing about the final state of the destabilized homogenous state. In fact, in the regime ε � D,
the final equilibrium state is very far from the homogenous state – see Figure 1. Thus Turing’s
analysis is insufficient to explain the final equilibrium state. The goal of this thesis is to study
these far from homogenous state solutions.

Main contributions and comparison to previous work

There has been many related works dealing with localised structures in Gray-Scott system – see
Section 1.3 for references. The main difference between these results and the results of Chapter
1 is that the previous works analyse a single spike on the unbounded domain. By contrast, we
study K spikes on a bounded or unbounded domains. This introduces several new phenomena
which have no counterpart with previous work on the Gray-Scott model.
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The first novel result is a simple analytic formula which predicts the minimum number of
pulse-splitting events of the Gray Scott model in the high feed regime A = O(1) on a bounded
domain. The result is given in Proposition 1.2.1. While the pulse-splitting behaviour has been
studied previously on an unbounded domain (see for example [57], [66]), there is no analogue
of that formula there, since the boundedness of the domain is essential.

Another new result for the Gray-Scott model is the the overcrowding instability thersholds of
multi-spike solutions, as given in Proposition 1.1.7. This result is analogous to the thresholds
computed previously for the Gierer-Meinhardt model (see [40]), and again, the boundedness of
the domain and allowing for more than one spike solution is essential here.

Finally, the boundedness of the domain is crucial in the analysis of oscillatory travelling spikes.
A travelling spike instability was predicted for the infinite domain in [60], where a specific
threshold was also derived. However the oscillation in the position of the center of the spike
can only occur in the presence of a bounded domain. This oscillation is due to a new type of
Hopf bifurcation that is analysed in §1.2.2
The main result of Chapter 2 is the analysis of stripes of the Gray-Scott model in two dimensions.
In particular, the technique used to study the zigzag instabilities of Section 2.2.1 is new.

The main contribution of Chapter 3 is an explicit computation of the regular part of the
reduced wave Green’s function with Neumann boundary condition. We then make a conjecture
about uniqueness of the maxima of such a function. The importance and novelty of this
conjecture is described in Section 3.4.6. In Chapter 4, one of the main results is the existence
and stability analysis of a near-boundary spike equilibria that occurs in the case when the
diffusivity coefficient D of the Gierer-Meinhardt is is exponentially large.

The main result of Chapter 5 is the analysis of a Hopf bifurcation in the model (4) of mode-
locked lasers. This provides an explanation of oscillations that were numerically found in in
[41].

Thesis outline

The outline of this thesis is as follows. In §1 we study the stability of spike solutions in the
the one-dimensional Gray-Scott model. We consider four different types of instability that
may occur. The first type, analysed in §1.1.2, is an overcrowding or competition instability.
As a result of such an instability, some of the spikes are annihilated if the initial solution
profile consists of too many spikes. We derive explicit thresholds on the maximum number
of spikes that are stable with respect to such an instability. This number is found to be an
increasing function of the domain length. The second type of instability, studied in §1.1.3 and
§1.1.4, results in an oscillatory behaviour of a spike, whereby its height oscillates periodically
in time. The third type is an undercrowding or splitting instability. In the presence of such
an instability, successive spike replication is observed, until a certain threshold number of the
spikes is exceeded. This threshold is found to be an increasing function of domain length.
Explicit formulas for this number are given in §1.2.1. In §1.2.2, we study an oscillatory spike
drift, whereby the location of the center of the spike oscillates on a slow time scale. In §1.3
we compare our work to previously known results, in particular the work of Doelman and
collaborators ([16]-[21], [55]) and the work of Muratov and Osipov [57]-[60]. The results of this
chapter have been previously reported in [74] and [44].
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In §2 we consider ring-like and stripe-like solutions of the Gray-Scott model in two dimensions.
Such solutions are one-dimensional in nature, and many of the techniques from §1 are applicable
with some modifications. We focus on two types of instabilities: breakup and zigzag instabilities.
When a stripe is unstable with respect to a breakup instability of mode m, it breaks up into m
radially symmetric spikes. A zigzag instability on the other hand deforms a stripe into a zigzag-
like pattern. These instabilities are illustrated in Figure 2.1. We characterize the instability
band for both types of instabilities, and for either a ring or a stripe. In the parameter regime
where analysis is possible, we find that the stripe is always unstable with respect to some band
of breakup instabilities; and may or may not be stable with respect to zigzag instabilities. We
also numerically find a regime where the stripe does not break up but is unstable with respect
to zigzag instabilities. We conjecture that this behaviour leads to labrynthian patterns, such
as shown on Figure 2.2. The results of §2 were previously reported in [45].

In §3 and §4 we study the slow drift of a single spike solution of the Gierer-Meinhardt model
in two dimensions. There are two effects that contribute to this drift: the first is the effect
of the boundary, which is typically exponentially small in the distance to the boundary. The
second is due to the inhibitor and depends on the diffusivity constant D. In §3 we first consider
the latter effect, ignoring the exponentially weak effect of the boundary. For D small with
O(ε2) � D � O(1), the spike motion is found to be metastable, with stable equilibrium
positions located at points furthest away from the boundary. Thus for a dumbell shaped
domain such as shown in Figure 3.2, the equilibria would be located at the centers of lobes of
the dumbell. On the other hand for D � O(ln 1

ε ), the motion depends on the gradient of a
modified Green’s function for the Laplacian. For a certain class of dumbell-shaped domains, we
use complex variables to derive an explicit expression for such a function. Using this formula,
we then show that the equilibrium is unique and it is located in the neck of the dumbell. This
leads to a general conjecture 3.3.3 about the modified Green’s function, that states that its
regular part has a unique minimum in the interior of an arbitrary shaped simply-connected
domain. Aside our analytical example, several numerical examples are also investigated, all
supporting this conjecture. The results of this section were previously presented in [46].

In §4 we consider the limiting case of exponentially large D, when the effect of the boundary
cannot be ignored. In the limit D = ∞ the Gierer-Meinhardt reduces to a well known shadow
problem (see for instance [37]) for which it is known that a single interior spike will drift
exponentially slowly towards the nearest boundary. This is in contrast to the dynamics when
when D is large enough (but not not exponentially large), in which case a single interior stable
equilibrium position exists, as explained in §3. Thus an intricate bifurcation structure occurs
in the regime where D is exponentially large. In §4.3 this structure is analysed for a family
of dumbell-shaped domains that were introduced in §3. This transition, from a stable interior
spike when D is large, to the dynamics driven by the nearest boundary in the case D = ∞, is
made possible by the existence of what we call near boundary spikes, in the transition regime
when D is exponentially large. They occur at a distance σ from the boundary, where ε� σ � 1
and

D ∼ C
( ε

πσ

)1/2
e2σ/ε,

where C is some positive constant. For our dumbell-shaped domain, we find that their stability
is as shown in Figure 4.2. The near-boundary spikes are always unstable in the the direction
normal to the boundary. Their stability in the tangential direction depends solely on the
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properties of the modified Green’s function on the boundary. The results of this section were
previously presented in [47].

In the last Chapter 5, we apply some of the techniques of §1 to the the model (4) of mode-
locked lasers. In [41], this model was studied numerically. It was found numerically that as the
parameter a is increased, the spike starts to exhibit periodic oscillations in height. We show
that this behaviour is due to a Hopf bifurcation of the linearized problem. Moreover we are
able to accurately predict the threshold value at which this bifurcation occurs. Our theoretical
predictions compare favorably with numerical simulations. The results of this section were
previously presented in [23].
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Chapter 1

Gray-Scott model in one dimension

In this chapter, we consider the one dimensional version of the Gray Scott model (7),





vt = ε2vxx − v +Av2u

τut = Duxx − u+ 1 − v2u
, x ∈ [−l, l]

vx(±l, t) = 0 = ux(±l, t).

(1.1)

We are concerned with the regime when the ratio of diffusivities is small,

ε� 1, ε2 � D.

A typical solution is shown on Figure 1.1. The distribution of the chemical v typically consists

of k localized spikes, concentrated at certain points of the domain, with negligible amount of v

away from these points. The concentration of u vary over the length of the domain.

In one dimension, as we will show, there are three important regimes, depending on the param-

eter A:

Low-feed regime: A = O(ε1/2) (1.2)

Intermediate regime: O(ε
1

2 ) � A� O(1) (1.3)

High-feed regime: A = O(1). (1.4)

The main difference between the low-feed and high-feed regime is that in the low-feed regime,

the chemical u changes on a much slower scale than v, both near the center of the spike, and in

the region away from the center. Thus (1.1) is weakly coupled in the low-feed regime. On the
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Figure 1.1: Example of an equilibrium two-spike solution to (1.1), in the high-feed regime.
Here, D = 1, ε = 0.03, l = 2, A = 1.7, τ = 1.

other hand, in high-feed regime, u and v are strongly coupled near the core of the spike, but

are weakly coupled away from the core. The intermediate region can be viewed as a limit case

of between high-feed or low-feed regimes.

Depending on the regime, several different types of instability may occur. In §1.1 we analyse the

low-feed regime. There, we study two types of instabilities. First, there exists an overcrowding

instability: there are thresholds l2 < l3... such that if l < lk then k spikes located symmetrically

on the interval [−l, l] are unstable. As a result, some spikes will quickly dissapear until there

are k′ spikes left, where k′ is such that l > lk′ . Second, we show the existence of an oscillatory

profile instability. It is manifested by the periodic oscillations of the spike height, when the

parameter τ is large enough.

In §1.2 we study the intermediate and high-feed regimes. In these regimes, we study two addi-

tional types of instability. We show that in the high-feed regime, an undercrowding instability

will occur whenever the constant A tanh l
k
√

D
is above 1.35. This type of instability leads to

spike splitting, whereby one spike self-replicates into two spikes. An example of this is shown in

2



Figure 1.2(a). In either the intermediate or the high-feed regime, an oscillatory drift instability

occurs if τ is sufficiently large. This type of instability results in a slow periodic motion of the

centers of the spikes. An example is given on Figure 1.2(b). Finally, as in the low-feed regime,

periodic O(1) oscillations of spike height may also occur. In Proposition 1.2.10 we derive a

scaling law which predicts whether oscillatory drift or oscillatory profile instability occurs first.

We conclude with §1.3 where we compare the results of this chapter with the existing literature

on the Gray Scott model.
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Figure 1.2: (a) Undercrowding effect in Gray-Scott model: Positions of spike’s centers are
plotted vs. time. Here, l = 2, D = 1, A = 3.5, ε = 0.03 and τ = 1. (b) Oscillatory drift: two
spikes in asynchonious, periodic drift. Here, l = 2, D = 1, ε = 0.03, A = 1.64, τ = 88.

1.1 Low-feed regime of the Gray-Scott model

1.1.1 Symmetric spike Equilibria solutions

We begin by asymptotically calculating the equilibrium spike solution of (1.1). It is convenient

to introduce the following scaling:

A = ε1/2A, v = ε−1/2ν.

The system (1.1) then becomes:
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νt = ε2νxx − ν + Aν2u

τut = Duxx − u+ 1 − 1
εν

2u
, x ∈ [−l, l]

νx(±l, t) = 0 = ux(±l, t)

(1.5)

We seek the equilibrium solution in the form of symmetric k spikes, whose centers are located

at

xi = l

(
−1 +

2i− 1

k

)
, i = 1 . . . k. (1.6)

Near the core of each spike, we write

ν ∼ ξw

(
x− xi

ε

)
, u ∼ U

(
x− xi

ε

)
.

where w, ξ, U are to be found. We then obtain:

w′′ −w + w2ξUA = 0, U ′′ − ε2U + ε2 − εξ2w2U = 0.

Thus, to leading order we obtain: U ∼ u(xi), and choose ξ = 1
AU . Then w(y) satisfies

w′′ − w + w2 = 0, w′(0) = 0, w(y) ∼ Ce−|y| as |y| → ∞. (1.7a)

The explicit solution of (1.7a) is

w =
3

2
sech2

(y
2

)
. (1.7b)

To find U , we perform asymptotic matching with the outer solution. We have

u(x) = 1 − 1

ε

∫ l

−l
G(x, x′)u(x′)ν2(x′) dx′,

where G is the Green’s function satisfying

DGxx −G = −δ(x− x′), Gx(±l, x′) = 0.

Changing variables, noting that U(xi) = U and ξ = 1
UA we thus obtain,

1

ε

∫

−l
lG(xj , x

′)u(x′)ν2(x′) dx′ ∼
k∑

i=1

∫
G(xj , xi + εy′)u(xi + εy′)ν2(xi + εy′) dy′

∼
k∑

i=1

G(xj , xi)Uξ
2

∫
w2

∼ 6σ
1

UA2
,
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where

σ =

k∑

i=1

G(xj , xi), (1.8)

and we have used ∫
w2 = 6. (1.9)

Here and below, the integration is assumed over entire space unless limits are specified.

It remains to evaluate σ. Rather than doing this directly, we define u(x) =
∑

iG(x, xi). Then

σ = u(xj). Notice that u satisfies

Du′′ − u = −
k∑

i=1

δ(x− xi), − l < x < l; u′(±l) = 0.

This problem is equivalent to:

Du′′ − u = 0, Du′(x+
i ) −Du′(x−i ) = −1, u′(±l) = 0.

By symmetry, we obtain: Du′(x−i ) = 1
2 ,Du

′(x+
i ) = −1

2 . A simple calculation then yields

σ =
θ0
2

coth(
lθ0
k

), where θ0 =
1√
D
. (1.10)

From above we have u(xj) ∼ 1 − 6σ
UA2 . Since U = u(xj), we get that U satisfies the quadratic

equation

U = 1 − 6σ
1

UA2
. (1.11a)

The solution of this equation,

U± =
1

2



1 ±

√

1 − 12θ0 coth lθ0

k

A2



 (1.11b)

exists, with U− ∈ (0, 1/2], U+ ∈ [1/2, 1), if and only if A ≥ Ake where

Ake = D−1/4
√

12 coth lθ0/k, θ0 =
1√
D

(1.12)

We summarize our results as follows.

Proposition 1.1.1 Suppose that A > Ake, with Ake given by (1.12). Then there exist two

symmetric k-spike equilibria solutions to (1.5). They are given by

ν±(x) ∼
k∑

i=1

1

AU±
w

(
x− xi

ε

)
, u±(x) ∼ U±,
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where xi is given by (1.6), w is given by (1.7) and U± is given by (1.11).

We shall denote (u+, v+) the large solution, and (u−, v−) the small solution.

1.1.2 Non-local eigenvalue problem

Next, we derive an eigenvalue problem that characterizes the stability of of the symmetric

k-spike solution of (1.5), with respect to perturbations that are even functions in the core of

each spike. We shall call the corresponding eigenvalues large eigenvalues. This is to distinguish

them from the small eigenvalues which arise from near translation invariance. The stability

with respect to small eigenvalues will be discussed in §1.2.2 below. The large eigenvalues are

so called because they remain O(1) as ε → 0. By contrast, the small eigenvalues tend to zero

as ε→ 0.

We start by linearizing around the equilibrium state. We let

ν = ν±(x) + eλtφ(x), u = u±(x) + eλtψ(x).

The linearized system then becomes

λφ = ε2φ′′ − φ+ 2Aν±u±φ+ Aν2
±ψ, (1.13)

τλψ = Dψ′′ − ψ − 1

ε

(
2ν±u±φ+ ν2

±ψ
)
. (1.14)

Near xj, we have

φ ∼ cjΦ

(
x− xj

ε

)
, ψ ∼ ψj . (1.15)

Here, the constants cj , ψj , j = 1, . . . k are to be found later by asymptotic matching of the outer

and inner solution. We first determine the effect of the inner solution. Near x = xj we then

have using Proposition 1.1.1 that

1

ε
ν±u±φ ∼ 1

ε

cj
AwΦ ∼ δ(x− xj)

cj
A

∫
wΦ,

1

ε
ν2
±ψ ∼ δ(x− xj)

6ψj

A2U2
±

Thus we have:

0 = ψ′′ − θ2
λψ ∼ δ(x − xj)

(
2cj
DA

∫
wΦ +

6ψj

DA2U2
±

)
, θλ ≡

√
1 + λτ

D
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The solution may be written as:

~ψ = −G
((

2
1

DA

∫
wΦ

)
~c+

6

DA2U2
±
~ψ

)

where

~ψ = [ψ1, . . . ψk]
t, ~c = [c1, . . . , ck]

t, G = [G(xi, xj)].

Here G(x, y) is the Green’s function satisfying

Gxx − θ2
λG = −δ(x− y), Gx(±1, y) = 0.

This yields:

~ψ = −
(

1 +
6

DA2U2
±
G
)−1

G
(

2

DA

∫
wΦ

)
~c

Substituting into (1.13) we obtain the nonlocal eigenvalue problem

λ~cΦ = ~cL0Φ −M~c

∫
wΦ∫
w2

,

where

L0Φ = Φ′′ − Φ + 2wΦ, (1.16)

and the matrix M is defined as

M ≡ 12

U2
±DA2

(
6 +

1

DA2U2
±
G
)−1

G.

It follows that

λΦ = L0Φ
′′ − χ

∫
wΦ∫
w2

,

where χ is an eigenvalue of M t, with ~ct its corresponding eigenvector. It remains to find the

eigenvalues of M = M t. First, we claim that G−1 is the k by k tridiagonal matrix

G−1 =
θλ

s




−1 + 2c −1

−1 2c −1

−1 2c −1

. . .
. . .

. . .

−1 2c −1

−1 −1 + 2c




(1.17a)
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where

s ≡ sinh(θλd), c ≡ cosh(θλd), ≡ 2l

k
. (1.17b)

To see this, we consider the system G ~X = ~B, i.e.
∑

j G(xi, xj)Xj = Bi. But then Bj = u(xj)

where u satisfies

u′′(x) − θ2
λu(x) = −

∑

j

Xjδ(xj − x) with u′(±l) = 0.

So for 1 < i < K we have:

Bi+1 =
1

θλ
u′(x+

i )s+Bic,

u′(x−i+1) = u′(x+
i )c+ θλBis,

Xi = u′(x−i ) − u′(x+
i ).

It follows that:

u′(x+
i ) =

θλ

s
(Bi+1 −Bic) ,

Xi = u′(x+
i−1)c+ θλBi−1s− u′(x+

i )

=
θλ

s
(Bi −Bi−1c) c+ θλBi−1s−

θλ

s
(Bi+1 −Bic)

=
θλ

s
(−Bi−1 + 2Bic−Bi+1) .

For i = 1 we have, on the interval [−l, x1], u = α cos[(x+ l)θλ] where α is some constant. Thus:

B1 = α cosh
d

2
θλ,

u′(x−1 ) = αθλ sinh
d

2
θλ,

X1 = αθλ sinh
d

2
θλ − u′(x+

1 )

=
B1

cosh
(

d
2θλ

)θλ sinh
d

2
θλ − θλ

s
(B2 −B1c) ,

=
θλ

s
(B1(2c − 1) −B2) ,

where we have used the identity

sinh(x
2 )

cos(x
2 )

=
cosh(x) − 1

sinh(x)
.
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This proves (1.17a). Next we note by direct computation that the eigenvalues of the k × k

matrix

A =




−1 −1

−1 0 −1

−1 0 −1

. . .
. . .

. . .

−1 0 −1

−1 −1




,

are given by

−2 cos(
π(j − 1)

k
), j = 1 · · · k

with the corresponding eigenvectors

vmj = cos

(
π(j − 1)

k
(m− 1

2
)

)
, m = 1 · · · k

It follows that the eigenvalues of G−1 are:

µj =
θλ

s

(
2c− 2 cos

π(j − 1)

k

)

= 2θλ

[
tanh(θλ/k) +

(
1 − cos

π(j − 1)

k

)
csch(2θλ/k)

]
, j = 1 · · · k,

with the corresponding eigenvectors

cmj = cos

(
π(j − 1)

k
(m− 1/2)

)
.

Thus we obtain the eigenvalues of M , which we write in the following form:

χj =
2s

s+ µjσD

where

s =
U± − 1

U±
.

We summarize.

Proposition 1.1.2 In the limit ε→ 0, the large eigenvalues of (1.13) satisfy:

λΦ = L0Φ − χ

∫
wΦ∫
w2

, (1.18a)
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where Φ(r) = φ(εx),

L0Φ = Φ′′ − Φ + 2wΦ, (1.18b)

and χ = χj, j = 1 . . . k given by

χj ≡
2s

s+ θλ

θ0

[
tanh(lθλ/k) +

(
1 − cos π(j−1)

k

)
csch(2lθλ/k)

]
coth(lθ0/k)

, j = 1 . . . k (1.18c)

where

θλ ≡
√

1 + τλ

D
, θ0 ≡

√
1

D
, (1.18d)

s =
U± − 1

U±
(1.18e)

We shall refer to (1.18) as a non-local eigenvalue problem (NLEP).

The non-local eigenvalue problem (1.18) has been extensively studied in a series of papers.

In [18], a computer algebra assisted approach was developed to determine the spectrum of

of (1.18). However their approach relies on manipulation of hypergeometric functions, and

requires the use of computer algebra. Here, we will use a different method that does not require

hypergeometric functions, developed in a series of papers [78], [77], and [74].

The basic result, shown in [78] and [77], is the following.

Theorem 1.1.3 (See [78]) Consider the problem (1.18a), and suppose that χ is a constant

independent of λ. Let λ be an eigenvalue of (1.18a) with largest real part that corresponds to

an even eigenfunction Φ. Then Re(λ) < 0 if χ > 1, λ = 0 with Φ = w if χ = 1, and Re(λ) > 0

if χ < 1.

Suppose that χ = χ(τλ) is continuous and defined on R
+. If χ(0) < 1 then Re(λ) > 0.

Note that the threshold case χ = 1 follows from the observation that L0w = w and
∫
w2 =

∫
w.

The proof for non-constant χ is deferred until Proposition 1.1.6. For the rest of the proof, see

[78], Theorem 2.12.

Note also that the assumption that Φ is even is necessary, since λ = 0,Φ = w′ satisfies (1.18)

for any χ.
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For the case χ = 0, the following result is known:

Lemma 1.1.4 (From [50]): The problem L0Φ = λΦ admits a positive eigenvalue λ0 = 5/4,

with the corresponding eigenfunction Φ = sech3(y/2), a zero eigenvalue with eigenfunction

Φ = w′ and a negative eigenvalue λ = −3/4 with the corresponding eigenfunction 5 sech2(y/2)−

4 sech(y/2).

We now study the case where χ depends on λ. This analysis first appeared for the Gierer

Meinhardt model in [77], [74]. By scaling Φ, we may write (1.18) as

–10

–8

–6

–4

–2
0

2

4

6

8

10

–1 1 2 3

Figure 1.3: The function f , given by (1.21), for real values of λ

∫
wΦ∫
w2

=
1

χj
, (L0 − λ)Φ = w2.

Thus the NLEP problem (1.18) is equivalent to finding the roots of

Cj(λτ) = f(λ) where f(λ) =

∫
w(L0 − λ)−1w2

∫
w2

and Cj(λτ) =
1

χj
. (1.19)

Explicitly, we have:

Cj =
1

2
+

1

2s

θλ

θ0

[
tanh(lθλ/k) +

(
1 − cos

π(j − 1)

k

)
csch(2lθλ/k)

]
coth(lθ0/k), j = 1 . . . k.

(1.20)

The following lemma summarizes some properties of f .
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Lemma 1.1.5 (see [77]) The behaviour of f near the origin is:

f(λ) ∼ 1 +
3

4
λ+ κcλ

2 +O(λ3), where κc =

∫
(L−1w)2∫

w2
> 0. (1.21)

In addition we have the global behaviour:

f ′(λ) > 0, f ′′(λ) > 0, λ ∈ (0, 5/4).

Moreover f has a singularity at λ = 5/4 with f → ±∞ as λ→ 5/4±. On the other side of the

singularity we have

f(λ) < 0, λ > 5/4,

and

f(λ) ∼ − 5

6λ
as Re(λ) → ∞.

The graph of f for real λ is shown on Figure 1.3. Note the singularities at 5/4 and −3/4, which

are the discrete eigenvalues of the L0.

The first result with Cj non-constant concerns instability. We show the following:

Proposition 1.1.6 (See also [77]) Let

Bj ≡
1

χj(0)
=

1

2
+

[
1

2s
+

1

4s sinh2 lθ0/k

(
1 − cos

π(j − 1)

k

)]
(1.22)

Suppose that Bj > 1 for some j. Then the NLEP problem (1.18) is admits a purely positive

eigenvalue. Thus a k-spike equilibrium derived in Proposition 1.1.1 is unstable.

In the inner region near the mth spike, the perturbation of the v-component of the equilibrium

solution that corresponds to j-th large eigenvalue has the following form:

ν(x, t) ∼
(

1

AU±
w

(
x− xm

ε

)
+ βcmjΦ

(
x− xm

ε

)
eλt

)
, |x− xm| = O(ε) (1.23)

where β � 1 is some small constant, Φ is an even function defined in (1.15), and

cmj = sin

(
πj

k
(m− 1/2)

)
. (1.24)
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Proof. We have f(0) = 1. Thus f(0) < Bj. But f blows up at 5/4. It follows that by the

intermediate value theorem that f and Cj intersect at some λ ∈ (0, 5/4).

It is easy to see that we have the following ordering principle: B1 < B2 < . . . < Bk. Therefore

the first node that undergoes an instability in Proposition 1.1.6 is Bk. The threshold case

Bk = 1 corresponds to the value

s = sk = 1 +
1 + cos π/k

2 sinh2 lθ0/k
(1.25)

or equivalently,

l = lk =
√
Dk arcsinh

√
1 + cos π/k

2(s− 1)
. (1.26)

Using the identity:

A
Ake

=
1 + s

2
√
s
, (1.27)

this threshold is also equivalent to

A = Ak = Ake





2 + 1+cos π/k

2 sinh2 lθ0/k

2
√

1 + 1+cos π/k

2 sinh2 lθ0/k



 . (1.28)

In addition, in view of Lemma 1.1.3 and the ordering principle, we have stability whenever

Bk < 1 and τ = 0. Next, note that B1 = 1
2 + 1

2s . It follows that we have instability whenever

s < 1. But from (1.18e), we have s < 1 for U+, s > 1 for U−.

We summarize the results as follows.

Theorem 1.1.7 The large equilibrium solution ν+, u+ given in Proposition 1.1.1 is always

unstable. A one-spike negative solution is always stable provided that τ = 0.

The small k-spike equilibrium solution ν−, u− is unstable, provided that k ≥ 2 and A < Ak or

l < lk, where Ak and lk are given by (1.28) and (1.26) respectively. The converse is true when

τ = 0.

Note that the small and large k-spike solutions are connected through a saddle-node structure,

as illustrated by solid curves in Figure 1.11. For a single-spike solution, since s1 = 1, this
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τ = 1.5

τ = 3

τ = 5.3

λ
0.6

0.8

1

1.2

1.4

1.6

–0.6 –0.4 –0.2 0 0.2 0.4 0.6

(a)

τ−=1.5
λ=−0.25

τh=3
λ=±0.22i

τ+=5.3
λ=0.2

(b)

Figure 1.4: (a) The plot of f(λ) (solid curve) and C1(λ) (dashed curves) for three different
values of τ as indicated, with C1(0) = 0.9. (b) The path traced by λ in the complex plane for
different positive values of τ . The arrows indicate the direction of the path as τ is increased.
Note that λ is negative real when τ < 1.5, λ is complex for τ ∈ [1.5, 5.3] and λ is positive real
when τ > 5.3. A Hopf bifurcation occurs at τ = 3.

theorem shows that the small solution branch is stable. For k > 1, part of the small branch

near the fold point is also unstable.

A consequence of this theorem is that a domain of a given length 2l can support at most k

spikes where k is some increasing function of l. If the initial condition consists of more than

k spikes, then numerical simulations indicated that some of them will be annihilated until at

most k are left. We thus refer to such an instability as competition or overcrowding instability.

The name competiton

We next study the effect of τ on stability. In general, if τ is sufficiently large, the system can

be destabilized via a Hopf bifurcation. This was first proved in [77] for the Gierer-Meinhardt

model, and in [74] for the Gray-Scott model. In general, there is no explicit formulae for

the threshold τh at which the Hopf bifurcation occurs (although rigorous estimates have been

derived in [77]). However explicit formula is available when s is slightly above sk. For clarity,

we will only treat the case of a single spike here.

The existence of a Hopf bifurcation in such a case is easily seen geometrically, as shown in
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Figure 1.4, and explained below. When s is slightly above s1 = 1, C1(0) will be slightly below

1, and since f has a positive slope at the origin, it follows that for f will fall below C1(0) when

λ is sufficiently negative. Note that increasing or decreasing τ corresponds to compressing or

expanding the curve C1(τλ) along the x-axis, respectively. Moreover, C1 → ∞ as λ → ∞. It

follows that f and C1 will intersect tangentially at some λ < 0 for some τ = τ− sufficiently

small; and again at some λ > 0 for some τ = τ+ > τ−. In between τ− and τ+, the intersections

occur in complex plane; thus by continuity they must intersect the imaginary axis at some

τh ∈ [τ−, τ+].

Next we compute the precise value of τh, τ±. for s near 1. Assume that

s = 1 + δ, 0 < δ � 1.

After some algebra, we obtain:

tanh lθλ

tanh lθ0
= 1 + zlθ0 csch 2lθ0 − z2

(
lθ0

1

4
csch 2lθ0 +

1

4
l2θ2

0 sech2 lθ0

)
+O(z3), z = λτ,

from which

C1(λ) = 1 − δ

2
+ βz − γz2 +O(z2, δ2, zδ), where

z = λτ, β =
1

4
+
lθ0
2

csch 2lθ0, γ =
1

8
− 1

4
lθ0 csch 2lθ +

1

8
l2θ2 sech2 lθ0 (1.29)

Moreover, using some calculus, one can show that γ always positive. It follows that the eigen-

value λ, given by the intersection of C1 and f , satisfies:

δ

2
+ λ(

3

4
− βτ) + (κc + γτ2)λ2 = 0.

These curves intersect tangentially provided that in addition,

(
3

4
− βτ) + (κc + γτ2)2λ = 0.

This yields an equation for τ ,

δ = (
3

4
− βτ)2/(κc + γτ2),

whose solution is

τ± =
3

4β
±

√
δ

√
κc + γ

(
3
4β

)2

β
+O(δ)
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The corresponding λ is negative for τ− and positive for τ+. When τ ∈ [τ−, τ+], the two curves

f and C1 do not intersect, and so λ is complex-valued. In particular, it is purely imaginary

precisely when τ = τh = 3
4β . This shows the existence of the Hopf bifurcation.

Next, the formula (1.27) yields: A = A1e

(
1 + 1

8δ
2
)
. Finally for the infinite domain case l = ∞,

we have β = 4, γ = 1
8 . We have shown the following:

Proposition 1.1.8 Suppose that

A = A1e

(
1 +

1

8
δ2
)
, where 0 < δ � 1. (1.30)

Let

τh =
3

4β
and τ± = τh ±

√
δ

√
κc + γ

(
3
4β

)2

β
,

where β and γ are defined in (1.29) and κc is defined in (1.21). Then the small equilibria

solution (v−, u−) given by Proposition 1.1.1 with k = 1, is stable if and only if τ < τh, and

undergoes a Hopf bifurcation at τ = τh. Moreover, the corresponding eigenvalue λ is purely

imaginary at τ = τh, purely real and positive for τ ≥ τ+ and purely real and negative for

τ < τ−. For the case of an infinite domain l = ∞, we have

τh = 3, τ± = 3 ±
√
δ
1

4

√
κc + 9/8.

When τ ∈ [τh, τ+], due to the eigenvalue being complex, instability is manifested as small oscil-

lations in the spike height. However when τ > τ+, the eigenvalue is purely real, and numerical

experiments indicate that the corresponding instability results in the monotinic decrease of spike

height, until the spike is annihilated in O(1) time. Thus the range of τ for which oscillatory

behaviour occurs is of O(
√
δ) when (1.30) is satisfied.

Due to the scaling of the Gray-Scott model (see (6)) τ must satisfy τ > 1. It is easy to show

that τh is an increasing function of θ0 with τh = 3
2 when θ0 = 0 and τh = 3 when θ0 = ∞. Thus

the single spike solution that is near the threshold A1e is always stable when τ = 1.
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1.1.3 Hopf bifurcation away from the saddle node point

In the previous section we have studied the occurence of the Hopf bifurcation using local analysis

near the saddle node bifurcation point. Here, we study the more general case. We proceed as

in [77] and [74]. The main result is the following.

Theorem 1.1.9 Consider the k-spike small solution (ν−, u−) given by Proposition 1.1.1. Then

for each 1 < j < k, there exists a value τh > 0 and τ+ > τh such that the j-th large eigenvalue

of (1.18) is stable for τ just below τh, and unstable for all τ > τh. At τ = τh, this eigenvalue

undergoes a Hopf bifurcation so that (1.18) admits purely imaginary eigenvalues. For τ ∈

[τh, τ+] there are complex eigenvalues which merge with the positive real axis at τ = τ+. For

τ > τ+, there are purely real, positive eigenvalues.

We first show the existence of τh. We substitute λ = iλi into (1.18) and collect real and

imaginary parts. We obtain:

Ĉr(τλi) = f̂r(λi), Ĉi(τλi) = f̂i(λi) where (1.31a)

Ĉ(τλi) = C(iτλi), f̂(λi) = f(iλi), Ĉ = Ĉr + iĈi, f̂ = f̂r + if̂i, and C = Cj (1.31b)

with Cj given by (1.20). The key properties of these functions, derived in [77] and [74], are

summarized below.

Lemma 1.1.10 (see [77] and Proposition 3.7, [74]) The functions f̂i, f̂r satisfy

f̂r(λi) =

∫
wL0[L

2
0 + λ2

i ]
−1w2

∫
w2

, f̂i(λi) =
λi

∫
w[L2

0 + λ2
i ]
−1w2

∫
w2

.

They have the following asymptotic behaviour:

f̂r(λi) ∼ 1 − κcλ
2
i +O(λ4

i ) as λi → 0; f̂r(λi) ∼
7

5
λ−2

i +O(λ−4
i ) as λi → ∞, (1.32a)

f̂i(λi) ∼
3

4
λi +O(λ3

i ) as λi → 0; f̂i(λi) =
5

6
λ−1

i +O(λ−2
i ) as λi → ∞. (1.32b)

Here κc is given in (1.21). Moreover, the functions f̂r(λi) and f̂i(λi) have the following global

behaviour:

f̂ ′r(λi) < 0, f̂i(λi) > 0 for λi > 0.
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For λi > 0 and τ > 0, the functions Ĉr and Ĉi given by (1.31) satisfy:

Ĉr(0) = Bj , Ĉ ′
r(τλi) > 0; Ĉi(0) = 0, Ĉ ′

i(τλi) > 0, (1.33a)

d

dλi
Ĉr(τλi) = O(τ1/2),

d

dλi
Ĉi(τλi) = O(τ1/2) as τ → ∞, (1.33b)

Ĉr(λiτ) = Bj +O(τλi), Ĉi(λiτ) = O(τλi) as τ → 0. (1.33c)

Here, Bj = Cj(0) whose properties are given in (1.22).

We now return to proof of Theorem 1.1.9. Let

g = C − f, ĝ = Ĉ − f̂ ,

so that the number of unstable eigenvalues M of the mode j of (1.18) corresponds to the number

of zeroes of g in the positive half-plane. To determine M , we use the argument principle.

Consider a counterclockwise contour composed of the imaginary axis [−iR, iR] and the semi-

circle Reiθ, θ ∈ [−π
2 ,

π
2 ]. From (1.20) we have C ∼ O(

√
λ) as λr → ∞. Moreover f → 0 as

λr → ∞. It follows that the change in argument of g over the semi-circle is π
2 as R → ∞. In

addition, the function g has a simple pole at the eigenvalue 5/4 of the local operator L0. On

the imaginary axis, we use g(λ) = g(λ). We thus obtain the following formula for the number

of zeroes M of g in the right half-plane:

M =
5

4
+

1

π
4[i∞,0]g

where 4[i∞,0]g denotes the change in argument of g along the semi-infite imaginary axis [0, i∞]

traversed in the downwards direction.

From Lemma 1.1.10 we have ĝr(0) < 0, ĝ′r > 0 and ĝr → ∞. It follows that ĝr has a unique

root λ∗i ∈ f̂−1
r ([C(0), 1]), for any given τ > 0. Next, note that ĝ ∼ b

√
λie

iπ/4 as λi → ∞

where b is some positive constant, whereas ĝr(0) < 0, ĝi(0) = 0. Thus 4[i∞,0]g is either −5
4π

or 3
4π, depending on whether the ĝi(λ

∗
i ) is positive or negative, respectively. But by scaling,

Ĉi(λiτ) → 0 as τ → 0 and Ĉi(λiτ) → ∞ as τ → ∞, with λi 6= 0. Thus we have: ĝi(λ
∗
i ) > 0

for τ sufficiently small and ĝi(λ
∗
i ) < 0 when τ is sufficiently large. In particular this shows

the existence of τh at which ĝ(λ∗i ) = 0. Moreover, this shows that M = 0 for small enough
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τ and M = 2 for large enough τ . Note that this does not show the uniqueness of τh. That

is, we cannot rule out the possibility of ĝi(λ
∗
i ) changing sign more than once as τ is changed.

Nonetheless, by choosing the largest such τh, this shows the existence of τh for which λ is purely

imaginary, and such that there are two positive eigenvalues for all τ > τh.

To show the existence of τ+, some algebra shows that C ′′(τλ) < 0. It follows from convexity

of f and the fact that C → ∞ as τλ → ∞ and C(0) < 1, that for small enough τ , the curves

C and f do not intersect, and for large enough τ , they intersect twice. Thus by continuity,

there must be a value of τ = τ+ where these two curves intersect tangentially. Moreover, this

value is unique because of convexity. For τ ≥ τ+, these intersections are clearly positive. This

concludes the proof of Theorem 1.1.9.
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Figure 1.5: Plot of νm = ν(0) versus t for a one-spike solution with ε = 0.01, l = 1,D = 0.1,A =
6.59. The heavy curve corresponds to τ = 8.6, the lighter to τ = 8.8.

Note that the proof of this theorem is constructive: it gives a method for computing τh provided

that f̂i, f̂r are available. To verify this theorem, we took a one-spike solution with parameter

values l = 1,D = 0.1, A = 6.59 with ε = 0.01. For this parameter set, we have computed

numerically that τh = 8.7. We then plotted the evolution of the one-spike solution in time
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for τ = 8.6 and τ = 8.8. The result is shown on Figure 1.5. For τ = 8.6 we get decaying

oscillations in spike height, and for τ = 8.8 the oscillations start to increase in magnitude,

eventually leading to the collapse of the spike. Thus the theory gives a correct prediction for

the Hopf bifurcation value. Moreover, the increase of amplitude for τ > τh suggests that the

Hopf bifurcation is subcritical. Unfortunately the linear theory is insufficient to explain this.

1.1.4 Hopf bifurcation in the intermediate regime

Next we consider the intermediate regime (1.3), 1 � A � ε−1/2. From (1.27) we obtain, for

the small solution u−, v−:

s ∼ 4
A2

A2
ke

� 1.

First, note that if λτ = 0(1) then we have Cj ∼ 1
2 in which case the NLEP problem (1.18)

is stable by Lemma 1.1.3. On the other hand, if θλ is large, (1.20) becomes: Cj ∼ 1
2 +

1
2s

√
τλ coth(lθ0/k). This suggests the following scaling for τ :

τ = τ0s
2 tanh2(lθ0/k)

so that Cj becomes:

Cj ∼
1 +

√
τ0λ

2
,

and is independent of j. The proof of Theorem 1.1.9 then goes through as before, and shows

the existence of the Hopf bifurcation τ0 = τ0h, as well as the existence of τ0 = τ0+ at which the

eigenvalue merges with the real positive axis. Numerically, we find:

τ0h = 1.748, λih = 0.534; τ0+ = 8.567; λ+ = 0.300. (1.34)

We summarize.

Proposition 1.1.11 Consider the k spike small solution in the intermediate regime 1 � A �

ε−1/2, with l√
D

� 0. Such solution is stable with respect to large eigenvalues whenever τ �

O(A4). It undergoes a Hopf bifurcation at

τh = A4D/9 tanh4(lθ0/k)τ0h (1.35)
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where τ0h is given by (1.34). At that value of τ , 2k large eigenvalues cross the imaginary axis

at asymptotically the same time.

Note that since the Hopf bifurcation for all the different nodes j occurs simultaneously, and

since the corresponding k eigenvectors cmj given by (1.24) span all of R
k, the oscillating motion

of the different spikes is independent of each-other.

While the expression (1.35) is valid asymptotically as ε → 0, numerically we find that it

provides a poor approximation for moderate values of ε such as ε = 0.05. A better agreement

with numerics is obtained by finding the second term in the asymptotic expansion for τh. This

calculation was performed in [74] with the following result:

τh = A4D/9 tanh4(lθ0/k)τ0h

(
1 − 6lθ0 tanh(θ0)

A2

)2

.

1.2 High-feed and intermediate regime

We continue our study of Gray-Scott model (1.1), but this time we consider intermediate and

high-feed regimes (1.3), (1.4). We find two types of instabilities that occur there, which are not

present in the low-feed regime. The first type is an undercrowding or pulse-splitting instability.

That is, when A is increased past a certain threshold, some of the spikes will be split into

two spikes that start moving away from each other. This process may repeat a number of

times, until sufficiently many spikes have been generated, at which time the system reaches

an equilibrium. An example of such instability is shown on Figure 1.2:a. The pulse-splitting

occurs only in the high-feed regime, and corresponds to the dissapearence of the steady-state

solution as A is increased past a certain threshold. In §1.2.1, we derive the minimum number

of pulse splittings that will occur before the spikes settle to a new equilibria.

The second type of instability is the slow oscillatory drift instability, as shown on Figure 1.2b.

This instability occurs in both intermediate and high-feed regimes, when τ is of O(1
ε ). The cause

of such an instability is the existence of small eigenvalues of O(ε) which cross the imaginary

axis into the positive half-plane as τ is increased past a certain threhold. In §1.2.2 we derive
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an expression for this threshold.

For the rest of this section, by scaling x = x̂
√
D, we will assume without loss of generality that

D = 1.

To obtain results for an arbitrary D, it suffices to replace ε by ε√
D

and l by l√
D

in the results

that follow.

1.2.1 Equilibria in high-feed and intermediate regime

We begin with the analysis of equilibria solutions of (1.1) with D = 1:





0 = ε2vxx − v +Av2u

0 = uxx − u+ 1 − v2u
, x ∈ [−l, l]

v′(±l) = 0 = u′(±l)

(1.36)

We have the following result:

Proposition 1.2.1 Let

B = tanh

(
l

k

)
A. (1.37)

Suppose A� ε1/2 and B < 1.35. Then there exists a spike solution to (1.36) of the form

v ∼ 1

ε
V0(r), u ∼ ε

A
U0(r), r =

x

ε
.

where V0(r), U0(r) satisfy (1.42) below with boundary conditions

V0(0) = 0 = U0(0), V0(∞) = 0, U ′
0(∞) = B. (1.38)

Conversely, if B > 1.35, then the k-spike solution of this form does not exist.

Thus, for any given k, the k-spike solution will dissapear if A is sufficiently increased. Con-

versely, for any given A or domain size l, there will be a k spike solution if k is large enough.

For this reason, we refer to this instability as undercrowding or pulse-splitting instability. This
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type of instability is in some sense the opposite of the overcrowding instability discussed in

Theorem 1.1.7, where the equilibrium solution becomes unstable if k is too big.

Before showing Proposition 1.2.1, we consider a numerical example. Consider the case l =

2, A = 3.5, D = 1, ε = 0.03, τ = 1. Letting Bk = A tanh l
k , we obtain: B1 = 3.34, B2 =

2.66, B3 = 2.03, B4 = 1.61, B5 = 1.32. We see that B4 > 1.35 but B5 < 1.35. So for

the equilibrium to exist, we must have k ≥ 5. Indeed, starting with the initial conditions of

one spike whose center is located slightly asymmetrically at x0 = 0.1, the system undergoes 4

additional spike splittings, and then settles to a 5-spike equilibrium, as shown on Figure 1.2a.

To show Proposition 1.2.1, we start by constructing a single-spike solution on [−l, l]. Because

of the Neumann boundary condition, we can then glue together k copies of such a solution

to obtain a k-spike solution on [−lk, lk]. By redefining l → l/k we will then obtain a k spike

solution on the interval [−l, l].

Near the core of the spike, we make the following rescaling:

v =
1

ε
V (r), u =

ε

A
U(r), r =

x

ε
. (1.39)

The steady state solution then satisfies:

0 = V ′′ − V + V 2U (1.40a)

0 = U ′′ − ε2U +Aε− V 2U. (1.40b)

Therefore we expand:

v =
1

ε
(V0(r) +AεV1(r) + · · · ) , u =

ε

A
(U0(r) +AεU1(r) + · · · ) (1.41)

to obtain:

0 = V ′′
0 − V0 + V 2

0 U0 (1.42a)

0 = U ′′
0 − V 2

0 U0 (1.42b)
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and

0 = V ′′
1 − V1 + 2V0U0V1 + V 2

0 U1 (1.43a)

0 = U ′′
1 + 1 − 2V0U0V1 − V 2

0 U1. (1.43b)

Next, we expand the outer solution as:

u = u0(x1) + εu1 + ...

to obtain:

u′′0 − u0 = −1 + v2u

from where

u0(x1) = 1 −
∫ l

−l
G(x1, x

′
1)v

2(x′1)u(x
′
1)dx

′
1

where G is the Green’s function with Neumann’s boundary conditions:

Gxx −G = −δ(x− x′), (1.44a)

Gx(−l, x′) = 0 = Gx(l, x′). (1.44b)

It is easy to see that

G(x, x′) =
1

J
′

1(x
′)J2(x′) − J1(x′)J

′

2(x
′)





J1(x)J2(x
′) if x < x′

J1(x
′)J2(x) if x′ < x

(1.45a)

where J1(x) = cosh (l + x) , J2(r) = cosh (l − x) . (1.45b)

Thus we have:

J
′

1(0)J2(0) − J1(0)J
′

2(0) = 2l sinh (l) cosh (l) ,

G(0, 0) =
1

2
coth(l).

and so:

u(εr) = 1 − 1

A

∫ l
ε

− l
ε

G(εr, εr′)
[
V 2

0 U0 + εA
(
2V0U0V1 + V 2

0 U1

)]
dr′; (1.46a)

u0(0) = 1 − 1

A
G(0, 0)

∫ ∞

−∞
V 2

0 U0, (1.46b)

u′0(0
±) = − 1

A
Gx(0±, 0)

∫ ∞

−∞
V 2

0 U0, (1.46c)

u′′0(0
±) = − 1

A
Gxx(0±, 0)

∫ ∞

−∞
V 2

0 U0 = − 1

A
G(0, 0)

∫ ∞

−∞
V 2

0 U0. (1.46d)
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We also have the following matching condition:

u0(εr) + εu1(εr) ∼
ε

A
U0(r) + ε2U1(r). (1.47)

This yields:

u0(0) = 0, (1.48a)

U ′
0(±∞) = Au′0(0

±), (1.48b)

U ′′
1 (∞) = u′′0(0

+) (1.48c)

Next, we define:

B =
1

2

∫ ∞

−∞
V 2

0 U0. (1.49)

Equations (1.46b) and (1.48a) then yields:

B =
A

2G(0, 0)
= tanh(l)A. (1.50)

and from (1.48c), (1.48a), (1.46d) we obtain:

U ′′
1 (∞) = u′′0(0

+) ∼ u0(0) − 1 ∼ −1 (1.51)

Integrating (1.42b) (or alternatively, using (1.46c, 1.48b) and Gx(0+, 0) = −1
2) we obtain:

U ′
0(∞) =

∫ ∞

0
V 2

0 U0 = B.

Next, we argue numerically that the solution to the problem (1.42) with boundary conditions

V0(0) = U0(0) = 0, V0(∞) = 0, U ′
0(∞) = B, exists only when B < 1.35. Multiplying (1.42a) by

V ′
0 , integrating and using V ′

0(0) = 0 yields:

V 2
0 (0) − 1

3
V 3

0 (0)U(0) =

∫ ∞

0

1

3
V0(r)

3U ′
0(r)dr.

Assuming V0 > 0 and integrating (1.42b), we see U ′
0 > 0 so that that

∫∞
0

1
3V0(r)

3U ′(r)dr > 0.

Therefore letting

γ = V0(0)U0(0), (1.52)

we obtain 0 ≤ γ ≤ 3
2 . For each value of γ in that range, we compute numerically the corre-

sponding value of B. The resulting plot is shown in Figure 1.6. This graph has a fold point
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Figure 1.6: The graph of γ = V (0)U(0) vs. B = U ′(∞). The fold point occurs at γ = 1.02,
B = 1.35. The dashed curves represent asymptotic approximations, derived in Propositions
1.2.2 and 1.2.3. Subfigures show the actual solution for three different values of γ as indicated.
In subfigures, the thicker curve represents V0 and the thinner U0(r)−U0(0). Note that near the
left endpoint, the solution looks like two well-separated bumps, whereas near the right endpoint
the solution consists of a single bump. At γ = 1, the solution is flat at the top.

at γ = 1.02, at which point B = 1.35. Beyond B = 1.35, no single-spike solution exists. This

concludes the proof of Proposition 1.2.1

In general, the problem (1.42, 1.38) must be solved numerically. However asymptotic expansion

is available in the intermediate regime, when B is small. We first study the limiting behavior

U(0) � 1. We introduce a small parameter δ by δ = 1/U(0), and expand the solution to (1.42)

in terms of δ as

V = δ
(
v0 + δ2v1 + · · ·

)
, U = δ−1u = δ−1

(
u0 + δ2u1 + · · ·

)
, with u(0) = 1 .

(1.53)

Since
∫∞
0 V 2U dr = B from (1.49), the expansion (1.53) yields that B = O(δ). Hence, we write

B = δB0. Substituting (1.53) into (1.42), and collecting powers of δ, we obtain the leading-order
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problem

v
′′

0 − v0 + v2
0u0 = 0 , u

′′

0 = 0 , (1.54)

with v
′

0(0) = 0, u0(0) = 1, v0 → 0 as r → ∞, and u
′

0 → 0 as r → ∞. Therefore, we obtain

u0(r) = 1 and v0(r) = w(r), where w satisfies (1.7). From collecting terms of order O(δ2), we

see that v1 and u1 satisfy

Lv1 ≡ v
′′

1 − v1 + 2wv1 = −w2u1 , 0 < r <∞ ; v
′

1(0) = 0 , v1 → 0 , as r → ∞ ,

(1.55a)

u
′′

1 = w2 , 0 < r <∞ ; u
′

1(0) = 0 , u1(0) = 0 , u
′

1 → B0 , as r → ∞ . (1.55b)

By integrating (1.55b) over 0 < r <∞, we get that B0 =
∫∞
0 w2 dr = 3.

Next, we multiply (1.55a) by w
′

and integrate over 0 < r < ∞. Then, using Lw
′

= 0 and

w
′

(0) = v
′

1(0) = 0, we get

∫ ∞

0
w

′

Lv1 dr = w
′′

(0)v1(0) = −
∫ ∞

0
w2w

′

u1 dr . (1.56)

Integrating the last term in (1.56) by parts, and noting that u1(0) = 0, we get

w
′′

(0)v1(0) =
1

3

∫ ∞

0
w3u

′

1 dr . (1.57)

To calculate v1(0), we must determine u
′

1(r). To do so, we substitute w(r) = 3
2 sech2 (r/2) and

w2 = w − w
′′

directly into (1.55b) to get

u
′′

1 = w − w
′′

=
3

2
sech2 (r/2) − w

′′

. (1.58)

Integrating this equation twice, and using u
′

1(0) = 0, u1(0) = 0, we readily obtain

u1(r) = 6 ln
[
cosh

(r
2

)]
− 3

2
sech2

(r
2

)
+

3

2
. (1.59)

To determine v1(0), we integrate (1.58) once to get

u
′

1 = 3 tanh
(r

2

)
− w

′

= −3w
′

w
− w

′

. (1.60)

Finally, substituting (1.60) into (1.57), integrating the resulting expression by parts, and using

the explicit form of w, we obtain

v1(0) =
1

3w′′(0)

∫ ∞

0

(
−3w2w

′ − w
′

w3
)
dr =

1

3w′′(0)

[
w3(0) +

w4(0)

4

]
= −33

16
. (1.61)
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Since γ ≡ U0(0)V0(0), we use (1.53) to get γ = w(0)+ δ2v1(0). We summarize the result of this

calculation in the following formal proposition:

Proposition 1.2.2 Consider the intermediate regime B = 3δ, with δ � 1, where B = A tanh(l/k).

Then the core problem (1.42) admits a solution with γ ≡ U0(0)V0(0) → 3/2− as δ → 0. This

solution is given asymptotically by

V0 ∼ δ
(
w(r) + δ2v1(r) + · · ·

)
, U0 ∼ δ−1

(
1 + δ2u1(r) + · · ·

)
, (1.62a)

where w(r) satisfies (1.7), u1(r) is given in (1.59), and v1 satisfies:

v
′′

1 − v1 + 2wv1 = −w2u1, v
′

1(0) = 0, v1 → 0 as r → ∞. (1.62b)

Moreover, we have v1(0) = −33
16 ,

γ ∼ 3

2
− 33

16
δ2 + · · · . (1.62c)

The asymptotic curve B ∼ 3δ, γ ∼ 3
2 − 33

16δ
2 is shown as the dashed parabola in Figure 1.6.

As seen from that figure, it provides a good approximation to the actual solution of the core

problem (1.42) in the limit γ → 3/2−.

Next we construct a solution that corresponds to the regime γ → 0. First, note that V ′′
0 (0) = 0

at γ = 1 and V ′′
0 (0) > 0 when γ < 1. This suggests that in the limit γ → 0, the solution has

the shape of two bumps. To analyze this regime, we again label δ = 1/U0, with U0 ≡ U(0),

except that now we make a two-spike approximation for V with spikes located at r = r1 > 0

and r = −r1. As δ → 0, we will show that r1 ∼ − ln δ � 1. Therefore, the separation between

the spikes grows as δ decreases. The analysis below to calculate r1 is similar in essence to the

analytical construction of multi-bump solutions to the Gierer-Meinhardt model (cf. [26]) given

in [12].

We look for a two-bump solution to (1.42) in the form

V0 = δ (w1 + w2 +R+ · · · ) , U0 = δ−1u = δ−1
(
1 + δ2u1 + · · ·

)
with u1(0) = 0 . (1.63)

28



Here we have labelled w1(r) ≡ w(r−r1), w2(r) ≡ w(r+r1), and we assume R� 1. Substituting

(1.63) into (1.42), we obtain that u1 and the residual R satisfy

LR ≡ R
′′ −R+ 2(w1 + w2)R = −2w1w2 − δ2

(
w2

1 + w2
2 + 2w1w2

)
u1 , −∞ < r <∞ ,

(1.64a)

u
′′

1 = w2
1 + w2

2 + 2w1w2 , −∞ < r <∞ , (1.64b)

with u
′

1(0) = 0. Notice that w1w2 is small when the bumps are widely separated. In particular,

when r1 = O(− ln δ), the two terms on the right hand-side of (1.64a) are both of order O(δ2).

This is compatible with R being small, indeed it shows R = O(δ2).

To determine r1 we use a solvability condition. Assuming that the spikes are well-separated

so that r1 � 1, we multiply (1.64a) by w
′

1, and then integrate by parts over −∞ < r < ∞ to

obtain the solvability condition

0 =

∫
w

′

1LRdr ∼ −2

∫
w1w

′

1w2 dr − δ2
∫
w2

1w
′

1u1 dr . (1.65)

The dominant contribution to the first integral on the right hand-side of (1.65) arises from the

region where r = r1. In this region, we use w(r) ∼ 6e−r to get w(r + 2r1) ∼ 6e−r−2r1 . In this

way, we calculate

I1 ≡ 2

∫
w1w

′

1w2 dr ∼ 2

∫
w(r)w

′

(r)w(r + 2r1) dr ∼ 12e−2r1

∫
e−rw(r)w

′

(r) dr . (1.66)

Integrating the last expression in (1.66) by parts, and then using w2 = w − w
′′

, we obtain

I1 ∼ 6e−2r1

∫
e−r

(
w − w

′′
)
dr = 6e−2r1 lim

r→−∞

[
e−r

(
w + w

′
)]

= 72e−2r1 . (1.67)

To calculate the other integral on the right hand-side of (1.65) we integrate by parts once and

use u1(0) = 0 to get

I2 ≡ δ2
∫
w2

1w
′

1u1 dr = −δ
2

3

∫
w3

1u
′

1 dr = −δ
2

3

∫
[w(r)]3 u

′

1(r + r1) dr . (1.68)

Next, by integrating (1.64b) with u
′

1(0) = 0, we get

u
′

1(r) ∼
∫ r

0
[w(s − r1)]

2 ds . (1.69)

29



We can then write u
′

1(r + r1) as

u
′

1(r + r1) ∼
∫ 0

−r1

[w(s)]2 ds+

∫ r

0
[w(s)]2 ds ∼ 3 +

∫ r

0
[w(s)]2 ds . (1.70)

Here we have used
∫ 0
−r1

w2 dr ∼
∫ 0
−∞w2 dr = 3 for r1 � 1. The integral on the right hand-side

of (1.70) is odd. Therefore, upon substituting (1.70) into (1.68), we get an integral that is

readily evaluated as

I2 ∼ −δ2
∫

[w(r)]3 dr = −36δ2

5
. (1.71)

Finally, substituting (1.71) and (1.67) into (1.65), we obtain that r1 satisfies

72e−2r1 ∼ 36δ2

5
. (1.72)

The product γ ≡ U0V0 is calculated as γ ∼ [w1(0) + w2(0)] = 2w(r1). Since r1 � 1, we

use w(r) ∼ 6e−r to get γ ∼ 12e−r1 , where r1 satisfies (1.72). Finally, B is determined by

B = δ
∫∞
0

[
w2

1 + w2
2

]
dr ∼ 6δ. This formal construction of a two-bump solution is summarized

as follows:

Proposition 1.2.3 Let δ = 1/U0(0) � 1, γ = U0(0)V0(0). Then the core problem (1.42) admits

a two-bump solution with γ → 0+ as δ → 0+. This solution is given asymptotically by

V0 ∼ δ [w(r − r1) + w(r + r1)] U0 ∼ 1

δ

(
1 + δ2 [u1(r − r1) + u1(r + r1)]

)
, (1.73a)

where w(r) satisfies (1.7), and u1(r) is given explicitly in (1.59). The constants γ, r1, and B,

are given for δ � 1 by

B = 6δ + · · · , γ ≡ U0V0 ∼ 6δ
√

2√
5
, r1 ∼ − ln δ +

1

2
ln 10 . (1.73b)

This implies the following local behavior for the B = B(γ) curve:

γ ≡ U0V0 ∼
√

2B/
√

5 , as B → 0 . (1.73c)

Numerically, the single-bump solution found in Proposition 1.2.2 joins with the double-bump

solution of Proposition 1.2.3. Since B → 0 at the endpoints γ = 3/2, 0, this necessitates the
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existence of the fold point corresponding to the maximum of the B = B(γ) curve. However it

is an open question to show this rigorously.

Next, we argue numerically that the existence of a connection between a single and double-

bump solution graph causes the pulse to split into two when B is increased beoynd the the fold

point at B = 1.35. We first show the existence of the zero eigenvalue at the fold point. We

introduce a perturbation around the equilibrium state:

v(x) =
1

ε

(
V (r) + eλtΦ(r)

)
,

u(x) =
ε

A

(
U(r) + eλtN(r)

)
where r =

x

ε

to obtain:

λΦ = Φ′′ − Φ + V 2N + 2V UΦ (1.74)

τε2λN = N ′′ − ε2N − V 2N − 2V UΦ.

At the fold point γ0 = 1.02, B = 1.35, we have dB
dγ = 0. Using this identity and differentiating

(1.42) with respect to γ, we obtain a leading-order solution to (1.74) given by

λ = 0, Ψ =
dV0

dγ0
, N =

dU0

dγ0
.

Next, we compute the function dV0

dγ0
numerically, using the approximation dV0

γ0
∼ 200(V0|γ0+0.01−

V0|γ0−0.01). As can be seen from the resulting graph on Figure 1.7, this eigenfunction has a

dimple-like shape. As a consequence, when B is increased just above 1.35, the equilibrium

solution dissapears, but the shadow of the dimple eigenfunction will control the resulting dy-

namics. Its shape has the effect of splitting the spike into two. Numerically, immediately after

splitting the two spikes start to move away from each-other. As they move far enough apart,

the equilibrium state may again dissapear and the whole process can repeat itself.

1.2.2 Slow drift and oscillatory drift instabilities

So far, we have studied instabilities which occur on a fast time scale, due to an unstable eigen-

value of O(1). Next, we study instabilities with respect to small eigenvalues. Such eigenvalues
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Figure 1.7: The graph of the dimple eigenfunction Φ = dV0

dγ0
at the fold point γ0 = 1.02.

exist because of translation invariance of the Gray-Scott model. The corresponding perturba-

tion is the derivative of the profile to the leading order. The main result of this section is the

following.

Theorem 1.2.4 Let εA � 1, A � ε1/2 and ε � 1. Then the small eigenvalues λ associated

with drift instabilities of the k-spike equilibrium solution of Proposition 3.1 are of order O (εA),

and satisfy the k transcendental equations,

λ ∼ αεA

[
θλ tanh

(
l

k

)(
coth

(
2lθλ

k

)
+ csch

(
2lθλ

k

)
cos

(
πj

k

))
− 1

]
, j = 1, . . . , k ,

(1.75)

where

θλ =
√

1 + λτ

and α is some positive constant that is defined in (1.102) below. This constant depends only

on the bifurcation parameter γ associated with the core solution, and is listed in Table (1.80).

The constant α is found to be positive numerically. In the inner region near the mth spike,

the perturbation of the v-component of the equilibrium solution that corresponds to j-th small

eigenvalue (1.75) has the following form:

v(x, t) ∼ 1

ε

(
V0

(
x− xm

ε

)
+ βcmjV

′
0

(
x− xm

ε

)
eλt

)
, |x− xm| � 1 (1.76)
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where β � 1 is some small constant, V0 is defined in Proposition 1.2.1, and

cmj = sin

(
πj

k
(m− 1/2)

)
. (1.77)

In the intermediate regime

A ∼ 3coth(l/k)δ with δ � 1, (1.78)

the constant α is given asymptotically as

α ∼ 2δ ∼ 2

3
A tanh(l/k) (1.79)

γ B
∫

Ψ†
1Vr α

1.48 0.30 −10.01 0.20

1.46 0.40 −7.51 0.27

1.44 0.50 −6.00 0.33

1.42 0.60 −4.98 0.40

1.39 0.70 −4.24 0.47

1.36 0.80 −3.67 0.56

1.32 0.90 −3.20 0.63

1.28 1.00 −2.79 0.72

1.23 1.10 −2.41 0.83

1.17 1.20 −2.01 1.00

1.14 1.25 −1.77 1.13

1.10 1.30 −1.48 1.35

1.02 1.347 −0.74 2.70

(1.80)

We begin by linearizing around the equilibrium ve, ue :

v = ve + eλtφ , u = ue + eλtη . (1.81)

Substituting (1.81) into (1.1) with D = 1 we obtain the eigenvalue problem

ε2φxx − φ+ 2Aueveφ+Aηv2
e = λφ , −1 < x < 1 , (1.82a)

ηxx − η − ηv2
e − 2ueveφ = τλη , −l < x < l . (1.82b)

We begin by examining (1.82) in the jth inner region where r = ε−1(x− xj). Since we use the

scaling (1.39) for the equilibrium solution, we also rescale the eigenfunctions as

φ(x) =
A

ε
Φ (r; ε) , η(x) = εN (r; ε) . (1.83)
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to obtain (1.74). Next, we expand Φ, N and λ in εA:

Φ = Φ0 +AεΦ1, N = N0 +AεN1, λ = Aελ0.

Note that

V 2 = V 2
0 + 2εAV0V1, UV = U0V0 + εA(V0U1 + U0V1)

where Um, Vm are defined in (1.42) and (1.43). Thus we obtain:

0 = Φ′′
0 − Φ0 + V 2

0 N0 + 2V0U0Φ0, (1.84a)

0 = N ′′
0 − V 2

0 N0 − 2V0U0Φ0. (1.84b)

and:

λ0Φ0 = Φ′′
1 − Φ1 + V 2

0 N1 + 2V0V1N0 + 2V0U0Φ1 + 2(V0U1 + U0V1)Φ0 (1.85a)

0 = N ′′
1 −

[
V 2

0 N1 + 2V0V1N0 + 2V0U0Φ1 + 2(V0U1 + U0V1)Φ0

]
. (1.85b)

Differentiating (1.42), we see that (1.84) admits a solution:

Φ0 = cjV
′
0 , N0 = cjU

′
0, (1.86)

where cj will be determined below through asymptotic matching. Substituting (1.86) into

(1.85), we then express the result in matrix form as

LΨ = cj


 λ0 0

0 0




 Vr

Ur


+ cj


 −2(UV1 + U1V ) −2V V1

2(UV1 + U1V ) 2V V1




 Vr

Ur


 , (1.87a)

where Ψ ≡ (Φ1, N1)
t, and the operator L is defined by

LΨ ≡


 Φ1rr

N1rr


+E


 Φ1

N1


 , E ≡


 −1 + 2UV V 2

−2UV −V 2


 . (1.87b)

To determine the solvability condition for (1.87), we let Ψ† denote the solution of the homoge-

neous adjoint equation

L†Ψ† ≡


 Ψ†

1rr

Ψ†
2rr


+ Et


 Ψ†

1

Ψ†
2


 = 0 , (1.88)
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where t denotes transpose. We look for an odd solution to (1.88) where Ψ†
1 → 0 and Ψ†

2r → 0

as |r| → ∞.

To determine the solvability condition for (1.87a), we multiply (1.87a) by Ψ†t and integrate by

parts to get ∫
Ψ†tLΨ dr =

(
Ψ†tΨr − ΨtΨ†

r

)
|∞−∞ = cjλ0I2 + cjI1 , (1.89a)

where I1 and I2 are defined by

I1 ≡
∫ (

Ψ†t
2 − Ψ†t

1

) [
2(UV )rV1 + (V 2)rU1

]
dr , I2 ≡

∫
Ψ†

1Vr dr . (1.89b)

Since Ψ and Ψ† are odd functions and Ψ†
r → 0 as r → ∞, (1.89a) can be reduced to

cjλ0I2 = −cjI1 + Ψ†
2(∞) (N1r(+∞) +N1r(−∞)) . (1.89c)

The next step in the analysis is to calculate I1 explicitly. To do so, we introduce W by

W = (V1r, U1r)
t. Upon differentiating the system (1.43) for V1 and U1 with respect to r, it

follows that

LW =


 −2(UV )rV1 − (V 2)rU1

2(UV )rV1 + (V 2)rU1


 . (1.90)

Therefore, I1 in (1.89b) can be written in terms of W . Integrating the resulting expression by

parts, we get

I1 =

∫
Ψ†tLW dr =

(
Ψ†tWr − Ψ†t

r W
)
|∞−∞ +

∫
W tL†Ψ† dr . (1.91)

Using L†Ψ† = 0, with Ψ†
1 → 0 and Ψ†

2r → 0 as |r| → ∞, (1.91) reduces to

I1 = 2Ψ†
2(∞)U1rr(∞) = −2Ψ†

2(∞) . (1.92)

Here we have used U1rr(∞) = −1 as seen from (1.51). Finally, substituting (1.92) into (1.89c),

we obtain a compact expression for λ0

cjλ0

∫
Ψ†

1Vr dr = 2Ψ†
2(∞)

[
1

2
(N1r(+∞) +N1r(−∞)) + cj

]
, j = 1, . . . , k . (1.93)
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This completes the analysis of the jth inner region.

Next, we match this jth inner solution constructed above to the outer solution for (1.82). This

will determine N1r(±∞) and the constants cj , for j = 1, . . . , k. In the outer region, we have:

ηxx − (1 + τλ)η = ηv2
e + 2ueveφ . (1.94)

Away from O(ε) regions centered at the spike equilibrium locations, ve is exponentially small.

Therefore we have:

ηxx − (1 + τλ)η ∼ 0, x 6= xj (1.95)

Matching the inner and outer solution, we have:

ε (cjUr(±∞) + εAN1) ∼ η(x±j ) + εrηx(x±j ) + · · · . (1.96)

Using Ur(±∞) = B we therefore obtain:

η(x±j ) = ±εcjB , (1.97a)

N1r(±∞) =
1

εA
ηx(x±j ) . (1.97b)

We now solve (1.95) on each subinterval and we use the condition (1.97a) for η(x±j ) and the

boundary condition ηx(±1) = 0. This yields,

η(x) =





−εBc1 cosh[θλ(1+x)]
cosh[θλ(1+x1)] , −l < x < x1 ,

εBcj
sinh[θλ(x−xj+1)]
sinh[θ(xj−xj+1)]

− εBcj+1
sinh[θλ(x−xj)]

sinh[θλ(xj+1−xj)]
, xj < x < xj+1 , j = 1, . . . , k − 1 ,

εBck
cosh[θλ(1−x)]
cosh[θλ(1−xk)] , xk < x < l .

(1.98)

Here θλ is defined by

θλ ≡
√

1 + τλ. (1.99)

Combining (1.98) and (1.96) we obtain, for j = 1:

(N1r(+∞) +N1r(−∞))

2
=
Bθλ

2A

[
−c1

(
coth

(
2lθλ

k

)
+ tanh

(
lθλ

k

))
− c2 csch

(
2lθλ

k

)]
.

(1.100a)
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For j = 2, . . . , k − 1, we get

(N1r(+∞) +N1r(−∞))

2
=
Bθλ

2A

[
−cj−1 csch

(
2lθλ

k

)
− 2cj coth

(
2lθλ

k

)
− cj+1 csch

(
2lθλ

k

)]
.

(1.100b)

Similarly for j = k, we get

(N1r(+∞) +N1r(−∞))

2
=
Bθλ

2A

[
−ck−1 csch

(
2lθλ

k

)
− ck

(
coth

(
2lθλ

k

)
+ tanh

(
lθλ

k

))]
.

(1.100c)

Substituting (1.100) into (1.93), and using the relation B/A = tanh (lθ0/k) from (1.37), we

obtain the following matrix problem for c = (c1, . . . , ck)
t and λ0:

λ0c = α

[√
1 + τλ

2
tanh

(
l

k

)
B − I

]
c . (1.101)

Here α is defined by

α ≡ − Ψ†
2(∞)

∫∞
0 Ψ†

1Vr dr
, (1.102)

and B is the tridiagonal matrix

B ≡




d f 0 · · · 0 0 0

f e f · · · 0 0 0

0 f e
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . e f 0

0 0 0 · · · f e f

0 0 0 · · · 0 f d




, (1.103a)

with matrix entries d, e, and f defined by

d ≡ coth

(
2lθλ

k

)
+ tanh

(
lθλ

k

)
, e ≡ 2 coth

(
2lθλ

k

)
, f ≡ csch

(
2lθλ

k

)
. (1.103b)

The spectrum of B can be calculated explicitly as was done in Appendix D of [40]. This leads

to the following result:
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Lemma 1.2.5 The eigenvalues ζj , ordered as 0 < ζ1 < . . . < ζk, of B and the associated

eigenvectors cj of B are

ζj = 2coth

(
2θλ

k

)
+ 2 csch

(
2θλ

k

)
cos

(
πj

k

)
, j = 1, . . . , k , (1.104a)

ct
k =

(
1,−1, 1, . . . , (−1)k+1

)
; cm,j = sin

(
πj

k
(m− 1/2)

)
, j = 1, . . . , k − 1 . (1.104b)

Here ct denotes transpose and ct
j = (c1,j , . . . , ck,j).

Substituting (1.104) into (1.101) leads to (1.75).

As shown in Table (1.80), the constant α is always positive for the primary branch γ > 1.02. For

general B, this constant is determined numerically. However in the intermediate regime B =

3δ � 1 this constant can be determined analytically. In this limit, we recall from Proposition

1.2.2 that V0 ∼ δw, and U0 ∼ δ−1. Here w is the spike profile given in (1.7). Therefore, for

δ � 1, the homogeneous adjoint problem (1.88) reduces to

ψ†
1rr + (−1 + 2w)ψ†

1 − 2wψ†
2 ∼ 0 , ψ†

2rr + δ2w2
(
ψ†

1 − ψ†
2

)
∼ 0 . (1.105)

The solution to this limiting system is odd and is given, up to a normalization constant, by

ψ†
1 = wr +O(δ2) , ψ†

2 = −δ
2

3

∫ r

0
[w(s)]3 ds+O(δ4) . (1.106)

Therefore, for δ � 1, we have

α ≡ − Ψ†
2(∞)

∫∞
0 Ψ†

1Vr dr
∼ δ

3

(∫∞
0 w3 dr∫∞
0 w2

r dr

)
. (1.107)

To calculate the integral in (1.107) we use w(r) = 3
2 sech2(r/2) to obtain α = 2δ. This concludes

the proof of Theorem 1.2.4.

Note that if τ � 1
ε then θλ ∼ 1 in (1.75), as λ = O(ε). In this case it is easy to show that (1.75)

reduces to

λ ∼ −εαA sech2(l/k)

[
1 − 1

2
(1 + cos(πj/k))

]
, j = 1 . . . k. (1.108)

We thus have the following corollary:
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Corollary 1.2.6 Suppose that τ � 1
ε . Then the small eigenvalues in the high-feed or inter-

mediate regime, as given by Theorem 1.2.4, are all stable, and are given explicitly by (1.108),

where α > 0 is defined in Theorem 1.2.4.

We now show that when τ = O(1
ε ), the small eigenvalues can be destabilized via a Hopf

bifurcation.

To analyze (1.75) it is convenient to introduce the new variables τd, ω, and ξ, defined by

λ = εαAω , τ =

(
1

εαA

)
τd , ξ = τdω . (1.109)

Substituting (1.109) into (1.75), we obtain that ξ satisfies:

ξ

τd
= G(ξ) ≡ z

tanh (β/2)

sinh (βz)
(cosh (βz) + γ) − 1 , j = 1 . . . k, where (1.110a)

z =
√

1 + ξ, β = 2l/k, γ = cos

(
πj

k

)
(1.110b)

Elementary calculus yields the following facts about G, j = 1 . . . k:

G(0) < 0, G′(ξ) > 0, G′′
j (ξ) < 0. (1.111)

It follows that (1.110) has a negative double root for some τd = τd− sufficiently small and

positive, and has a positive double root for some τd = τd+ sufficiently large and positive. For

τd ∈ (τd−, τd+), the two roots are therefore complex conjugate; and by continuity, they must

cross the imaginary axis at some τd = τdh. This shows the existence of the Hopf bifurcation.

Moreover, the following theorem shows uniqueness of τdh for each j:

Theorem 1.2.7 Suppose εαA� 1 and A� O(ε1/2), where α is given in Theorem 1.2.4. Then

for each j = 1 . . . k, there exists a unique positive τ = τh = 1
εαAτdh where τdh = O(1) such that

the corresponding small eigenvalue λ given by Theorem 1.2.4 is purely imaginary. Moreover,

Reλ < 0 if τ < τh and Reλ > 0 if τ > τh.

Proof. We set ξ = iξi in (1.110). Taking real and imaginary parts of (1.110a) we obtain:

Re(G(iξi)) = 0, τd =
ξi

ImG(iξi)
(1.112)
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Some algebra shows that

d

dξi
Re(G(iξi)) > 0,

d

dξi
Im(G(iξi)) > 0. (1.113)

In addition we have

Re(G(i0)) < 0, Im(G(i0)) = 0. (1.114)

It follows that the solution to (1.112) is unique with the corresponding τd > 0. This proves the

uniqueness of τd. The fact that Reλ > 0 if and only if τ > τd follows from uniqueness of τd and

from the continuity argument discussed before the statement of Theorem 1.2.7

If τd is increased just to the right of τdhj , the k spike solution is destabilized by a perturbation

of the form (1.76). In the case of k = 1, this corresponds to slow oscillations of the spike around

the equilibria location. In the case k = 2, j = 2, the corresponding eigenvector is c2 = (−1, 1)

and the shape of the perturbation causes a slow asynchronous oscillation of the two spikes

around their equilibria. An example of such behaviour is shown in Figure 1.2b. By contrast, if

k = 2, j = 1, then the oscillations around equilibria are synchronous. However we were unable

to observe this type of oscillation numerically. Indeed, numerical computations suggest that

the the asynchronous oscillation corresponding to the node j = k is always triggered before any

other nodes. We state this as a conjecture:

Conjecture 1.2.8 Let τhj be the Hopf bifurcation values as found in Theorem 1.2.7. Then the

following monotonicity property holds:

τh1 > τh2 > . . . > τhk.

It follows that as τ is increased, the asynchronous drift corresponding to the node j = k becomes

unstable first.

Thus we do not expect to observe synchronous drift in the absence of asynchronous drift.

We have the following evidence for this conjecture. Write G from (1.110a) as

G = a(b+ γ) − 1 where a = z
tanh (β/2)

sinh (βz)
, b = cosh (βz) .
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Then ξi and τdh satisfy:

ReG = ar(br + γ) − aibi − 1 = 0, (1.115a)

ImG = aiγ + arbi + brai =
ξi
τdh

(1.115b)

Solving for γ in (1.115a) and substituting into (1.115b), we obtain:

1

τdh
=
ai + bi|a|2

ξiar
. (1.116)

As will be shown in the proof of Lemma 1.2.9 below, ξi ∈ [0, ξ?
i ), where ξ?

i is the first root of

ar(iξi). Now in Lemma 1.2.9 below we will show that ξi = ξihj is an increasing function of

j. Thus we would have the proof of the conjecture if we can show that the right hand side

of (1.116) is an increasing function of ξi, at least for ξi ∈ [0, ξ?
i ). Using a computer, we have

verified this condition for various values of β. It remains to show:

Lemma 1.2.9 The following monotonicity property holds:

ξih1 < ξih2 < . . . < ξihk.

Here, ξihj is the unique purely imaginary solution ξ = iξihj of (1.110).

Proof. Let ξih be the unique root of ReG(iξi) = 0 as found in Theorem 1.2.7. We need to show

that ξih is a decreasing function of γ. The proof is illustrated on Figure 1.8, and is explained

below.

From (1.115a), it follows that the curves ReG(iξi) for different values of γ all intersect at the

same point whenever ar = 0, and do not intersect at all otherwise. Label the first such point

by ξ?
i . But then ReG(iξ?

i ) > 0 since ReG(iξi)|γ=1 is always positive due to (1.113) and because

of the fact that ReG(i0)|γ=1 = 0. Thus ξih ∈ (0, ξ?
i ) for all γ ∈ (−1, 1). But ar(iξi) > 0 on this

interval since ar > 0 when ξi = 0. It follows that for ξi ∈ [0, ξ?
i ), ReG is an increasing function

of γ. This proves that its root ξih is a decreasing function of γ.

Finally, consider τd = τd+ for which the eigenvalue λ given by Theorem 1.2.4 merges with the

positive real axis. Since G(z) is increasing in γ, τd+ is a decreasing function of γ. Thus τd+
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Figure 1.8: Plot of ReG(iξi) for three values of γ as indicated, and with β = 2. All three curves
intersect at a the same point ξ?

i with ReG(iξ?
i ) > 0.

corresponding to γ = −1 i.e. j = k, is the first value of τ for which there exist purely positive

small eigenvalues.

The following table lists the value of τdh, computed numerically, for various values of γ and β,

as well as the value τd+ for k = j.
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β
τdh

γ = −1
τdh

γ = cos(π2/3)
τdh

γ = 0
τdh

γ = cos(π/3)
τd+

γ = −1

0.1 663 735 828 957 1688

0.2 167 185 208 240 423

0.3 74.7 82.78 93.19 107.6 189

0.4 42.5 47.12 53.00 61.14 107

0.5 27.66 30.62 34.40 39.64 69.20

0.6 19.58 21.65 24.30 27.95 48.59

0.7 14.71 16.25 18.21 20.91 36.16

0.8 11.55 12.75 14.26 16.34 28.09

0.9 9.39 10.35 11.56 13.21 22.56

1.0 7.84 8.631 9.623 10.97 18.61

1.5 4.21 4.595 5.065 5.691 9.240

2.0 2.990 3.221 3.502 3.868 5.965

2.5 2.461 2.619 2.808 3.047 4.452

3.0 2.207 2.322 2.457 2.622 3.633

4.0 2.021 2.085 2.156 2.240 2.826

5.0 1.9831 2.018 2.056 2.097 2.461

6.0 1.9835 2.001 2.020 2.040 2.271

10 1.9989 1.9996 2.0003 2.0011 2.037

(1.117)

This table provides a more direct numerical verification to Conjecture 1.2.8.

Note also that τd, τ+ → 2 as l → ∞, for all values of γ. This is easily seen as in this case, we

have G(0) ∼ 0 and G′(0) ∼ 1
2 .

Recall from Proposition 1.1.11 that profile instabilities in the intermediate regime may occur

when τ � 1. Whether drift or profile instability occurs first depends on the scaling of A as

we now show. For the profile instability in the intermediate regime, we have from Proposition

1.1.11:

τhl =
A4

9ε2
tanh4(l/k)τ0h.

On the other hand, we derived that the drift instabilities in the high regime regime occur when

τ is increased beyond

τhs =
1

εαA
τdh.

Using (1.79), in the intermediate regime this reduces to:

τhs =
3

2εA2
coth(l/k)τdh
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Equating τhs = τhl leads to the following threshold.

Proposition 1.2.10 Let

Ac =

√
3

21/6
ε1/6 coth5/6(l/k)τ

1/6
dh τ

1/6
0h = 1.404ε1/6 coth5/6(l/k)τ

1/6
dh

where τdh is defined in Theorem 1.2.7 and is listed in 1.117.

If A < Ac then oscillatory profile instability occurs before the drift instability. If A > Ac then

the drift instability occurs before the oscillatory profile instability.

For the infinite line case l = ∞, we have

Ac = 1.578ε1/6.

Full numerical simulations indicate that the Hopf bifurcation corresponding to oscillatory profile

instability is subcritical, and as such, leads to the eventual collapse of the spikes. Thus in order

to observe drift instability, we must take A > Ac.

To verify the correctness of our theory, we consider several numerical examples. To perform

numerical simulations in 1D, we have discretized the problem in space, reducing it to n ODE’s

that are to be solved in time. We then used a code of [34] that implements an explicit Runga-

Kutta code of order 4-5 with stepsize control.

Example 1. We consider a one-spike solution with k = 1, A = 1.3, l = 2, ε = 0.03, D = 1.

For our initial condition, we took a spike slightly off-center, centered at x = 0.1. From (1.50)

we have B = 1.25 and from Table 1.80 we find α = 1.13. From (1.110b) we have β = 4. From

Table 1.117 we find that

(τdh)j=1 = 2.02, τd+ = 2.8.

From (1.109) we have τ = 22.7τd so that that the theoretical prediction for the oscillatory drift

and the merging bifurcation is:

τh ∼ 46, τ+ ∼ 64
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Using direct numerical simulation of (1.1) with these parameter values, we observe that the

spike is stationary for τ < 55, whereas the slow oscillatory drift is observed for 58 < τ < 73,

settling into a periodic motion. For τ > 73, the spike the drift instability causes an eventual

extinction of the spike. See Figure 1.9. An interesting behaviour is observed when τ = 72.

In this case, the amplitude of the drift is rather large. When the spike center approaches the

edge of the domain, it triggers an oscillatory profile instability, so that fast oscillations in spike

height are observed at that point. While the analysis of the oscillatory profile instability given

in §1.1.3 was done for the spike at equilibrium position – and so is insufficient to explain the

observed oscillations – it is possible to extend this analysis for spikes at arbitrary positions, as

was done in [39] for the Gierer-Meinhardt model.
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Figure 1.9: Example 1. Plots of the height and center of a single spike vs. time for four different
values of τ. Top figure: the height v(x0) plotted vs. time, where x0 is the center of the spike.
Bottom figure: x0 vs. time. Here, k = 1, A = 1.3, l = 2, ε = 0.03, D = 1 and τ is taken to be
57, 66, 72, 74, as indicated in the legend.
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Figure 1.10: Example 2. Here, k = 2, l = 4, τ = 70 and the other parameters are as in Example
1.

Example 2. Next, we consider a two-spike solution with k = 2, l = 4 and other parameters

as in Example 1. The equilibrium state is then the same as in Example 1, but copied twice.

Thus we obtain, as in Example 1,

(τdh)j=2 = 2.02, (τdh)j=1 = 2.16, τd+ = 2.8

Here, j = 2 corresponds to the asynchronous mode and j = 1 corresponds to the synchronous

mode. Therefore we obtain:

τh,asynchronous ∼ 46, τh,synchronous ∼ 49, τ+ ∼ 64

In Figure 1.10 we plot the solution for τ = 70. The top subfigure shows the positions of the

centers x1 and x2 as a function of time. Initial configuration was taken to be two spikes located

at 2.1 and -1.9. In the bottom subfigure we plot the sum and the difference in the position
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of the spikes, respectively. A changing sum or difference indicates instability with respect

to synchronous or synchronous mode, respectively. Since τh,asynchronous and τh,synchronous are

within 3 units of each other, and since τ = 70 was found about 13 units away from τh = 57

of example 1, we expect that both synchronous and asynchronous modes are unstable with

τ = 70. Indeed, for t < 1300, this appears to be the case as the amplitude of both x1 − x2

and x1 +x2 increases over time. However at a later time, the synchronous mode appears to die

out, and asynchronous mode dominates. This appears to contradict the theory. A resolution

of this paradox is that the oscillations happen far from the asynchronous bifurcation point and

therefore linear theory is only applicable for relatively small values of t/ε.

1.3 Discussion

Most of the results presented in this chapter have been previously reported in [74] and [44]. The

methods used in §1.1 were first derived in [40] and [77] to analyse instabilities in the Gierer-

Meinhardt model. In addition to the large eigenvalue analysis of the low-feed regime of §1.1, it is

also possible to carry out the small eigenvalue analysis as was done in [44] for the GS model, or

[40] for the GM model. Unlike the intermediate and high-feed regime, the small eigenvalues can

be unstable in the low-feed regime even with τ = 0, when A is near the saddle-node point Ake

and k > 1. Moreover, they become unstable through a saddle-node bifurcation, not through a

Hopf bifurcation as in high or intermediate-feed regime. The corresponding small eigenvalues

are always real, so one does not observe the oscillatory drift in such a case.

In the low-feed regime, there also exists asymmetric equilibria, whereby the k-spike solution at

equilibrium may have spikes of precisely two different heights. As was shown in [74], asymmetric

solutions bifurcate from the symmetric solution through a saddle-node bifurcation at precisely

the same point where the small eigenvalues change their sign. These bifurcations are illustrated

in Figure 1.11

Finally, the following equivalence principle between the one-dimensional Gierer-Meinhardt model

(2) and the low-feed regime of the Gray-Scott model (1.1) is shown in [74].
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Figure 1.11: Bifurcation diagram of symmetric and asymmetric spike patterns in the low-feed
regime, for k = 1, 2, 3, 4. Solid curves represent symmetric solution branch and dotted curves
represent asymmetric solutions bifurcating from the symmetric branch at the points •. The
saddle-node values Ake, represented by ?, increase with k. The part of the solid curve below
(above) ? is unstable (stable) with respect to large eigenvalues. The part of the solid curve
below (above) • is unstable (stable) with respect to small eigenvalues.

Proposition 1.3.1 Consider a k-spike equilibria solution to the Gray Scott model in the low-

feed regime, as derived in Proposition 1.1.1. The eigenvalues of the linearized problem of the

Gray Scott model are exactly the same as the eigenvalues of the k spike solution to the Gierer-

Meinhardt model (2) with Ω = [−l, l] and with the exponent set (p, q,m, s) = (2, s, 2, s), where

s is defined in (1.18e).

However the intermediate and high-feed regime of the Gray Scott model exhibit certain phe-

nomena that have not been observed in the Gierer Meinhardt model.

There have been several related works on Gray Scott model before [74] and [44]. Of particular

interest to us is the work of Doelman and collaborators ([16]-[21], [55]) and the work of Muratov

and Osipov [57]-[60]. The main difference between their work and [44], [74] is that they only

consider the case of a single spike k = 1 on an entire space l = ∞, whereas we also consider a

bounded domain. Below we review and compare their results with ours.
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We start with low-feed and intermediate regimes. The k spike symmetric equilibria corresponds

to periodic solutions on the entire space. Existence of such periodic solutions has been rigorously

proven in the low-feed and intermediate feed regime in [55] using dynamical system techniques.

However their stability analysis is restricted to a single spike on the entire domain. In particular,

they do not have the overcrowding instability threholds lk derived in Theorem 1.1.7. This

instability is specific to having multiple spikes on a bounded domain in a low-feed regime,

whose stability neither Doelman et al. nor Muratov and Osipov consider. In [18] and [19]

Doelman et al also study the oscillatory profile instabilities for a single spike on the entire

space, in the intermediate regime. They use the hypergeometric functions in their analysis of

the corresponding eigenvalue problem. They also show the existence of the Hopf bifurcation

which initiates the oscillatory profile instability, as we have done in Proposition 1.1.11. However

their proof relies on the properties of hypergeometric functions. Our approach does not require

their use. In addition we also consider multiple spikes, which they do not. The possibility of

asynchronous profile instability (for example in the case of two spikes) is is specific to multiple

spikes and does not occur with a single spike.

Next we compare the results in the high-feed regime. The pulse-splitting has been numerically

observed in [15, 17, 66]. However no analysis of it is given there. The first analysis appears in

[57] where they also derive the dimple eigenfunction of Figure 1.7 at the fold point B = 1.35. In

[57] they also observe numerically the connection between one and two-bump solution which we

beleive is the underlying cause of pulse-splitting. However the Proposition 1.2.1, which predicts

the minimum number of pulse-splitting events is new, as [57] only considers a single spike on

an entire space.

Finally, the drift instability in the intermediate regime has been analysed in [60], for a single

spike on the entire space. In [16], Doelman, Eckhaus and Kaper also derive the equation of

motion of the center of the spike in the intermediate regime, for the case of two spikes on the

entire space moving away from each other. However in both of these, the drift is not oscillatory,

because in the limit l → ∞, the Hopf bifurcation is replaced by a saddle-node bifurcation as

τdh ∼ 2 ∼ τ+ (see discussion after Table (1.117)). The oscillatory drift is specific to having
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a finite domain. In addition, we also analyse the small eigenvalues for the high-feed regime,

giving a hybrid analytic-numerical result of Theorem 1.2.4.

Several open problems remain. In [77], the existence of the Hopf bifurcation with respect to

oscillatory profile instabilities was proven. Numerical evidence indicates that it is unique, but

we cannot show this at the moment. Another open problem is to prove Conjecture 1.2.8,

which states that asynchronous drift instabilities always occur before the synchronous ones.

Indeed, numerical simulations suggest a stronger result is true: the the end state is always an

asynchronous oscillation, even with the synchronous mode unstable.

A central open problem in the high-feed regime is to show the connection between one and

two bump solutions, which would prove the dissapearence of the equilibria state, leading to

pulse splitting. This connection seems to be a generic phenomenon. It is also present in the

Gierer-Meinhardt model (2) when the ratio of diffusivities D/ε2 is of O(1) [69] as well as in the

Gray-Scott model when O(D) = O(ε2) [63].
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Chapter 2

Stripe and ring-like solutions of the
Gray-Scott model in two dimensions

In this chapter we continue our study of the Gray Scott model (7). As in §1, we assume without

loss of generality that D = 1.





vt = ε24v − v +Av2u

τut = 4u− u+ 1 − v2u
, x ∈ Ω

∂nv = 0 = ∂nu, x ∈ ∂Ω.

(2.1)

We consider stripe and ring-like solutions, where the domain is either a rectangle or a disk,

respectively. Such solutions are one-dimensional in nature, and many of the techniques from

Chapter 1 are then applicable with some modifications. We consider three types of instabilities

of such solutions. First, a breakup instability, which results in a breakup of a ring or a stripe

into m spots. Second, a zigzag instability, which causes the formation of a zigzag pattern.

Finally, a splitting instability, causing a stripe or a ring to split into two. These instabilities are

illustrated in Figure 2.1.

We show that breakup and zigzag instabilities always exist for either the low, intermediate or

high-feed regimes, whereas the splitting instability occurs only in the high-feed regime. The

method of analysis of the zigzag instability is similar to the analysis of the slow oscillatory drift

instability discussed in Chapter 1. Alternatively, the breakup instabilities on the other hand,

are similar to the overcrowding instability for the low-feed regime, which was also discussed in

Chapter 1.
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Figure 2.1: Three different instabilities of a stripe: a single stripe splits into two at t ∼ 0;
a zigzag instability is visible at t ∼ 70; followed by a breakup instability at t ∼ 80. The end
steady state consists of two spots and four half-spots. The domain size was set to [−2, 2]× [0, 1],
with ε = 0.07, A = 2, τ = 1.

The results for the splitting instability for a stripe are equivalent to the corresponding results for

a splitting instability of a one-dimensional spike. A similar technique also yields a corresponding

result for ring splitting. In contrast to stripe splitting, the ring radius enters into the formula

which involves Bessel functions.

We also perform numerical computations in the regime where the ratio of the diffusivities is of

O(1). We find the existence of labyrinth-like patterns and space-filling curves, such as shown

in Figure 2.2.

This chapter is organized as follows. In §2.1 we study the low-feed regime A = O(ε1/2). In

§2.1.1 we derive the equations of motion for a ring radius in the low-feed regime, using a

Melnikov-type calculation. We then prove the existence of a ring radius r0 for which the ring

is at equilibrium. In §2.1.2 we study the breakup instability of ring and stripe solutions in

the low-feed regime. Stripe solutions in the intermediate and high-feed regimes are considered

in §2.2. We characterize both zigzag and breakup instability bands for stripes in §2.2.1 and

52



−2 0 2
0

1

2

3

4
t= 424

−2 0 2
0

1

2

3

4
t= 689

−2 0 2
0

1

2

3

4
t= 917

−2 0 2
0

1

2

3

4
t= 1947

−2 0 2
0

1

2

3

4
t= 4098

−2 0 2
0

1

2

3

4
t= 17984

Figure 2.2: Development of a labyrinth-type pattern in the Gray-Scott model. Here, we take
ε = 0.5,Ω = [0, 40]2, A = 2, τ = 1.

§2.2.2, respectively. For the intermediate regime explicit thresholds are derived whereas in the

high-feed regime we present hybrid numeric-analytic results. In §2.3 we derive the analogous

results for a ring in the high-feed and the intermediate regime. In the high-feed regime, we also

derive a threshold on A above which the equilibria solution ceases to exist and ring splitting

occurs. Some numerical simulations are given in §2.4. We conclude with a brief discussion

section §2.5.

2.1 Ring and stripe solutions in the low-feed regime

In this section we study the equilibria and stability of stripes and rings for the two-dimensional

Gray Scott model in the low-feed regime A = O(ε1/2). Using the same scaling as in (1.5) and

setting as before D = 1, our starting point is the following system:




νt = ε24ν − ν + Aν2u

τut = 4u− u+ 1 − 1
εν

2u
, x ∈ Ω

∂nν = 0 = ∂nu, x ∈ ∂Ω

(2.2)
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where A = ε−1/2A. As usual, we proceed by first describing the equilibrium state and then

looking at its perturbations.

2.1.1 Ring equilibria solutions

We first consider the equilibria solutions. Since the stripe equilibria is simply a trivial extension

of a one-dimensional spike solution, in this section we concentrate on the less trivial case of a

ring solution. We assume that the domain is a ball of radius R in R
N , N ≥ 2:

Ω = BR = {x = (x1, x2, · · · , xN ) : |x| < R} .

We will also allow the case of entire space R = ∞. A ring solution is a solution that concentrates

on a ring {|x| = r0} of radius r0, as ε → 0. In this section we derive an ODE which describes

the slow evolution of r0 in time. We then show that such ODE always admits an equilibrium

in the case R < ∞. When R = ∞, the equilibrium may or may not exist, depending on the

value of the parameter A.

To derive the ODE for the ring radius r0, we start with the following anzatz for the solution:

ν =
1

AU0(0)
(w(y) + εV1(y) + . . .) , y =

r − r0
ε

, r = |x|, r0 = r0(ε
2t), (2.3)

u = U0(y) + εU1(y) + . . . . (2.4)

The leading order equation for u is U ′′
0 = 0. Thus U0(y) = U0 is constant. The equation for w

on −∞ < y <∞ then becomes

w′′ − w + w2 = 0, w′(0) = 0, w(0) > 0. (2.5)

It follows that w = 3
2 sech2(y/2) as in (1.7). At next order, we obtain the following system:

L0V1 = −r′0w′ − N − 1

r0
w′ − w2U1

U0
where L0V1 = V ′′

1 − V1 + 2wV1, (2.6a)

U ′′
1 =

w2

A2U0
. (2.6b)

Using the self-adjointness property of L0, the solvability condition for (2.6a)

∫
w′L0V1 = 0,
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and therefore we have

(
r′0 +

N − 1

r0

)∫
w′2 = −

∫
w2U1w

′

U0
=

1

3U0

∫
w3U ′

1. (2.7)

Note that U1 may be discontinuous at the origin. To evaluate the integral on the right hand

side of (2.7), we obtain ∫
w3U ′

1 =

(
U ′

1(−∞) + U ′
1(∞)

2

)∫
w3. (2.8)

This is seen as follows. Integrating (2.6b) and using the even symmetry of w, we have:

U ′
1(y) =





1
U0A2

(∫ y
0 w

2 −
∫∞
0 w2

)
+ U ′

1(∞), y > 0,

1
U0A2

(∫ y
0 w

2 +
∫∞
0 w2

)
+ U ′

1(−∞), y < 0

Thus

∫
w3U ′

1 =

(∫ 0

−∞
+

∫ ∞

0

)
w3U ′

1 =

∫
w3

(
1

U0A2

∫ y

0
w2 +

U ′
1(−∞) + U ′

1(∞)

2

)

Using the fact that w3(y)
(∫ y

0 w
2
)

is an odd function yields (2.8). This shows the claim. Finally,

using (1.7) we have ∫
w′2 =

6

5
,

∫
w3 =

36

5
.

This leads to the following ODE for the ring radius r0:

r′0 +
N − 1

r0
=
U ′

1(−∞) + U ′
1(∞)

U0
. (2.9)

We now evaluate the right hand side by using the asymptotic matching with the outer solution.

We obtain

U0 = u(r0), U ′
1(±∞) ∼ u′(±r0) (2.10)

and,

urr(r) +
N − 1

r
ur(r) − u(r) ∼ −1 +

1

ε

1

A2U2
0

w2(y)u(y) ∼ −1 +
1

A2U0
δ(r − r0)

∫
w2

where δ is the delta function. Using
∫
w2 = 6, we may then write:

u ∼ 1 − 6

A2U0
G(r, r0), (2.11)

55



where G is the Green’s function satisfying

Grr +
N − 1

r
Gr −G = −δ(r − r0) (2.12a)

with boundary conditions

Gr(0, r0) = 0 = Gr(R, r0). (2.12b)

It is easy to see that

G(r, r0) =
1

W





J1(r)J2(r0) if r < r0

J1(r0)J2(r) if r0 < r,
(2.13a)

where W is defined by

W = J ′
1(r0)J2(r0) − J1(r0)J

′
2(r0) (2.13b)

and where J1, J2 satisfy

Jrr +
N − 1

r
Jr − J = 0 with J ′

1(0) = 0 and J ′
2(R) = 0. (2.13c)

We write the solution to (2.13c) as

J1(r) = I(r), J2(r) = K(r) − K ′(R)

I ′(R)
I(r), (2.13d)

where I and K satisfy (2.13c) but with R replaced by ∞. Note that in the case N = 2, I,K

are Bessel’s functions of order 0. We may always scale J1 and J2 so that

W = J ′
1(r0)J2(r0) − J1(r0)J

′
2(r0) =

N − 1

r0
. (2.14)

In particular, when N = 2, (2.14) is satisfied with J1, J2 as given in (2.13d). With the above

scaling for N ≥ 2, we obtain

G(r0, r0) =
r0

N − 1
J1(r0)J2(r0). (2.15)

Therefore, from (2.10) and (2.11) we obtain

U0 = 1 − 6

A2U0

J1(r0)J2(r0)

W , (2.16a)

U ′
1(∞) + U ′

1(−∞) = − 6

A2U0

(J1(r0)J2(r0))
′

W , (2.16b)

U ′
1(∞) + U ′

1(−∞)

U0
= −s(J1(r0)J2(r0))

′

J1(r0)J2(r0)
where s =

1 − U0

U0
. (2.16c)

Substituting (2.16c) into (2.9) we then obtain the following proposition:
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Proposition 2.1.1 Let Ω = BR be the ball of radius R. In the low-feed regime A � ∞, the

Gray-Scott model (2.2) admits a solution of the form

ν ∼ 1

AU0
w

(
r − r0
ε

)
, r = |x|, r0 = r0(ε

2t), u ∼ U0, for |r − r0| = O(ε) (2.17)

where w is given by (1.7), U0 satisfies (2.16a) and r0 satisfies the following ODE:

d

dt
r0 = −ε2

{
N − 1

r0
+ s

(J1(r0)J2(r0))
′

J1(r0)J2(r0)

}
where s =

1 − U0

U0
. (2.18)

Here, J1, J2 are defined in (2.13).

We now study the existence of equilibria of the ODE (2.18). We set r′0 = 0 in (2.18) and

eliminate U0 using (2.16a). This yields

A2 = −6G(r0, r0)
(1 − γ)2

γ
where γ =

r0
N − 1

(J1(r0)J2(r0))
′

J1(r0)J2(r0)
, (2.19a)

U0 =
γ

γ − 1
. (2.19b)

A graph of r0 versus A2 for N = 2 and R = 5,∞ is given in Figure 2.3. When R = 5, the graph

shows that A2 blows up as r0 → rR where rR = 3.943 is a root of γ. Moreover, A2 > 0 for

r0 ∈ (0, rR) and all values of A are attained on that interval. On the other hand, when R = ∞,

A remains bounded for any r0, as shown on Figure 2.3. We show the following:

Proposition 2.1.2 Suppose that R < ∞, N ≥ 2. Then there exists an rR ∈ (0, R) which

satisfies

[J1(rR)J2(rR)]′ = 0. (2.20)

Moreover, for any A > 0 with A = O(1), there exists r0 ∈ (0, rR) and U0 ∈ (0, 1
2) such that

ν ∼ 1

AU0
w

(
r − r0
ε

)
, r = |x|, u ∼ U0 (2.21)

and r0, U0 satisfies (2.19).

Suppose that R = ∞, N ≥ 2. Then there exists Ac ≥
√

12 such that for any A ∈ (0,Ac), the

solution to (2.19) with r0 > 0, U0 ∈ (0, 1
2) exists, and (2.21) holds.
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Figure 2.3: Plot of r0 versus A2, with R = 5 (solid curve) and R = ∞ (dashed curve). In the
case R = 5, note the singularity at rR = 3.943.

Proof. To show the existence of rR for finite R, note that (J1J2)
′(R) = J ′

1(R)J2(R) > 0 whereas

(J1J2)
′(0) = J1(0)J

′
2(0) < 0. Thus (J1J2)

′ has a root in (0, R). Let rR be the first such root.

Thus γ < 0 for r0 ∈ (0, rR).

We next show that when A satisfies the conditions of the proposition, there exists a solution

r0 to (2.19a) with γ < 0 at that point. There are two cases to consider.

• Case R <∞ : Since γ → 0− as r0 → r−R , we see that A2 blows up as r0 → r−R . Moreover,

using (2.15) and (2.19a), it is easy to show that A → 0 as r0 → 0. This shows the

existence of solution r0 ∈ (0, rR) to (2.19a) for any given A > 0 when R is finite, and the

corresponding value of γ satisfies γ < 0.

• Case R = ∞ : In this case, we first claim that γ < 0 for all r0 > 0. Since J1, J2 > 0, this is

equivalent to showing that u(r) = r(J1(r)J2(r))
′ is always negative. After some algebra,

we obtain

u′′(r) +
N − 1

r
u′(r) − 4u(r) = 2NJ1(r)J2(r). (2.22)
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Note that J1J2 > 0, u(y) ∼ −(N − 1)C 1
yN−1 as y → ∞, and

u ∼





−C, N = 2

−(N − 2)Cy2−N , N > 2
as y → 0.

In the equation above, C is some positive constant that may change from line to line.

Thus u is negative on the boundary of an annulus {x : ε < |x| < R}, for any R big enough

and any ε small enough. It then follows from the positivity of J1J2 and the comparison

principle that u is negative everywhere on that annulus. Since ε and R are arbitrary,

u(r) < 0 for all r > 0.

A simple calculation shows that for R = ∞,

γ(r) ∼ −1 +
N − 3

4r2
+O(

1

r3
), r → ∞,

G(r, r) ∼ 1, r → ∞

But then A2 → 12 as y → ∞. This shows the existence of Ac ≥
√

12, as well as the

existence of r0 ∈ (0,∞) satisfying (2.19a) whenever A ∈ (0,Ac).

This establishes the existence of r0 > 0 solving (2.19a) with γ < 0. Next, note that γ < 0

implies that γ
γ−1 ∈ (0, 1). Therefore (2.19b) admits a solution with U0 ∈ (0, 1).

2.1.2 The breakup instability in the low-feed regime

In this section we study the breakup instabilities of stripe and ring solutions in the low-feed

regime. The analysis here parallels the analysis of the large eignevalues in §1.1.2. First, consider

the stripe solution on the rectangular domain

Ω = [−l, l] × [0, d].

Start with a one-dimensional single spike solution on x1 ∈ [−l, l], as derived in Proposition

1.1.1, then extend it trivially in the x2 direction. This yields the leading-order equilibria stripe

solution in the inner region

νe ∼
1

AU w(
x1

ε
), ue ∼ U, (2.23)
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where U = U± is given by (1.11). We consider the following perturbations from the steady

state:

ν = νe + cos(mx2)e
λtφ(x1), u = ue + cos(mx2)e

λtψ(x1). (2.24)

where, to satisfy the Neumann boundary condition, the mode m is an integer multiple of π/d.

We obtain the following linearized problem:

λφ = ε2φ′′ −m2ε2φ− φ+ 2Aνeueφ+ Aν2
eψ, (2.25a)

τλψ = ψ′′ −m2ψ − ψ − 1

ε

(
2νeueφ+ ν2

eψ
)
. (2.25b)

Near the core of the stripe, where x1 � 1, we have

φ ∼ Ψ(
x1

ε
), ψ(x1) ∼ φ(0) = ψ0, (2.26)

Aνeueφ ∼ wΦ,
1

ε
νeueφ ∼ δ(x1)

1

A

∫
wΦ,

Aν2
eψ ∼ 1

AU2
w2ψ0,

1

ε
ν2

eψ ∼ δ(x1)6ψ0
1

A2U2
,

so that

ψ′′ − (1 +m2 − τλ)ψ ∼ 2δ(x1)
1

A

∫
wΦ + δ(x1)6ψ0

1

A2U2
, (2.27)

λΦ = L0Φ +
1

AU2
w2ψ0 (2.28)

From (2.27) we obtain:

ψ0 ∼ Gm(0, 0)

{
2

A

∫
wΦ + 6ψ0

1

A2U2

}
(2.29)

where Gm is the Green’s function satisfying

Gmx1x1
− (1 +m2 + τλ)Gm = −δ(x′1 − x1) (2.30a)

with Neumann boundary conditions at x1 = ±1. We thus have

Gm(0, 0) =
1

2θ
coth(lθ), θ =

√
1 +m2 + τλ. (2.30b)

60



Combining (2.29) and (2.28) we obtain the following non-local eigenvalue problem:

λΦ = L0Φ + χw2

∫
wΦ∫
w2

= 0, χ =
2

σ
Gm(0,0)s + 1

, (2.31)

where s = 1−U
U and σ is given by (1.10) with D = 1. As with Proposition 1.1.6, we therefore

obtain the following instability result:

Proposition 2.1.3 Suppose mε� 1. Let

sm =

√
1 +m2 tanh(l

√
1 +m2)

tanh(l)
, s =

1 − U

U
,

where U is given by (1.11). If s < sm then a single stripe solution given by (2.23) is unstable

with respect to the mode m perturbation given by (2.24). Here, φ is an even function.

If s > sm and τ � 1 then the mode m is stable.

As shown numerically, an instability of this type leads to a breakup of the stripe into m spots.

We therefore refer to this instability as a breakup instability of mode m.

Since sm can be made arbitrary large by choosing large enoughm, we have deduced the following

result:

Corollary 2.1.4 The stripe in a low-feed regime is always unstable with respect to breakup

instabilities for large enough m.

The analysis for a ring in two dimensions is the same, except σ in (2.31) is replaced by GR(r0, r0)

as given by (2.13), and Gm(0, 0) is replaced by GRm(r0, r0), where GRm is the radial Green’s

function of order m, satisfying

d2

d2r
GRm +

1

r

d

dr
GRm − m2

r2
GRm − (1 + τλ)GRm = −δ(r′ − r).

This yields

GRm(r0, r0) = J1m(r0)J2m(r0)r0,
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where

J1m(r) = Im(µr), J2m(r) = Km(µr) − K ′
m(µR)

I ′m(µR)
Im(µr), µ =

√
1 + τλ, (2.32)

where Km, Im are Bessel functions of order m. Thus we obtain the next result.

Proposition 2.1.5 Consider the equilibrium ring solution of radius r0 of Proposition 2.1.2, in

two dimensions, and consider the breakup perturbation of the form

ν(r) + cos(mθ)eλtφ(r) (2.33)

with φ even, and mε� O(1). Let

sm =
J1(r0)J2(r0)

J1m(r0)J2m(r0)
, s =

1 − U0

U0
,

where

J1m(r) = Im(r), J2m(r) = Km(r) − K ′
m(R)

I ′m(R)
Im(r), J1 = J10, J2 = J20,

and U0 is given in (2.16a). Then the equilibrium solution νe is unstable with respect to the

breakup mode m (2.33) if s < sm. Conversely, if s > sm and τ � 1 then the mode m is stable.

Note that J1m(r0)J2m(r0) = O(1/m) as m→ ∞. Therefore, as with stripes, we have

Corollary 2.1.6 The ring solution in a low-feed regime is always unstable with respect to

breakup instabilities for large enough m.

We remark that from our numerical computation, we find that in the case R = ∞, the mode

m = 1 is always unstable.

Finally, we consider the case m = m0

ε with m0 = O(1). Then the linearized problem (2.25) for

the stability of the stripe stripe becomes

(λ+m2
0)φ = ε2φ′′ − φ+ 2Aνeueφ+ Aν2

eψ, (2.34a)

τλψ = ψ′′ − m2
0

ε2
ψ − ψ − 1

ε

(
2νeueφ+ ν2

eψ
)
. (2.34b)
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It follows from (2.34b) that ψ ∼ 0 in the inner region, and after changing variables as in (2.26)

we obtain

(λ+m2
0)Φ = L0Φ,

where L0 is defined in (1.16). From Lemma 1.1.4, L0 has a single positive eigenvalue 5
4 . Thus

we obtain Reλ ≤ 5
4 −m2

0. The calculation for a ring is identical except that m2
0 gets replaced

by
m2

0

r2
0

. The result is summarized as follows:

Proposition 2.1.7 The stripe solution in the low-feed regime is stable with respect to breakup

instabilities of mode m = m0

ε for all m0 satisfying m2
0 >

5
4 .

The ring solution of radius r0 is stable with respect to breakup instabilities of mode m = m0

ε for

all m0 satisfying
m2

0

r2
0

> 5
4 .

Corollaries 2.1.4, 2.1.6 and Proposition 2.1.7 establish the existence of a wide instability band

for the breakup instabilities in the low-feed regime, for either stripes or rings. The upper bound

is m = O(1
ε ) and the lower bound is of O(1). As we will see below, an instability band also

exists for the intermediate and high-feed regime.

2.2 Stripe in the Intermediate and high-feed regime

In this section we discuss the stability of a stripe solution in high and intermediate regimes of

the Gray Scott model in two dimensions 2.1.

The equilibria stripe solution in the high-feed or intermediate regime is constructed by taking

the one-dimensional pulse solution constructed in §1.2.1 and trivially extending it in the x2

direction. In this way we obtain the following equilibrium state:

Proposition 2.2.1 Let Ω = [−l, l] × [0, d]. Let

B = tanh(l)A.

Suppose A� O(ε1/2) and B < 1.347. Then there exists a stripe solution to (2.1) of the form

v ∼ 1

ε
V0(y), u ∼ ε

A
U0(y), y =

x1

ε
,

63



where V0(y), U0(y) satisfy (1.42) with boundary conditions

V0(0) = 0 = U0(0), V0(∞) = 0, U ′
0(∞) = B. (2.35)

In the intermediate regime B = 3δ where ε1/2 � δ � 1, U0 and V0 are given in Proposition

1.2.2.

2.2.1 Zigzag instabilities of a stripe

We now study the stability with respect to the small eigenvalues of the stripe equilibrium

solution constructed in Proposition 2.2.1. The shape of these instabilities causes the stripe to

develop a zigzag-type pattern in the transversal direction.

We introduce a perturbation around the equilibrium state:

v(x) =
1

ε

(
V (y) + eλteimx2Φ(y)

)
,

u(x) =
ε

A

(
U(y) + eλteimx2N(y)

)
where y =

x1

ε
.

Here, V,U satisfy (1.40), and m is an integer multiple of π/d. The equations for Φ, N on

−∞ < y <∞ become:

λΦ = Φ′′ −m2ε2Φ − Φ + V 2N + 2V UΦ, (2.36)

τε2λN = N ′′ −m2ε2N − ε2N − V 2N − 2V UΦ.

From (2.36), it is clear that there are several cases to consider, depending of the magnitude of

m. First we consider the case m = O(1). Then, for small eigenvalues, we expand

Φ = Φ0 +AεΦ1 + . . . , N = N0 +AεN1 + . . . , λ = Aελ0 + . . . .

The equations for Φ0, N0 and Φ1, N1 are then exactly the same as in §1.2.2 and are given by

(1.84) and (1.85), respectively. Therefore the analysis of the inner region is exactly the same as

in the proof of Theorem 1.2.4 up to (1.93). In particular we obtain as before Φ0 = V ′
0 , N0 = U ′

0,

and the mode m plays no effect there. For the outer region, we set

v = ve(x1) + eλt cos(mx2)φ(x1) , u = ue(x1) + eλt cos(mx2)η(x1), (2.37)
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where ve, ue is the equilibrium stripe solution to (2.1), to obtain the following problem for the

η in the outer region:

ηxx − (1 + τλ+m2)η = ηv2
e + 2ueveφ . (2.38)

Comparing this with (1.94), we see that the only difference is that 1 + τλ gets replaced by

1 + τλ+m2. Following the rest of the computations with this replacement, we have therefore

shown the following result regarding the small eigenvalues for a stripe:

Proposition 2.2.2 Consider a single stripe equilibrium solution (U0, V0), of (2.1) in the high-

feed and intermediate regimes, as given by Propositions 1.2.1 and 1.2.2, respectively. There

exists an instability the form

U ∼ U0(y + cemx2eλt), V ∼ V0(y + cemx2eλt),

where m = O(1), y = x1

ε , c is a small constant, and λ is given by:

λ ∼ −εAα (1 − θ tanh θl tanh l) , (2.39)

where

θ =
√

1 + λτ +m2,

and α is a positive constant whose definition is given in Proposition 1.2.4.

Assuming τ � O(1
ε ), (2.39) reduces to:

λ = −Aεα
(
1 −

√
m2 + 1 tanh (l) tanh(l

√
m2 + 1)

)
. (2.40)

Thus λ is negative for small m but is positive if m is big enough. The threshold of stability

occurs for m = ml, satisfying

1 −
√
m2 + 1 tanh (l) tanh(l

√
m2 + 1) = 0. (2.41)

The graph of l versus the first unstable mode ml is shown in Figure 2.4.

In particular, the lowest unstable mode ml is ml ∼ 0 as l → ∞. Additionally, it easy to see

that ml ∼ z
l as l → 0 where z = 1.1997 is the unique root of z tanh z = 1.
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Figure 2.4: Plot of the domain half-length l versus the lowest unstable mode ml. Above this
curve we have instability.

Next, we consider the case O(1) � m� O(1
ε ). Then in the inner region, we expand the solution

to (2.36) as

λ = mελ0 + . . . , Φ = V ′
0 + εmΦ1 + . . . , N = U ′

0 + εmN1 + . . . . (2.42)

We then obtain that Ψ1, N1 satisfy the following system of −∞ < y <∞ :

λ0V
′
0 = Φ′′

1 − Φ1 + V 2
0 N1 + 2V0U0Φ1, (2.43a)

0 = N ′′
1 −N1V

2
0 − 2V0U0Φ1. (2.43b)

To determine λ0, we multiply (2.43a) by the adjoint solution Ψ† which satisfies (1.88). By

integrating over the domain, we obtain that

∫
Ψ†LΨ = Ψ†

2(∞)
[
N ′

1(∞) +N ′
1(−∞)

]
= λ0

∫
Ψ†

1V
′
0 . (2.44)

To determine N1(±∞), we match the inner solution N with the outer solution η, as in (1.96)-

(1.97b). We have:

η(x1) = ε
(
U ′

0

(x1

ε

)
+ εmN1

(x1

ε

))
,

η′(x1) =
(
U ′′

0

(x1

ε

)
+ εmN ′

1

(x1

ε

))
,
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and also U ′′
0 (±∞) = 0. It follows that

N ′
1(±∞) =

1

εm
η′(±0). (2.45)

Note that η satisfies (2.38). Assuming that λτ � O(m2), we therefore obtain

η′′ −m2η ∼ 0, x1 6= 0

and

η(0±) ∼ ±εB = ±εA tanh(l), η′(±l) = 0.

Since m is large, we obtain that

η ∼ εBe−m|x|. (2.46)

Combining (2.45) and (2.46) we obtain

N ′
1(∞) +N1(−∞) = −2B.

Recalling (2.44), (2.42) and (1.102) we finally obtain

λ0 ∼ αA tanh l, (2.47a)

λ ∼ αmεA tanh l. (2.47b)

This computation shows that in the high-feed regime, all of the modesm with O(1) � m� O(1
ε )

are indeed unstable, whenever α > 0. As a remark, (2.47b) can be obtained formally by taking

the limit m� 1 in (2.39).

Equation (2.47b) is valid uniformly in the high-feed regime A = O(1), for 1 � m� 1
ε . However

in the intermediate regime, this computation is not uniformly valid. This is because we have

not included the term ε2m2Φ0 in the second order equations (2.43a). However as m is increased,

the order of this term will eventually balance O(εmΦ1). To see when this balance occurs, we

formally rewrite (2.43a), but include the term ε2m2Φ0 = ε2m2V ′
0 :

λ0V
′
0 = Φ′′

1 −mεV ′
0 − Φ1 + V 2

0 N1 + 2V0U0Φ1.
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Proceeding as before, this leads to (2.47a) but with λ0 replaced by λ0 +mε :

λ0 +mε ∼ αA tanh l. (2.48)

Using (1.79), (1.50) this can be written as

λ ∼ mε(6δ2 −mε). (2.49)

Thus (2.47a) is valid in the intermediate regime only when O(1) � m� O( δ2

ε ). However (2.48)

is valid uniformly for O(1) � m ≤ O
(

δ2

ε

)
. Equation (2.48) also yields the upper threhold mu

on the instability band:

mu ∼ 6δ2

ε
. (2.50)

Recall that δ � O(ε1/2); thus we indeed have mu � 1.

Finally, we consider the case m = O(1
ε ). We set

m = m0
1

ε

with m0 = O(1). The leading order linearized equations then become:

(λ+m2
0)Φ0 = Φ′′

0 − Φ0 + V 2
0 N0 + 2V0U0Φ0, (2.51a)

m2
0N0 = N ′′

0 − V 2
0 N0 − 2V0U0Φ0. (2.51b)

We first consider the intermediate regime. Using (1.62) we obtain:

V0U0 = w + δ2(v1 + u1w) + . . .

V 2
0 = δ2w2 + δ42wv1 + . . .

Thus we expand:

Φ0 = Φ00 + δ2Φ01 + ...,

N0 = N00 + δ2N01 + ...

Since we are looking for odd solutions, we must also assume

m0 = δµ + . . . , λ = λ0δ
2 . . . .
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The leading order equation for Φ01 then becomes:

0 = L0Φ00, 0 = N ′′
00 − 2wΦ00,

where L0Φ = Φ′′ − Φ + 2wΦ. Thus we obtain:

Φ00 = w′, N00 = u′1.

Equation for Ψ01 at next order is then

(µ2 + λ0)w
′ = L0Φ01 + w2u′1 + 2(v1 + u1w)w′. (2.52)

Multiplying by w′, integrating, and using the self-adjointness of L0, we obtain:

(µ2 + λ0)

∫
w′2 =

∫
w2u′1w

′ + 2(v1 + u1w)w′2.

Next, we differentiate (1.62b) to obtain:

L0v
′
1 = −w2u′1 − 2(v1 + u1w)w′.

Multiplying this expression by w′ and integrating, we obtain that the right hand side of (2.52)

is zero. This yields

λ0 ∼ −µ2, λ ∼ −(εm)2. (2.53)

This shows the stability of the higher modes m = O( δ
ε). As a remark, note that (2.53) can

also be obtained by taking a limit mε � δ2 in (2.48). Thus (2.48) is valid uniformly for all

O(1) � m. Combining together (2.48) and (2.39) we can write a uniformly valid formula for

the small eigenvalues in the intermediate regime:

Proposition 2.2.3 Consider a single stripe equilibrium solution (U0(x1), V0(x1)), of (2.1) in

the intermediate regimes, as given by Proposition 1.2.2, and suppose that τ ≤ O(1). Then the

small eigenvalue λ corresponding to the mode m as in Proposition 2.2.2 is given by:

λ ∼ mε

{
6δ2

[√
m2 + 1

m
tanh(

√
m2 + 1l) − coth l

m

]
−mε

}
(2.54)
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Here, δ is as in Proposition 1.2.2, and (2.54) is valid for all 0 ≤ m ≤ O
(

δ
ε

)
. This eigenvalue

is unstable if and only if ml < λ < mu, where ml is the root of the transcendental equation

1 =
√
m2

l + 1 tanh(l) tanh(l
√
m2

l + 1), (2.55)

and

mu ∼ 6δ2

ε
.

The graph of l versus ml is shown on Figure 2.4.

In the high-feed regime, the system (2.51) can only be solved numerically. To do so, we discretize

(2.51) on a long interval [0, L] using centered finite differences, ensuring that Φ0 and N0 are

odd functions so that N0(0) = Φ0(0) = 0. Choosing a meshsize h = L/n, where n > 1, we label

y1 = h and yn = L. This leads to the discrete eigenvalue problem

(
M−

(
1 +m2

0

)
I + Λ2

)
Φ0 + Λ1N0 = λΦ0 ,

(
M−m2

0I − Λ1

)
N0 = Λ2Φ0 , (2.56a)

so that
(
M−

(
1 +m2

0

)
I + Λ2 + Λ1

(
M−m2

0I − Λ1

)−1
Λ2

)
Φ0 = λΦ0 . (2.56b)

Here Φ0 = (Φ0(y1), . . . ,Φ0(yn))t, N0 = (N0(y1), . . . , N0(yn))t, and the matrices Λ1, Λ2, and

M, are defined by

Λ1 ≡




V 2
0 (y1) 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · V 2
0 (yn)




, Λ2 ≡




2U0(y1)V0(y1) 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · 2U0(yn)V0(yn)




,

(2.56c)
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and

M ≡ 1

h2




−2 1 0 · · · 0 0 0

1 −2 1
. . .

. . . 0 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

0 0
. . .

. . . 1 −2 1

0 0 0 · · · 0 2 −2




. (2.56d)

Our computational results show that there is a critical value m0u of m0 for which Re(λ) < 0

for m0 > m0u and Re(λ) > 0 for m0 < m0u. This re-stabilization value m0u is computed

numerically from the discrete eigenvalue problem using LAPACK [2] on a domain with L = 12

and n = 200 meshpoints. Increasing the number of meshpoints and the domain length did

not change the results significantly. In Fig. 2.5 we plot the critical mode m0u, corresponding

to λ = 0, for each point along the primary branch of the γ versus B curve of Figure 1.6 (i.e.

that part of the curve for which γ > 1.02). Notice that the critical mode m0u tends to zero

as B → 0. This agrees with our analysis of the re-stabilization value mu in the intermediate

regime.

We summarize our stability results obtained so far in the following statement:

Proposition 2.2.4 Using the notation of Proposition 2.2.2, suppose l ≥ O(1). Then there

exists a band of unstable zigzag modes m satisfying

ml ≤ m ≤ mu,

where ml = O(1) is given by by the root of (2.55) and mu � 1 depends on B = tanh(l)A. In

the intermediate regime B = 3δ � 1 we have mu ∼ 6δ2

ε . In the high-feed regime, mu = m0u

ε

where m0u depends only on B. Numerically, this dependence is given by the graph of Figure

2.5.

As was mentioned after (2.41), ml is proportional to l−1 for small l. On the other hand, we
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Figure 2.5: Plot of the re-stablization value m0u (with mu = ε−1m0u) versus B computed from
(2.51) at each point along the primary branch of the γ versus B bifurcation diagram. Above
this curve we have stability with respect to zigzag perturbations.

have B = tanh lA ∼ lA for small l. Thus when A = O(1) and l is small we have B � 1, which

corresponds to the intermediate regime. We then obtain:

ml ∼
1.1997

l
, mu ∼ 1

ε

2

3
l2A2.

In addition, we require that the O(ε) extent of the core of the spike be much small than the

domain size, so that ε � l. Moreover, the intermediate regime requires the condition δ2 � ε.

Equating ml = mu, we obtain the following condition for the stability with respect to all zigzag

modes.

Proposition 2.2.5 Using the notation of Proposition 2.2.2, suppose that

l � 1, A2l2 � ε, l � ε (2.57a)

and

l3A2

ε
<

3z

2
, (2.57b)

where z = 1.1997 is the unique root of z tanh z = 1. Then the stripe solution is stable with
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respect to all zigzag instability modes m. In particular, (2.57) are satisfied when A = O(1) and

l3 � ε� l2.

In our analysis, we have assumed that τ ≤ O(1) as ε → 0. If we were to allow τ = O(ε−1),

then for each fixed value of m we could get a zigzag instability due a Hopf bifurcation when τ

is increased past some threshold. We will not consider the case of asymptotically large τ here.

2.2.2 Breakup Instabilities of a Stripe

In this section we study the stability with respect to the large eigenvalues of the stripe equilib-

rium solution constructed in Proposition 2.2.1. Numerically, these instabilities are found to be

the mechanism through which a stripe equilibrium breaks up into a sequence of spots.

As in the study in §2.2.1 of the small eigenvalues, we look for a normal mode solution in the

inner region x1 = O(ε) in the form

v =
1

ε

(
V (y) + eλteimx2Φ(y)

)
, u =

ε

A

(
U(y) + eλteimx2N(y)

)
, (2.58)

where y = ε−1x1, U, V satisfy (1.40), and U , V , Φ, and N , have power series expansions in

powers of εA. We now look for even functions Φ and N . Assuming that τ = O(1), we obtain,

as in §2.2.1, the following leading-order eigenvalue problem on −∞ < y <∞:

λΦ0 = Φ′′
0 − (1 + µ)Φ0 + V 2

0 N0 + 2V0U0Φ0 , (2.59a)

0 = N ′′
0 − µN0 − V 2

0 N0 − 2V0U0Φ0 . (2.59b)

Here we have defined µ by

µ ≡ ε2m2.

To determine the instability band for (2.59), we discretise (2.59) on a long interval [0, L] using

centered finite differences, ensuring that Φ0 and N0 are even functions and that N0y = 0 at

y = L. The resulting matrix eigenvalue problem is similar to that in (2.56), except for slight

differences in the matrix structure due to the different parity of the breakup eigenfunction. Our
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computational results show that there are values µ1 and µ2 for which Re(λ) > 0 for µ1 < µ < µ2,

and Re(λ) < 0 for 0 < µ < µ1 and µ > µ2. This instability band is determined from numerical

computations of the discrete eigenvalue problem using LAPACK [2] on a domain with L = 12

and n = 200 meshpoints. Increasing the number of meshpoints and the domain length did not

change the results significantly. In Fig. 2.6 and in Table 2.1, we give numerical results for µ1

and µ2 versus B along the primary branch of the γ versus B curve.
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Figure 2.6: Plot of µ1 (heavy solid curve) and µ2 (solid curve) versus B computed from (2.59)
at each point along the primary branch of the γ versus B bifurcation diagram. In terms of m,
the thresholds are mj =

√
µj/ε for j = 1, 2.

Although we are not able to calculate µ1 and µ2 analytically in the high-feed-rate regime, we

can asymptotically calculate these critical values, at which λ = 0, in the intermediate regime

where B = 3δ � 1 with O(ε1/2) � δ � O(1).

In the intermediate regime we use Proposition 1.2.2 for V0 and U0. In this way, (2.59) reduces

to

(µ+ λ)Φ0 ∼ Φ′′
0 − Φ0 + 2

(
w +O(δ2)

)
Φ0 +

(
δ2w2 +O(δ4)

)
N0 , (2.60a)

µN0 ∼ N ′′
0 − 2

(
w +O(δ2)

)
Φ0 −

(
δ2w2 +O(δ4)

)
N0 . (2.60b)

The balance of the various terms in the first equation gives rise to two possibilities: either

O(N0)δ
2 � O(Φ0) or O(N0)δ

2 = O(Φ0). In the former case, the leading-order equation for Φ0
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γ B µ1 µ2

1.464 0.40 0.003713 1.188

1.443 0.50 0.007010 1.154

1.419 0.60 0.01249 1.113

1.390 0.70 0.02093 1.069

1.357 0.80 0.03277 1.020

1.319 0.90 0.04796 0.9700

1.277 1.00 0.06588 0.9208

1.220 1.12 0.08830 0.8695

1.140 1.25 0.1096 0.8345

1.100 1.30 0.1156 0.8358

1.020 1.347 0.1617 0.8724

Table 2.1: The values of µ2 and µ1 as defined in Proposition 2.2.6 along the primary branch of
the γ versus B bifurcation diagram.

on −∞ < y <∞ is

(µ+ λ)Φ0 = Φ′′
0 − Φ0 + 2wΦ0 , (2.61)

with Φ0 → 0 as |y| → ∞. From Lemma 1.1.4, this problem has a unique positive eigenvalue

µ+ λ = 5
4 . This gives the upper bound of µ2 = 5

4 for the instability band.

For the second possibility, we must expand

N0 =
1

δ2
(
N00 + δ2N01 + · · ·

)
, µ = δ2µ0 + · · · , Φ0 = Φ00 + δ2Φ01 + · · · . (2.62)

Substituting this expansion into (2.60), we get that N00 satisfies N ′′
00 = 0. Therefore, N00 is a

constant to be determined. The leading-order equation for Φ0 is

λΦ00 = Φ′′
00 − Φ00 + 2wΦ00 +N00w

2 , (2.63)

with Φ00 → 0 as |y| → ∞. To determine N00, we must match the inner solution to the outer

solution. In the outer region, we have:

v = ve(x1) + eλteimx2φ(x1) , u = ue(x1) + eλteimx2η(x1) , . (2.64)
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where ue, ve are the equilibrium solutions to (2.1), and

φ(x1) =
1

ε
Φ(
x1

ε
), η(x1) =

ε

A
N(

x1

ε
).

Substituting (2.64) into (2.1), we obtain the following eigenvalue problem on −l < x1 < l:

λφ = ε2φx1x1
− ε2m2φ− φ+ 2Aueveφ+Av2

eη , (2.65a)

ηx1x1
−
(
1 +m2 + τλ

)
η = 2ueveφ+ v2

eη , (2.65b)

with ηx1
(±l) = 0. The right-hand side of (2.65b) is localized near x1 = 0. Using Proposition

1.2.2 for solutions in the intermediate regime we obtain that

2ueveφ+ v2
eη ∼ 2w

εA
Φ00 +

w2

εA
N00 . (2.66)

Therefore, we obtain the following problem for η(x1):

ηx1x1
−
(
1 +m2 + τλ

)
η =

(
2

A

∫
wΦ00 dy +

N00

A

∫
w2 dy

)
δ(x1) , −l < x1 < l , (2.67)

with ηx1
(±l) = 0. The solution for η is

η(x1) = −
(

2

A

∫
wΦ00 dy +

N00

A

∫
w2 dy

)
Gm(x1, 0) , (2.68)

where Gm(x1, x
′
1) is as given in (2.30). The matching condition for the inner and outer solutions

is that

ε

A

(
δ−2N00 + · · ·

)
∼ η(0) + · · · . (2.69)

This yields that η(0) = εδ−2N00/A. Evaluating (2.68) at x1 = 0, we obtain an equation for the

unknown constant N00,

N00

(
Gm(0, 0)

A

∫
w2 dy +

ε

Aδ2

)
= − 2

A

(∫
wΦ00 dy

)
Gm(0, 0) . (2.70)

Solving (2.70) for N00, noting that
∫
w2 dy = 6, and substituting the result into (2.63), we

obtain the following nonlocal eigenvalue problem for Φ00 on −∞ < y <∞:

Φ
′′

00 − Φ00 + 2wΦ00 − χw2

∫
wΦ00 dy∫
w2 dy

= λΦ00 , (2.71)
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with Φ00 → 0 as |y| → ∞. Here χ is defined by

χ ≡ 2

[
1 +

ε

6δ2Gm(0, 0)

]−1

. (2.72)

Here, Gm(0, 0) is given in (2.30). From Lemma 1.1.3, we obtain the following sufficient condition

for instability:

2 tanh(l
√

1 +m2)
√

1 +m2 ≥ 6δ2

ε
. (2.73)

This condition is also necessary provided that χ is asymptotically independent of τ ; i.e. when

m2 � O(τ). But since δ � O(ε1/2), (2.73) implies m � 1. By assumption τ ≤ O(1), it then

follows that (2.73) is also a necessary condition. Assuming l ≥ O(1), (2.73) then becomes

m ≥ 3δ2

ε
. (2.74)

This yields the lower limit of the breakup instability band in the intermediate regime. We

summarize our result for breakup instabilities in the following statement:

Proposition 2.2.6 Let ε → 0, τ ≤ O(1) and l ≥ O(1). In the intermediate regime, the stripe

equilibrium solution is unstable with respect to breakup instabilities if and only if the following

inequality holds:

3δ2 < εm <

√
5

2
. (2.75)

In the high-feed-rate regime, the instability band along the primary solution branch of the γ

versus B curve is given by

√
µ1 < εm <

√
µ2 , (2.76)

where µ1 = µ1(B) and µ2 = µ2(B) are given in Fig. 2.6 and in Table 2.1.

2.3 Stability of a Ring Solution in intermediate and high-feed
regimes

In this section we modify the methods of §2.2 to obtain analogous results for the stability of an

equilibrium ring solution for the Gray-Scott model (2.1) in the disk domain

Ω = {x : |x| ≡ r < R}.
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2.3.1 Ring radius and splitting in the high-feed regime

We first study the equilibria ring solutions in the intermediate and high-feed regime A �

O(ε1/2). The results of §1.2.1 concerning a pulse-splitting instability in the high-feed regime

readily generalize to stripe or ring splitting. For a stripe, the threshold on A for the rectangular

domain [−l, l] × [0, d] is the same as for a one dimensional spike splitting on a domain [−l, l],

as given in Proposition 1.2.1. Similar analysis also applies for ring solutions, as we now show.

In analogy with (1.39), we assume that the ring profile has the shape

v(x) =
1

ε
V (y) , u(x) = ε

U (y)

A
, y =

|x| − r0
ε

,

where both V,U are of order 1, and r0 is the radius of the ring to be determined. We then

obtain on −∞ < y <∞ that

V ′′ + ε
V ′

r0 + εy
− V + V 2U = 0,

1

ε2
U ′′ +

1

ε

U ′

r0 + εy
− U +

A

ε
− V 2U

ε2
= 0.

Expanding as in (1.41), the leading term equations are then (1.42). Outside the core region of

the ring, we have:

u(r0) = 1 −
∫ R

0
G(r, r0)v

2(r)u(r)dr (2.77a)

ε
U0(0)

A
∼ 1 − G(r0, r0)

A

∫
V 2

0 U0, (2.77b)

where G is the radial Green’s function on the disk of radius R, given by (2.13). Since U(0) is

of order 1, we obtain: ∫ ∞

−∞
V 2

0 U0 =
A

G(r0, r0)
.

From (1.42b), this yields:

U ′
0(∞) − U ′

0(−∞) =
A

G(r0, r0)
.

Normally, U0 will not be symmetric. However, on a disk of radius R, it is symmetric for the

special case when r0 = rR, i.e. when the following condition holds:

(J1(r0)J2(r0))
′ = 0, (2.78)

78



as we now show.

From (2.77) we obtain:

u′(r±0 ) ∼ − 1
A

d
dr±

0

(
G(r, r±0 )

)∣∣
r=r0

∫∞
−∞ V 2

0 (y)U0(y)dy.

But the matching condition of the outer solution u and the inner solution U is:

U ′(±∞) = Au
′

(r±0 ).

For U0 to be symmetric, we must have U ′
0(∞) + U ′

0(−∞) = 0 which is equivalent to

0 =
d

dr−0

(
G(r, r−0 )

)∣∣
r=r0

+
d

dr+0

(
G(r, r+0 )

)∣∣
r=r0

=
1

W J ′
1(r0)J2(r0) +

1

W J1(r0)J
′
2(r0)

This shows (2.78).

Note that r0 given by (2.78) agrees with the limiting case A → ∞ (see (2.19a)).

Assuming that U0 is symmetric, we thus obtain the following boundary conditions for U0 and

V0:

U ′
0(0) = 0 = V ′(0), U ′

0(∞) =
A

2GR(rR, rR)
, V0 → 0 as y → ∞. (2.79)

As was argued in §1.2.1, the solution to the boundary problem (2.79) and (1.42) exists if and

only if U ′
0(∞) < 1.35. We therefore obtain the following result:

Proposition 2.3.1 Let rR be a root of

(J1(rR)J2(rR))′ = 0, (2.80)

and let

B =
A

2G(rR, rR)
. (2.81)

Suppose that

O(ε1/2) � B < 1.35, (2.82)
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where J1, J2 are given by (2.13d) and G is given by (2.13). Then there exists an equilibrium

ring solution to (2.1) given by

v(x) ∼ 1

ε
V0(y), u(x) ∼ ε

U0(y)

A
, y =

|x| − rR
ε

, (2.83)

where U0, V0 satisfy (1.42) with the boundary condition (2.79).

Numerically, when B is given by (2.81) is just above 1.35, ring splitting is observed (see §2.4).

Next we look at the zigzag instabilities of a ring. Expand V and U as in (1.41) to obtain the

following equations for U1, V1 on −∞ < y <∞:

V ′′
1 − V1 + 2V0U0V1 + V 2

0 U1 = − V
′

0

Ar0
, (2.84a)

U ′′
1 + 1 − 2V0U0V1 − V 2

0 U1 = − U
′

0

Ar0
. (2.84b)

The asymptotic boundary conditions for U1 as y → ±∞ are to be obtained by matching.

Next, we introduce a perturbation around the equilibrium state in the form

v = ve(r) + eλteimθφ(r) , u = ue(r) + eλteimθη(r) , (2.85)

where φ� 1, η � 1, and m is a non-negative integer. Substituting (2.85) into (2.1), we obtain,

in place of (2.65), the following eigenvalue problem on 0 < r < R:

λφ = ε2
(
φrr +

1

r
φr

)
− ε2m2

r2
φ− φ+ 2Aueveφ+Av2

eη , (2.86a)

τλη = ηrr +
1

r
ηr −

m2

r2
η − η − 2ueveφ− v2

eη . (2.86b)

We will study this problem in the inner region where y = ε−1(r − r0) = O(1), and in the outer

region where r − r0 = O(1).

In the inner region, we write

ve(r) =
V (y)

ε
, ue(r) =

ε

A
U(y) , φ(r) =

1

ε
Φ(y) , η(r) =

ε

A
N(y) , y = ε−1(r − r0) . (2.87)
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In terms of these variables, (2.86) reduces to an eigenvalue problem on −∞ < y <∞

λΦ = Φ′′ +
ε

r0 + εy
Φ′ − ε2m2

(r0 + εy)2
Φ − Φ + V 2N + 2V UΦ , (2.88a)

τε2λN = N ′′ +
ε

r0 + εy
N

′ − ε2m2

(r0 + εy)2
N − ε2N − V 2N − 2V UΦ . (2.88b)

We first assume that m = O(1) as ε→ 0. By expanding V , U , Φ, and N , in powers of εA, and

writing λ = εAλ0, we derive (1.84) for Φ0 and N0. Thus, Φ0 = V
′

0 and N0 = U
′

0. The system

for Φ1 and N1 is (1.85), with the terms −Φ
′

0/(Ar0) and −N ′

0/(Ar0) added to the right-hand

sides of (1.85a) nd (1.85b), respectively. Since these additional terms are even functions, they

do not contribute to the solvability condition that determines λ0. Therefore, the entire analysis

of (1.87-1.89) can be repeated, and we obtain that λ0 satisfies

λ0 = −α
(
N ′

1(+∞) +N ′
1(−∞)

2
+ 1

)
, α ≡ −Ψ†

2(+∞)
∫∞
0 Ψ†

1V
′

0 dy
. (2.89)

Here Ψ†
j for j = 1, 2 is the solution to the adjoint problem (1.88).

To determine N
′

1(±∞) we must consider the outer region. By repeating the analysis of (1.94)–

(1.96), we obtain that the outer solution for η on 0 < r < R satisfies

ηrr +
1

r
ηr −

m2

r2
η − (1 + τλ)η ∼ 0, r 6= r0 (2.90)

with ηr(R) = 0 and ηr(0) = 0. The matching condition of the inner and outer solutions for η is

ε

A
(N0 + εAN1 + · · · ) ∼ η

(
r±0
)

+ εyηr

(
r±0
)

+ · · · . (2.91)

Since N0 = U
′

0 satisfies N0(±∞) = ±B, we get from this matching condition that

η
(
r±0
)

= ±εB
A

= ± ε

2G(r0; r0)
, N

′

1(±∞) = ε−1ηr

(
r±0
)
., (2.92)

where G(r, r′) is the radial Green’s function satisfying Grr + 1
rGr − (1 + τλ)G = −δ(r − r′).

Solving (2.90) for η(r), we obtain that

η(r) =





η
(
r+0
)
J2,m(r)/J2,m(r0) , r < r0 < R ,

η
(
r−0
)
J1,m(r)/J1,m(r0) , 0 < r < r0 .
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Here J1,m and J2,m are defined in (2.32). Using (2.92) and the Wronskian relation

J ′
1,m(r0)J2,m(r0) − J1,m(r0)J

′
2,m(r0) =

1

r0
,

we obtain the compact formula

N ′
1(+∞) +N ′

1(−∞)

2
= − 1

4r20J1(r0)J2(r0)J1,m(r0)J2,m(r0)
. (2.93)

where J1 = J1,0, J2 = J2,0. Substituting (2.93) into (2.89), and recalling that λ ∼ εAλ0, we

obtain the following result for λ:

Proposition 2.3.2 Consider an equilibrium ring solution of radius r0 for the Gray-Scott model

in a disk of radius R as constructed in Proposition 2.3.1. Suppose that m = O(1) as ε → 0.

Then, for a perturbation of the form (2.85), λ satisfies the transcendental equation

λ ∼ −εAα
(

1 − 1

4r20J1(r0)J2(r0)J1,m(r0)J2,m(r0)

)
. (2.94)

The constant α is as in Theorem 1.2.4 and is positive along the primary branch of the γ versus

B curve. The functions J1,m, J2,m are defined in (2.32) and J1 = J1,0, J2 = J2,0.

We will only consider the case where τ = O(1) as ε → 0. Since λ = O(ε), we get θ ∼ 1.

Therefore, from (2.94) we conclude that λ is positive, and hence we have a zigzag instability, if

and only if

4r20J1(r0)J2(r0)J1,m(r0)J2,m(r0) < 1 . (2.95)

Using the asymptotic expansion for largem and fixedR, it is easy to show that J1,mJ2,m = O( 1
m)

for m� 1 and r0 fixed (see below). Therefore, from (2.95), we have an instability if m is large

enough. In Fig. 2.7 we show the numerical computation of the first unstable mode m = ml

versus the ring radius r0. The corresponding disk radius R can be determined in terms of r0

from (2.78). From this figure we notice that the first two modes m = 1, 2 are stable for any r0.

Also note that the first unstable mode increases as the ring radius r0 is increased. This is in

contrast to the result for stripes in §2.2.1, where the first unstable mode tends to zero as the

domain half-length l is increased.
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Figure 2.7: The graph of the first unstable mode ml versus the ring radius r0 when τ = O(1).
The dotted line is the asymptotic curve (2.99).

We cannot analytically determine ml for arbitrary R. However, by considering the two limiting

cases R� 1 and R� 1, we can obtain the following limit results:

Proposition 2.3.3 The following asymptotic formulae relate the domain radius R and the

equilibrium ring radius r0, as defined by the solution to (2.78):

R ∼
√

2r0 , R→ 0 , (2.96)

R ∼ r0 +
1

2
ln(2r0) , R→ ∞ . (2.97)

Suppose that τ = O(1), and let ml be the smallest value of m for which the eigenvalue of

Proposition 2.3.2 is unstable. Then

ml = 3 , R→ 0 , (2.98)

ml ∼
√

2r0 , R→ ∞ . (2.99)

By calculating r0 in terms of R from (2.97), (2.99) can be written as m ∼
√

2(R− 1
2 ln(2R) + · · · ).

We now derive this result. We first consider the case R→ 0. A simple calculation using (2.13d)

shows that the equilibrium condition (2.78) for r0 can be written as

K0(r0)

I0(r0)
− K

′

0(R)

I
′

0(R)
=

1

2r0I0(r0)I
′

0(r0)
. (2.100)
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For R → 0, with 0 < r0 < R, we use the small argument expansions of I0 and K0 to obtain

that

2r0I0(r0)I
′

0(r0) ∼ r20 ,
K

′

0(R)

I
′

0(R)
∼ −2R−2 ,

K0(r0)

I0(r0)
∼ − ln r .

Therefore, (2.100) reduces to 2R−2 ∼ r−2. This yields R ∼
√

2r0, which establishes (2.96).

Next, we determine the stability threshold ml for R→ 0. Using the small argument expansions

of I0 and K0, we readily obtain that

J1(r0)J2(r0) ∼
2

R2
∼ r−2

0 . (2.101)

Using (2.32), and the small argument expansions

Km(r0) ∼
1

2
Γ(m)

(r0
2

)−m
Im(r0) ∼

1

Γ(m+ 1)

(r0
2

)m
, (2.102)

we calculate for R� 1 and r � 1 that

J1,m(r0)J2,m(r0) = Im(r0)Km(r0) −
K

′

m(R)

I ′

m(R)
(Im(r0))

2 ∼ 1

2

Γ(m)

Γ(m+ 1)

(
1 +

1

2m

)
. (2.103)

Here Γ(m) is the Gamma function. Therefore, substituting (2.101) and (2.103) into (2.95), we

have instability when R� 1 if and only if

m

1 + 2−m
− 2 > 0 . (2.104)

The first integer for which (2.104) holds is ml = 3, which establishes (2.98).

Next, we derive the results in Proposition 2.3.3 for R � 1. To do so, we need the following

standard asymptotic formulae (cf. [1]):

K0(z) ∼
√

π

2z
e−z

(
1 − 1

8z

)
, I0(z) ∼

√
1

2πz
ez
(

1 +
1

8z

)
. (2.105)

Therefore, we get

K0(r0)

I0(r0)
∼ π

e2r0

(
1 − 1

4r0

)
,

K
′

0(R)

I
′

0(R)
∼ − π

e2R

(
1 − 3

4R

)
, I0(r0)I

′

0(r0) ∼
e2r0

2πr0

(
1 − 1

4r0

)
.

Substituting these formulae into (2.100), we get that

π

2r0
e−2r0 ∼ πe−2R

(
1 − 3

4R

)
.
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Solving this equation asymptotically, we get R ∼ r0 + 1
2 ln(2r0) as R → ∞, which establishes

(2.97).

Finally, we establish the stability threshold (2.99) for R � 1. Using (2.105) and (2.97), we

readily estimate that

J1(r0)J2(r0) ∼
1

2

(
1 + e2r0−2R

)
∼ 1

2r0

(
1 +

1

2r0

)
. (2.106)

Next, we must calculate J1,m(r0)J2,m(r0). Since, we have ml � 1 and r0 � 1, we must use the

following uniform expansions of Km(mz) and Im(mz) for m→ ∞ as given in [1]:

Km(mz) ∼
√

π

2m

e−mβ(z)

(1 + z2)1/4
, Im(mz) ∼ 1√

2πm

emβ(z)

(1 + z2)1/4
, (2.107)

where β(z) is defined by

β(z) ≡
√

1 + z2 + ln z − ln
(
1 +

√
1 + z2

)
. (2.108)

Defining z and z1 by

z =
r0
m
, z1 =

R

m
,

we get using (2.107) that

J1,m(r0)J2,m(r0) ∼
1

2m
√

1 + z2

(
1 + e2m[β(z)−β(z1)]

)
. (2.109)

Since R = r0 + 1
2 ln(2r0), we have that z − z1 → 0 provided that ln(r0)/m � 1. Assuming for

the moment that this condition is true, we can then use β
′

(z) = z−1
√

1 + z2 to estimate

β(z) − β(z1) ∼ β
′

(z)(z − z1) ∼ − 1

2mz
ln(2r0)

√
1 + z2 .

Substituting this expression into (2.109), and using (2.106), the stability threshold condition

defined by 4r20J1(r0)J2(r0)J1,m(r0)J2,m(r0) = 1 becomes

z√
1 + z2

(
1 +

1

2r0

)(
1 + e− ln(2r0)z−1

√
1+z2

)
∼ 1 , (2.110)

where z ≡ r0/m. If we assume that z = O(1) and r � 1, then it is easy to see that there is no

root to (2.110). Therefore, we must assume that z � 1. In this limit, (2.110) reduces to

z√
1 + z2

(
1 +

1

2r0

)2

∼ 1 .
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Squaring both sides, we readily obtain that r0 ∼ 2z2. Since z = r0/m, we get that m =
√

2r0,

which establishes (2.99). The consistency condition ln(2r0)/m � 1 needed above is indeed

satisfied.

The upper instability threshold in estimated in the same way as was done for a stripe in §2.2.1.

The only difference is that m gets replaced by m
r0
. Therefore, we obtain the following results for

intermediate and high-feed regimes:

Proposition 2.3.4 Consider an equilibrium ring solution of radius r0 for the Gray-Scott model

in a disk of radius R as constructed in Proposition 2.3.1. Then, all zigzag perturbations of the

form (2.85) are unstable in the zone ml < m < mu, and are stable outside of this zone. Here

ml is the root of 4r20J1(r0)J2(r0)J1,m(r0)J2,m(r0) = 1, which depends on R.

In the high-feed case A = O(1), we have mu = m0ur0

ε where the threshold m0u, plotted in

Fig. 2.5, is independent of R but depends on the value of B along the primary branch of the γ

versus B bifurcation diagram.

In the intermediate regime B = 3δ with O(ε1/2) � δ � O(1), mu is determined explicitly as

mu =
6r0δ

2

ε
.

As with the stripe, we find that the instability band can dissapear in the intermediate regime

for a small domain size. As found in Proposition 2.3.3, ml = 3 when R � 1. On the other

hand, assuming r0 � 1, A ≤ O(1), and using (2.81), (2.13) and (2.106) we obtain:

3δ = B = r0
A

2
,

mu =
r30A

2

6ε
.

On the other hand we must have ε � R = O(r0). In addition, the intermediate regime must

satisfy δ � O(ε1/2). This yields the following stability result:

Proposition 2.3.5 Suppose R � 1. Then the equilibrium ring solution in the intermediate

regime is stable with respect to zigzag instabilities provided that

r30A
2 < 18ε� r0. and O(ε1/2) � r0A� O(1).
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In particular, the zigzag instabilties are stable provided that

A = O(1) and O(R3) � ε� O(R2).

Here, r0 ∼ R√
2

is the ring radius as derived in Proposition 2.3.3.

Finally, the stability property of a ring with respect to a breakup instability is very similar to

that of a stripe. We have,

Proposition 2.3.6 Consider an equilibrium ring solution given in Proposition 2.1.1, in the in-

termediate regime B = 3δ � 1. Such a solution is unstable with respect to the large eigenvalues,

if and only if the following inequality holds:

3δ2r0 < εm <

√
5

2
r0 . (2.111)

In the high-feed-rate regime, the instability band is given by

√
µ1r0 < εm <

√
µ2r0 , (2.112)

where µ1 = µ1(B) and µ2 = µ2(B) are given in Table 2.1 and plotted in Fig. 2.6.

The result (2.112) follows immediately by noting that when m0 = mε = O(ε), the leading-order

problem for (2.88) become:

(λ+
m2

0

r20
)Φ0 = Φ′′

0 − Φ0 + V 2
0 N0 + 2V0U0Φ0 , (2.113a)

m2
0

r20
N0 = N ′′

0 − V 2
0 N0 − 2V0U0Φ0 . (2.113b)

But these equations are the same as (2.59) upon relabelling εm by εm
r0

. The result (2.111) is also

readily obtained by a slight modification of the analysis in §4. To obtain (2.111), we repeat the

analysis of (2.60)–(2.72). The upper bound in (2.111) follows from (2.61). Then, to determine

the lower bound in (2.111), we re-derive the nonlocal eigenvalue problem (2.71), where the

multiplier χ in (2.72) is to be replaced with

χ = 2

[
1 +

εδ−2

6Gm(r0; r0)

]−1

, Gm(r0; r0) ≡ r0J1,m(r0)J2,m(r0) . (2.114)
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Here Gm(r0; r0) is the Green’s function, evaluated at r = r0, for the operator η
′′

+ r−1η
′ −

m2r−2η = −δ(r − r0) with η
′

(0) = η
′

(R) = 0. In (2.114), J1,m and J2,m are defined in

(2.32). From Lemma 1.1.3, the stability threshold occurs when χ = 1. Since εδ−2 � 1 in the

intermediate regime where δ � O(ε1/2), we conclude that all modes with m = O(1) are stable.

However, since J1,mJ2,m ∼ (2m)−1 as m → ∞ for fixed r0, we have that χ will decrease below

unity when m is below the lower bound in (2.111).

2.4 Numerical Examples

In this section we give a few numerical examples to support the results of this chapter. For

a rectangular domain, the computations have been done with the software package “VLUGR”

[6]. For a disk domain, we wrote our own code. We used a 2nd order finite difference uniform

discretization in r and θ, combined with the forward Euler method in time. Matlab was used

for visualization.

Experiment 1: ring breakup and splitting instabilities. For this experiment we chose

a disk domain of radius R = 3, with ε = 0.05, τ = 1, and discretized the radial and anglular

direction into 60 and 30 intervals, respectively. The time step was taken to be 0.00005. For

initial conditions, we chose a ring of radius r0 = 1.5 of width ε, and with very small, random

perturbations in the angular direction. Note from Proposition 2.3.1 we expect the ring to have

the equilibrium radius of rR = 2.238. Also, from Proposition 2.3.1, the equilibrium exists only

when A < 1.837.

Figure 2.8 shows a simulation for A = 2.0. The initial ring at r0 = 1.5 starts to expand until its

radius reaches about 2.25. It then breaks into many spots. This implies that all lower-modes

are stable, but a very high instability mode is triggered. Moreover, the spots form both at the

outside and at the inside of the ring – thus the splitting instability is triggered at about the

same time as the breakup instability. The ring breakup occurs at about r = 2.25 which is close

to the equilibrium ring radius rR = 2.238.

In Figure 2.9 we take A = 2.5. In this case the ring first splits into two. The two resulting
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t=20, A=2.0 t=60, A=2.0 t=70, A=2.0

t=80, A=2.0 t=290, A=2.0 t=1000, A=2.0

Figure 2.8: Contour plot of v for A = 2.0.

t=10, A=2.5 t=20, A=2.5 t=80, A=2.5

t=340, A=2.5 t=480, A=2.5 t=600, A=2.5

Figure 2.9: Contour plot of v for A = 2.5.
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t=0, A=4.0 t=20, A=4.0 t=60, A=4.0

t=130, A=4.0 t=180, A=4.0 t=1000, A=4.0

Figure 2.10: Contour plot of v for A = 4.0.

rings then start travelling apart. Some time later, the inner ring breaks up. Then much later

the outer ring also breaks.

Finally, in Figure 2.10 we take A = 4. As a result, a single ring eventually splits into four.

The resulting rings then lose their stability, one-by-one, starting from the innermost ring, and

progressing towards the outermost ring. Note however that the outer ring can remain stable

for a very long time, and becomes unstable only after the adjacent ring has been broken up.

Example 1: Zigzag Instability of a Stripe: In order to observe zigzag instabilities, one must

choose parameters and initial conditions carefully so that these instabilities are not dominated

by breakup instabilities that occur on shorter timescales. In this example, we consider a stripe

equilibrium with ε = 0.004, A = 1.7, and τ = 1.0, in the rectangular domain [−1, 1] × [0, 1]

so that d = l = 1. For this value of A, we compute that B = A tanh 1 = 1.3 < 1.35.

Hence, by Proposition 1.2.1, there is a stripe equilibrium solution centered along x1 = 0. For

these parameter values, we obtain from Proposition 2.2.2 that the unstable modes m satisfy

mb < m < m0u/ε, where ml ≈ 1.05 when l = 1, and m0u ≈ 0.72 when B = 1.3. This yields the
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instability zone 1.05 < m < 180 when ε = .004.

The meshsize in the x1 direction must be finer than ε in order to resolve the stripe. With

ε = 0.004, the computation would be quite prohibitive for most uniform-grid codes. Fortunately,

VLUGR uses an adaptive mesh-refinement algorithm, which captures the localized structure of

the stripe without the need for a huge number of grid points.

For the initial conditions for (2.1) we took v = 1
εw
(

x1+10−4 cos(10πx2)
ε

)
and u = ε, where

w(y) = 3
2sech2(y/2) satisfies (1.7). Therefore, the preference for a zigzag instability corre-

sponding to the mode m = 10π, which lies within the instability zone, is built in. The resulting

numerical simulation is shown in Fig. 2.11. The system does indeed develop a zigzag instability

corresponding to this mode.
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Figure 2.11: Contour plot of v obtained from the full numerical solution of (2.1). The parameters
are ε = 0.004, A = 1.7, τ = 1.0, and the domain size was set to [−1, 1] × [0, 1]. The initial

condition was taken to be v = 1
εw
(

x1+10−4 cos(2π5x2)
ε

)
, u = ε, where w(y) = 3

2sech2(y/2).

Outside the region shown, v is exponentially small.

Numerically, we can also validate the theoretically predicted form of the zigzag instability. From
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the theory of §3, we would expect that the eigenfunction φ has the form

φ =
d

dx1
ve(x1) cosmx2 , (2.115)

where ve is the equilibrium stripe. Since v ∼ ve + Ceλtφ and λ = O(ε) � 1, we have that φ

is well-approximated by the difference in the numerical solution at two different times. From

results obtained from our numerical simulations, we plot vt=22 − vt=18 in Fig. 2.12. From this

figure we observe that the shape of the resulting perturbation is indeed of the form (2.43a)
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V(t=22, x2=0.5)−V(t=18, x2=0.5)

Figure 2.12: Left: contour plot of vt=22 − vt=18 for the data of Fig. 2.11. Right: The horizontal
slice of the figure on the left at x2 = 0.5.

The onset of a breakup instability for this example is visible in Fig. 2.11 at time t = 32, when

the wiggled stripe starts to develop an instability. Shortly after this time, the stripe breaks up

into spots, which then self-replicate until the entire rectangle is full of spots.

Example 2: Breakup Instability of a Stripe: Next, we verify Proposition 2.2.6 for the

parameter set ε = 0.004, A = 1.313, l = 1, and d = 2. For this value of A, we compute that

B = A tanh(1) = 1. From Table 2.1, we have have µ1 = 0.0659, µ2 = 0.9208. Therefore, from

Proposition 2.2.6, the instability zone is 64.2 ≤ m ≤ 239.9. To check this, we start with the

following initial condition for v that has a built-in preference for the the mode m = 20π = 62.8:

v =
1

ε
(1 + 10−4 cos(20πx2))w

(x1

ε

)
, u = ε , (2.116)

where w(y) = 3
2sech2(y/2) is given by (1.7). Note that this mode is stable. Indeed, in the
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Figure 2.13: Contour plot of v computed from the full numerical simulation of (2.1). The
domain size was set to [−1, 1] × [0, 1], and the parameter values are ε = 0.004, A = 1.313, and
τ = 1.0. The initial condition was taken to be (2.116).

resulting simulation shown in Fig. 2.13, the stripe breaks up into 21 and not 20 spots. This

corresponds to m = 21π = 66, which lies just within the theoretical instability band.

Example 3: Space-Filling Curve: In this example, we numerically show the development

of a zigzag instability in the weak interaction regime, where both u and v are localized near

x1 = 0. For convenience, we introduce an extra parameter D to be the diffusivity coefficient of

u. In this way, (2.1) is replaced by





vt = ε̃24v − v +Av2u ,

τut = D4u− u+ 1 − v2u .
(2.117)

For this computation we take ε̃ = 0.05, D = 0.01, A = 2.0, l = 1, and d = 5. This corresponds

to the weak interaction regime, whereby both u and v are localized near the stripe, and is similar

to parameter regimes studied in [63], [64], and [72]. Notice that by re-scaling, these parameter

values are equivalent to taking ε = 0.5 D = 1, l = 10, and d = 50, in (2.1). Therefore, since ε is
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rather large, the theoretical analysis of §3 and §4 is not applicable. The numerical results are

shown in Fig. 2.14 and Fig. 2.15. The zigzag instability corresponding to the mode cos
(

3
2π5x2

)

becomes unstable and, in contrast to Example 2, we do not observe any instabilities that lead

to the development of spots. The end state seems to be a domain-filling curve. We ran the

simulation to about t = 10000; the solution seems to have reached a steady state at this time,

since no changes in the solution were observed between t = 8000 and t = 10000.
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Figure 2.14: Contour plot of v for Example 3 at the times indicated.

Example 4: Zigzag Instability of a Ring: In this example, we consider (2.117) and we take

the parameter values ε̃ = 0.05, D = 0.01, A = 2.0, in a rectangular domain Ω = [−2, 2] × [0, 4],

so that l = 2 and d = 4. Since this parameter set again corresponds to the weak interaction

regime, it is not in the scope of our theoretical analysis. We take the initial condition to be a

spot at the center of the domain. After a short time, the spot grows into an expanding ring.

Some time later, this ring develops a zigzag instability corresponding to the mode m = 4. The

end state of this computation is again a complicated domain-filling curve as shown in Fig. 2.16.

2.5 Discussion

The results of §2.1 were previously presented in [48]. In a related work [56], Morgan and Kaper

have also performed a similar analysis of ring-like solutions on Gray-Scott model. Below we

review and compare their results with ours. They used the following scaling of the Gray-Scott
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Figure 2.15: Plots of v(x1, x2) versus x1 with x2 = 2.5.

model:

dV (y, s)

ds
= Dmk4V −BV + UV 2

dU(y, s)

ds
= 4U +Amk(1 − U) − UV 2

By scaling the variables as follows:

V =
√
Amkv, U = u, s =

1

B
t, y =

1√
Amk

x

we re-obtain our system (2.1) with

τ =
B

Amk
, ε =

√
DmkAmk

B
, A =

√
Amk

B

or

Amk =
1

τ2A2
, B =

1

τA2
, Dmk = ε2τ.

The paper [56] obtains results for the ring location and its stability. In addition, Morgan

and Kaper also perform a linear Turing analysis for the radially-symmetric solutions and full

numerical simulations.
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Figure 2.16: Contour plot of v for Example 4 showing the zigzag instability of a ring and the
labyrinthine pattern that results at later time.

For the location of the ring, Morgan and Kaper obtain the same formula (equation (2.35)

of [56]) as we obtain in Proposition 2.1.2 (see also (2.19)). However, they do not have any

analytical results on the existence of solution to equation (2.35) of [56]. Indeed, they consider

only a bounded domain – in which case a ring solution exists for any choice of Â. Our result

on existence of the bound Âc on Â in case of the unbounded domain is new. In the case of the

boudned domain, we rigorously show the existence of rR < R, which has the property that the

radius of the ring r0 → rR as Â → ∞. This is also a new result. Another new result that we

have obtained using the comparison principle, is the existence of Â for any given ring radius r0

in the case of the unbounded domain.

For the stability analysis with respect to angular perturbations, we obtain a simple sufficient

condition (see Proposition 2.1.3) for when the ring is unstable with respect to node m. This

condition is also necessary when τ = 0. Our condition involves only Bessel functions of order

m and the ring radius r0. Our proof involves no numerical computations. By contrast, the

stability criteria for the m-th mode in [56] is implicitly contained in integrals of hypergeometric
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functions which is then solved by mathematica. In both cases, the stability analysis is reduced

to a non-local eigenvalue problem. We also find that all nodes 1 � m� O(1
ε ) are unstable for

any τ ≤ O(1), and all nodes m >
√

5
2

r0

ε are stable (Proposition 2.1.7). These results are new.

For the ring-splitting regime A = O(1), we use formal asymptotics and one-dimensional nu-

merics to derive an explicit bound Ac in terms of R (see Proposition 2.3.1) such that the

ring-splitting occurs when A > Ac. This is a new result. We then use full numerical simulation

to confirm existence of the ring-splitting regime. Morgan and Kaper also observe ring splitting

numerically, but they do not perform any analysis of this regime.

We have analyzed zigzag and breakup instabilities of stripes and rings for the Gray-Scott model

(2.1). For the breakup instabilities, we have established the presence of instability band in either

low-feed or high-feed regimes. For the zigzag instabilities, we have analysed only intermediate

and high-feed regimes. In the intermediate regime, we have shown that it is possible for a

stripe or a ring to be stable with respect to all zigzag modes, when the domain is small enough

(with D = 1). Altenatively, this is equivalent to fixing the domain size and taking the limit

D � 1. In particular, we expect the stripes to be stable with respect to zigzag instabilities in

the well-known shadow limit D → ∞.

A natural extension of this work is to determine whether there is a parameter regime where

the breakup instability band disappears. One way to stabilize a stripe is to take the domain

width d to be very small. Indeed, since the upper bound of the instability band is O(ε−1), a

stripe can be stable if we take the domain width to be of order O(ε). Such an analysis was

performed in [21]. A different possibility is to analyze zigzag and breakup instabilities of a

stripe and ring solution in the weak interaction regime of [63], [64], [72], and [35], where u and

v are both exponentially localized near a stripe or a ring. This regime corresponds to taking

Dv = O(Du) � 1 in (7). The numerical computations of Examples 3 and 4 of §6 indicate that

there exists values of D ≡ Dv/Du = O(1), with Dv = O(Du) � 1, so that a stripe or ring is

stable with respect to breakup instabilities, but is unstable with respect to zigzag instabilities.

We conjecture that in the absence of such breakup instabilities a zigzag instability leads to a
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labyrinthine pattern such as shown in §2.4. An open problem is to study zigzag and breakup

instabilities of stripes and rings for the Gray-Scott model in the weak interaction regime.
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Chapter 3

Gierer-Meinhard model in two dimensions

In this chapter we concentrate on the study of the Gierer-Meinhardt (GM) model [26] in two

dimensions. In its dimensionless form, the system is:

At = ε24A−A+
Ap

Hq
, x ∈ Ω , t > 0 , (3.1a)

τHt = D4H −H +
Ar

Hs
, x ∈ Ω , t > 0 , (3.1b)

∂nA = ∂nH = 0 , x ∈ ∂Ω . (3.1c)

Here Ω is a bounded two-dimensional domain, A and H represent the activator and the inhibitor

concentrations, ε2 andD represent the diffusivity of the activator and inhibitor, τ is the inhibitor

time constant, and the exponents (p, q, r, s) satisfy

p > 1, q > 0, r > 0, s ≥ 0,
p− 1

q
<

r

s+ 1
. (3.2)

As in the Gray Scott model, we assume that he activator diffuses more slowly than does the

inhibitor, so that

ε2 � D.

The GM system exhibits surprisingly rich dynamics for various parameter ranges. Large am-

plitude spike solutions have been studied intensively using numerical methods since the 1970’s

(cf. [26], [54], [33] and references therein), but only relatively recently from an analytical view-

point.

In this chapter we study asymptotically the dynamics of a one-spike solution to the GM system

with τ = 0 in the limit ε→ 0. A one-spike solution has the form shown in Figure 3.1.
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Figure 3.1: A spike for the Gierer-Meinhardt system (3.1) with τ = 0 in a square domain with
(p, q, r, s) = (2, 1, 2, 0) (with A, H rescaled so that both are O(1) as ε → 0). Here, ε = 0.01,
D = 5. Note that the inhibitor H does not change very much compared to A at the center of
the spike.

Before describing our specific results for (3.1), we survey some previous results on spike solutions

to the GM system in a two-dimensional domain.

When τ = 0 and D is infinite, (3.1) reduces to the well-known shadow system involving a

non-local scalar partial differential equation for the activator concentration A. The behavior of

spike solutions to this shadow problem is now well understood (see [37], [10], [78]). As ε → 0,

the equilibrium location of the spike for a one-spike solution is at the center of the largest ball

that can be inserted into the domain (cf. [73], [81]). This solution is metastable in the sense

that a single spike located in the domain moves exponentially slowly towards the boundary

of the domain (cf. [37]). For the equilibrium shadow problem solutions with multiple spikes

are possible. The locations of these spikes were found in [5], [27] and [49] to be related to a

ball-packing problem. Equilibrium solutions for the shadow problem with two or more spikes

are unstable on an O(1) time scale.

In the regime where D is at least logarithmically large as ε → 0, but not exponentially large,

i.e.

− ln ε ≤ D � O(ε2e2d/ε),

where d is the distance of the spike center from the boundary, the stability of an equilibrium n-
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spike pattern was analyzed rigorously in [83]. It was found that for ε� 1 there exists threshold

values D1 < D2 < ... such that an n-spike equilibrium solution is stable if and only if D < Dn.

For the case of a one-spike solution, a differential equation for the dynamics of the center of

the spike was derived in [14] and [76].

When D is very small, so that D = O(ε2), the motion of two spikes in R
2 was analyzed in [24].

In this case, both the activator and the inhibitor concentrations are localized near the core of

the spikes, with A and H decaying exponentially away from the spike cores. It was found in

[24] that the interaction between the spikes is exponentially weak and that the spikes move

away from each other with a speed that is exponentially decreasing with the distance between

the spike centers. An explicit differential equation for the distance between the spike centers

was derived.

In this chapter, in addition to ε2 � D, we will also always assume:

D � O(ε2e2d/ε). (3.3)

where d is the distance of the spike from the boundary. The case of exponentially large D

will be discussed in the following chapter. The results of this and the following chapter were

previously reported in [46] and [47], respectively. We start by deriving a unified dynamical law

that determines the motion of a single spike inside a two-dimensional bounded domain for any

D with D � O(ε2). The previous results for large D found in [14] and [76], as well as results

for small D, are then obtained as limiting cases. The motion of the spike is found to depend

critically on various Green’s functions and their gradients.

The equation of motion for a spike for (3.1) when D = O(1) and τ = 0 differs significantly

from the case when D � − ln ε, since for D � − ln ε only the gradient of the regular part of

a modified Green’s function for the Laplacian is involved (cf. [76]). However, when D = O(1),

we find that the differential equation for the spike motion involves both the regular part of

a certain reduced-wave Green’s function and its gradient. This complication results in part

because of the presence of the two different scales, ε and − 1
ln ε , that arise due to the logarithmic

point-source behavior of the two-dimensional Green’s function. The presence of these two scales
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Figure 3.2: A dumbell-shaped domain and its unique spike equilibrium location in the case
D = O(− 1

ln ε).

makes the asymptotic analysis of the spike motion rather delicate.

The second goal of this chapter is to examine how both the shape of the domain and the inhibitor

diffusivity constant D determine the possible equilibrium locations for a one-spike solution. We

find that for D small, the stable equilibrium spike locations tend to the centers of the disks of

largest radii that can fit within the domain. Hence, forD small, there are two stable equilibrium

locations for a dumbell-shaped domain. In contrast, we find that for a certain dumbell-shaped

domain, there is only one possible equilibrium location when D is sufficiently large. Such a

domain is shown in Figure 3.2. To obtain this latter result, we use complex analysis to derive

an exact expression for the gradient of the modified Green’s function for the Laplacian. While

this result is obtained for a very specific dumbell-shaped domain, we conjecture that it is true

more generally. More specifically, we conjecture that when D is sufficiently large there is only

one possible equilibrium spike location for any connected domain. This conjecture is further

supported through numerical experiments.

The outline of this chapter is as follows. In §3.1 we introduce an appropriate scaling of (3.1),

and we derive the equation of motion for a single spike, which is valid for any D satisfying

D � O(ε2). In §3.2.1 and §3.2.2, we then derive limiting results of this evolution for the special

cases where D � 1 and D � − ln ε, respectively. The exact solution for the modified Green’s

function of the Laplacian on a domain that is an analytic mapping of the unit disk is derived
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in §3.3. This result is then applied in §3.3.1 to a specific dumbell-shaped domain. In §3.3.1, a

conjecture regarding the uniqueness of the equilibrium spike location for large D is proposed.

Numerical evidence supporting this conjecture is given in §3.4. In §3.4 we also compare our

asymptotic results for the spike motion with corresponding full numerical results.

3.1 Dynamics Of A One-Spike Solution

In this section we study the dynamics of a one-spike solution to (3.1) when τ = 0. We assume

that the spike is centered at some point x = x0 ∈ Ω. The goal is to derive a differential equation

for the dynamics of x0(t) for any D with D � O(ε2).

We begin by introducing a rescaled version of (3.1) as was done in [84]. This scaling ensures

that the rescaled inhibitor field h is O(1) as ε → 0 at x = x0 ∈ Ω. To find such a scaling, we

let A(x) = ξa(x) and H = ξ
p−1

q h(x), for some constant ξ to be found. With this change of

variables, and setting τ = 0 in (3.1b), (3.1) becomes

at = ε24a− a+
ap

hq
, x ∈ Ω , t > 0 , (3.4a)

0 = D4h− h+ ξγ a
r

hs
, x ∈ Ω , t > 0 , (3.4b)

where γ is defined by

γ = r +
1

q
(1 − p)(1 + s) . (3.4c)

The parameter ξ will be chosen so that

h(x0) = 1 + o(1) , as ε→ 0 . (3.5)

Since D � O(ε2), a spike core of extent O(ε) will be formed near x = x0. In the core, we define

a new inner variable y = ε−1(x − x0). Outside of the spike core, where |y| → ∞, the linear

terms in (3.4a) dominate, and a decays exponentially as

a ∼ Cε1/2|x− x0|−1/2e−|x−x0|/ε , (3.6)

for ε−1|x− x0| → ∞. In the core of the spike, we assume that h changes more slowly as ε→ 0

than does a. This arises from the assumption that D � O(ε2). In other words, for ε → 0, we
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assume that to a leading order approximation

a(x0 + εy)r

h(x0 + εy)s
∼ a(x0 + εy)r

h(x0)s
∼ a(x0 + εy)r,

a(x0 + εy)p

h(x0 + εy)q
∼ a(x0 + εy)p . (3.7)

Under this assumption, the equilibrium solution to (3.4a) in the limit ε→ 0 is

a(x) ∼ w
(
ε−1|x− x0|

)
, (3.8)

for some x0, where w(ρ) is the unique positive solution of

w
′′

+
1

ρ
w

′ − w + wp = 0 , ρ ≥ 0 , (3.9a)

w(0) > 0 , w
′

(0) = 0 , w ∼ cρ−1/2e−ρ , as ρ→ ∞ . (3.9b)

Here c is a positive constant.

Let G(x, x0) be the Green’s function satisfying

4G− 1

D
G = −δ(x− x0) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω . (3.10)

Let R be the regular part of G defined by

R(x, x0) = G(x, x0) +
1

2π
ln |x− x0| . (3.11)

Then, the solution to (3.4b) is

h(x0) =

∫

Ω
G(x, x0)

ξγ

D

ar(x)

hs(x)
dx . (3.12)

Since the integrand in (3.12) is exponentially small except in an O(ε) region near x = x0, we

get from (3.7), (3.8), (3.11) and (3.12), that, as ε→ 0,

h(x0) ∼
ξγε2

D

∫

R2

(
− 1

2π
ln(ε|y|) +R

)
wr(|y|) dy =

ξγε2 ln(1
ε )

2πD

∫

R2

wr(|y|) dy + o(1) . (3.13)

Thus, to ensure that h(x0) = 1 + o(1) as ε→ 0, we must choose ξ as

ξγ =
Dν

ε2b
, (3.14)

where b and ν are defined as

b =

∫ ∞

0
wr(ρ)ρ dρ , ν =

1

ln(1
ε )

� ε , as ε→ 0 . (3.15)
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Substituting (3.14) into (3.4) we obtain the scaled system

at = ε24a− a+
ap

hq
, x ∈ Ω , t > 0 , (3.16a)

0 = D4h− h+
Dν

bε2
ar

hs
, x ∈ Ω , t > 0 . (3.16b)

Next, we derive a differential equation for the motion of the center x0 of the spike. Our main

result is the following:

Proposition 3.1.1 Suppose that D � O(ε2). Then, the trajectory x = x0(t) of the center of

a one-spike solution to (3.16) satisfies the differential equation

dx0

dt
∼ −

(
4πq

p− 1

)
ε2

ln(1
ε ) + 2πR0

∇R0 , as ε→ 0 , (3.17)

where R0 and its gradient are defined by

R0 ≡ R(x0, x0), ∇R0 ≡ ∇xR(x, x0)|x=x0
. (3.18)

Here R is the regular part of the reduced wave Green’s function defined by (3.10) and (3.11).

We now derive this result using the method of matched asymptotic expansions. Assuming that

a decays exponentially away from x = x0, we have that ar/hs decays exponentially away from

x0. Thus, from (3.16b), we obtain that the outer solution for h satisfies

4h− h

D
∼ −2πνBδ(x− x0) , B =

1

2πb

∫

R2

ar(x0 + εy)

hs(x0 + εy)
dy , (3.19)

where B → 1 as ε→ 0. The solution to (3.19) is

h ∼ 2πBνG(x, x0) = Bν [− ln(ε|y|) + 2πR(x0 + εy, x0)] , (3.20)

where y = ε−1(x− x0) and G satisfies (3.10). The local behavior of the outer solution near the

core of the spike is

h ∼ B + 2πνBR0 − νB ln |y| + 2πενB∇R0 · y +O(ε2|y|2ν) , as x→ x0 . (3.21)

The difficulty in matching an inner solution to the local behavior of the outer solution given in

(3.21) is that there are two scales, ν and ε, to consider. To allow for these two scales, we must
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expand the inner solution in a generalized asymptotic expansion of the form

a = a0(|y|; ν) + ενa1(y; ν) + · · · , h = h0(|y|; ν) + ενh1(y; ν) + · · · , (3.22)

where

y = ε−1 [x− x0(τ)] , τ = ε2νt . (3.23)

Generalized asymptotic expansions of the form (3.22) have been used in [70] and [75] to treat

related singularly perturbed problems involving the two scales ν and ε.

Substituting (3.22) and (3.23) into (3.16), and collecting powers of ε, we obtain

4a0 − a0 +
ap

0

hq
0

= 0 , 4h0 +
ν

b

ar
0

hs
0

= 0 , |y| ≥ 0 , (3.24)

and

4a1 − a1 +
pap−1

0

hq
0

a1 =
qap

0

hq+1
0

h1 − a
′

0

y · x′

0(τ)

|y| , (3.25a)

4h1 +
ν

b

(
rar−1

0

hs
0

a1 −
sar

0

hs+1
0

h1

)
= 0 . (3.25b)

Here the prime on a0 indicates differentiation with respect to |y|. The matching condition is

that ai → 0 exponentially as |y| → ∞ and that h satisfies (3.21) as |y| → ∞.

We first study the problem (3.24) for the radiallly symmetric solution a0 and h0. Since the

outer inhibitor field is to satisfy h(x0) = 1 + o(1) as ε→ 0, we expand the solution to (3.24) as

h0 = 1 + νh01(|y|) +O(ν2) , a0 = w(|y|) + νa01(|y|) +O(ν2) . (3.26)

Here w is defined in (3.9). Substituting (3.26) into (3.24), we obtain for |y| ≥ 0 that

4a01 − a01 + pwp−1a01 = qwph01 , (3.27a)

4h01 +
1

b
wr = 0 . (3.27b)

The matching process then proceeds as in [70] (see also [75]). Since ν � ε, we treat ν as a

constant of order one in the local behavior of the outer solution given in (3.21). We now match
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the constant term of the inner solution h0 to the constant term of the local behavior of the

outer solution (3.21). This yields 1 = B + ν2πBR0, so that

B =
1

1 + 2πR0ν
. (3.28)

Substituting this value of B back into (3.21), we then obtain the revised matching condition

h ∼ 1 − ν

1 + 2πνR0
ln |y| + 2πενB∇R0 · y + · · · , as y → ∞ , (3.29)

where B is given in (3.28). Expanding (3.29) in a Taylor series in ν, and comparing with the

expansion of h0 in (3.26), we conclude that h01 must satisfy (3.27b) subject to the far-field

asymptotic behavior

h01 = − ln |y| + o(1) , as |y| → ∞ . (3.30)

Recalling the definition of b in (3.15), it easily follows that there is a unique solution to (3.27b)

with asymptotic behavior (3.30). Solving for h01, and then substituting into (3.27a), we can

then in principle determine a01. Higher order terms in the logarithmic expansion of a0 and h0

can be obtained in the same way.

We now study the problem (3.25) for a1 and h1. From the matching condition (3.29) it follows

that we must have h1 = 2πB∇R0 · y + o(1) as |y| → ∞. Thus, we introduce h̃1 by

h1 = 2πB∇R0 · y + h̃1 , (3.31)

where h̃1 → 0 as |y| → ∞. Substituting (3.31) into (3.25), we can write the resulting system in

matrix form as

Lφ+ Mφ = f , M ≡


 m11 m12

m21 m22


 , φ ≡


 a1

h̃1


 , f ≡


 f1

f2


 , (3.32)

where L is the Laplacian operator Lφ ≡ 4φ, and

m11 = −1 +
pap−1

0

hq
0

, m12 = − qap
0

hq+1
0

, (3.33a)

m21 =
νrar−1

0

bhs
0

, m22 = − νsar
0

bhs+1
0

, (3.33b)

f1 = 2πqB∇R0 · y
ap

0

hq+1
0

− a
′

0

y · x′

0(τ)

|y| , f2 = 2πνsB∇R0 · y
ar

0

bhs+1
0

. (3.33c)
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The solution to (3.32) must satisfy φ→ 0 as |y| → ∞.

To derive the differential equation for x0(t) we impose a solvability condition on (3.32). Let ψ

be any solution to the homogeneous adjoint problem associated with (3.32). Thus, ψ satisfies,

Lψ + Mtψ = 0 , (3.34)

with ψ → 0 as |y| → ∞, where Mt indicates the transpose of M. Multiplying (3.32) by ψt,

we integrate by parts over R
2 to obtain

∫

R2

(
ψtLφ+ψtMφ

)
dy =

∫

R2

φt
(
Lψ + Mtψ

)
dy =

∫

R2

ψtf dy . (3.35)

Since ψ satisfies the homogeneous adjoint problem, we conclude from (3.34) and (3.35) that

(3.32) must satisfy the solvability condition

∫

R2

ψtf dy = 0 . (3.36)

We now obtain a more convenient form for this solvability condition. Setting ψ = (ψ1, ψ2)
t,

and using (3.33a) and (3.33b), we write the adjoint problem (3.34) as

4ψ1 +

(
−1 +

pap−1
0

hq
0

)
ψ1 +

νrar−1
0

bhs
0

ψ2 = 0 , (3.37a)

4ψ2 −
qap

0

hq+1
0

ψ1 −
νsar

0

bhs+1
0

ψ2 = 0 , (3.37b)

where ψj → 0 as |y| → ∞ for j = 1, 2. Using (3.33c), the solvability condition (3.36) can be

written as

x
′

0 ·
∫

R2

y

|y| a
′

0ψ1 dy = 2πB∇R0 ·
∫

R2

y

(
qap

0

hq+1
0

ψ1 +
νsar

0

bhs+1
0

ψ2

)
dy . (3.38)

Equation (3.38) is simplified further by using (3.37b) to replace the right-hand side of (3.38).

This yields,

x
′

0 ·
∫

R2

y

|y| a
′

0ψ1 dy = 2πB∇R0 ·
∫

R2

y4ψ2 dy , (3.39)

where B is defined in (3.28). Equation (3.39) is an ordinary differential equation for the motion

of the center of the spike.
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We note that the derivation of (3.39) has not used any expansion of a0 or h0 in powers of the

logarithmic gauge function ν. In principle, to determine an explicit form for the ODE (3.39)

for x0(t), which contains all the logarithmic terms, we must solve (3.24) for a0 and h0 and then

compute non-trivial solutions to the adjoint problem (3.37). This is a difficult task. Instead,

we will only calculate the leading order term in an infinite logarithmic expansion of ψ1 and ψ2.

This requires only the leading order term in the infinite logarithmic expansion of a0 and h0

given in (3.26). Therefore, substituting (3.26) and

ψ1 = ψ10 + νψ11 +O(ν2) , ψ2 = ψ20 + νψ21 +O(ν2) , (3.40)

into (3.37), we obtain the leading order adjoint problem

4ψ10 +
(
−1 + pwp−1

)
ψ10 = 0 , (3.41a)

4ψ20 − qwpψ10 = 0 . (3.41b)

There are two linearly independent solutions to (3.41a). They are

ψ10 = ∂yj
w , j = 1, 2 . (3.42)

Substituting (3.42) into (3.41b), we obtain

4ψ20 =
q

p+ 1

[
wp+1(|y|)

]′ yj

|y| , j = 1, 2 . (3.43)

The solution to (3.43) is

ψ20 =
q

ρ(p+ 1)

(∫ ρ

0
s [w(s)]p+1 ds

)
yj

|y| , (3.44)

where ρ = |y|. Substituting a0 ∼ w, (3.42), and (3.43), into the solvability condition (3.39), we

obtain

x
′

0 ·
∫

R2

y

|y| w
′

∂yj
w dy =

2πBq

p+ 1
∇R0 ·

∫

R2

y
[
wp+1(|y|)

]′ yj

|y| dy , j = 1, 2 . (3.45)

The integrals in (3.45) are evaluated using
∫

R2

yiyj

|y|2
[
w

′

(|y|)
]2
dy = πδij

∫ ∞

0
ρ
[
w

′

(ρ)
]2
dρ , (3.46a)

∫

R2

yiyj

|y|
[
wp+1(|y|)

]′
dy = πδij

∫ ∞

0
ρ2
[
wp+1(ρ)

]′
dρ = −2πδij

∫ ∞

0
ρ [w(ρ)]p+1 dρ , (3.46b)
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where δij is the Kronecker symbol. Substituting (3.46) into (3.45), we obtain

x
′

0(τ) = −4πBq

p+ 1
∇R0

(∫∞
0 [w(ρ)]p+1 ρ dρ
∫∞
0 [w′(ρ)]

2
ρ dρ

)
. (3.47)

In Appendix B of [76], equation (3.9) was used to calculate the ratio
∫∞
0 [w(ρ)]p+1 ρ dρ
∫∞
0 [w′(ρ)]

2
ρ dρ

=
p+ 1

p− 1
. (3.48)

Hence (3.47) reduces to

x
′

0(τ) = −4πqB

p− 1
∇R0 . (3.49)

Substituting (3.28) for B into (3.49), and recalling the definition of ν given in (3.15), we recover

the main result (3.17) for x0(t).

There are two important remarks. Firstly, from (3.49) it follows that the center of the spike

moves towards the location of a local minimum of R0. This minimum depends only on D and

not on ε. In the following sections we will explore how this location depends on D. Secondly, as

seen from the analysis above, since we have only used the leading order term in the logarithmic

expansion of the homogeneous adjoint eigenfunction, the error in (3.17) is of order O(ν). This

error, however, is still proportional to ∇R0. In fact, the two integrals in the solvability condition

(3.39) are independent of x0 and the shape of the domain. Thus, even if we had retained higher

order terms in the logarithmic expansion of the adjoint eigenfunction, we would still conclude

that the equilibrium locations of the spike are at local minima of ∇R0, and the spike would

follow the same path in the domain as that described by (3.17). The higher order terms in

the logarithmic expansion of a0, h0 and the adjoint eigenfunction, only change the time-scale

of the motion. However, at first glance, an error proportional to O(ν) in the time-scale of the

asymptotic dynamics seems rather large. This is not as significant a concern as it may appear,

as from the numerical experiments performed in §3.4 we show that it is the dependence of B on

ν as given in (3.28) that allows for a close agreement between the asymptotic and full numerical

results for the spike motion.

To derive Proposition 3.1.1, we had to expand the a0, h0 in ν as in (3.26). But this is only valid

when ν is small, i.e. ε is exponentially small. To derive more accurate dynamics for a more

realistic case of ε polynomially small, we need to work directly with adjoint equations (3.37).

110



Let r = |y|. Direct computation yields, for any function f(r),

4(yjf(r)) = yj

(
f ′′(r) +

3

r
f ′(r)

)
.

Letting

ψ1(x) =
yj

r
f(r), ψ2(x) =

yj

r
g(r), (3.50a)

we obtain

f ′′ +
1

r
f ′ − 1

r2
f +

(
−1 +

pap−1
0

hq
0

)
f +

νrar−1
0

bhs
0

g = 0 , (3.50b)

g′′ +
1

r
g′ − 1

r2
g − qap

0

hq+1
0

f − νsar
0

bhs+1
0

g = 0 , (3.50c)

and

∫

R2

yi

y
a′0ψ1dy = δijπ

∫ ∞

0
ra′0(r)f(r)dr (3.51)

∫

R2

y

(
qap

0

hq+1
0

ψ1 +
νsar

0

bhs+1
0

ψ2

)
dy = δijπ

∫ ∞

0
r2

(
qap

0

hq+1
0

f +
νsar

0

bhs+1
0

g

)
dr. (3.52)

Therefore we obtain:

x′0 ∼ 2πB∇R0

∫∞
0 r2

(
qap

0

hq+1

0

f +
νsar

0

bhs+1

0

g

)
dr

∫∞
0 ra′0(r)f(r)dr

(3.53)

The integral on the right hand side is to be evaluated numerically. The functions a0, h0, f, g are

solved numerically using a boundary value solver colsys [3]. We approximate the infinite line

by [0, L] where L was taken to be 15. Note that f and g are determined only up to an arbitrary

scaling. For f, g we use the following boundary conditions:

f(0) = 0, g′(0) = 1, f ′(L) = 0, g′(L) = 0.

These conditions assure decay at infinity and the solution being odd. The remaining conditions

are: a′0(L) = 0, h′0(0) = a′0(0) = 0, and h(0) = 1.

Next we consider an example. We take Ω = [0, 1]2, ε = 0.01, (p, q, r, s) = (2, 1, 2, 0). Taking

an initial spike to be at x0 = (0.4, 0) we obtain numerically that R0 = 0.7598 and ∇R0 =
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(−0.09137, 0) (see Section 3.2.1.) From a full numerical simulation of the system, we obtain

|x′
0(ε

2t)|
|∇R0| = 7.057. On the other hand, using (3.28) we obtain B = 0.491 and

|x′
0(ε

2t)|
|∇R0| = 6.170,

with an error of about 10%. Using colsys obtain numerically,

∫∞
0 r2

a2
0

h2
0

f
∫∞
0 ra′0f

= −2.566

which yields from (3.53),
|x′

0
(ε2t)|

|∇R0| = 7.92. This method also give an error of about 10%. However

we expect that the latter method is more accurate for smaller values of ε.

3.2 Limiting Cases Of The Dynamics

In this section we consider two limiting cases of result (3.17) for the motion of a spike. In §3.2.1

we consider the case where ε2 � D � 1 and in §3.2.2 we consider the case D � 1.

3.2.1 Dynamics For Small D

In this section we assume that ε2 � D � 1. The inequality ε2 � D was crucial to the derivation

of (3.17) in §2. When D � 1 we can treat D as a small parameter and obtain limiting results

from (3.17).

We begin by introducing R̃ defined by

R̃(x, x0) = G(x, x0) − V (x) , (3.54)

where G satisfies (3.10), and V is the free-space Green’s function in R
2 satisfying

4V − λ2V = −δ(x− x0) , λ ≡ 1√
D
. (3.55)

The solution to (3.55) is

V (x) =
1

2π
K0(λ|x− x0|) . (3.56a)

The asymptotic behavior of K0(r) for r � 1 is

K0(r) ∼ − ln r + ln 2 − γ +O
(
r2 ln r

)
, as r → 0 . (3.56b)

Here γ is Euler’s constant. In terms of R̃, the regular part R0 defined in (3.18) is

R0 = R̃(x0, x0) −
1

2π
(lnλ− ln 2 + γ), ∇R0 = ∇R̃(x, x0)|x=x0

. (3.57)
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To obtain some insight into the dynamics when D is small, we first consider the case where

Ω = [0, 1]2 is a unit square. Then, using the method of images, we can solve (3.10) explicitly

for G for any value of D. This yields

R̃(x, x0) =

( ∞∑

n=−∞

∞∑

m=−∞
V [vm(hn(x))]

)
− V (x) , (3.58a)

where

hn(x) =





(x1 − n, x2) if n is even

(n+ 1 − x1, x2) if n is odd
, vm(x) =





(x1, x2 −m) if m is even

(x1,m+ 1 − x2) if m is odd
.

(3.58b)

For D small, such that λ|x− x0| � 1, the function V decays exponentially as

V (x) ∼ 1

2

1√
2π

[λ|x− x0|]−
1

2 e−λ|x−x0| , for λ|x− x0| � 1 . (3.59)

Now suppose that the spike is located at x0 = (1
2 , ξ) with O

(
1
λ

)
� ξ < 1

2 − O
(

1
λ

)
. Then, for

D � 1, we need only retain the two terms (n,m) = (0, 0) and (n,m) = (0,−1) in the series

(3.58a). The other terms are exponentially small at the point x0 in comparison with these

terms. Thus, for λ→ ∞, we obtain from (3.58a) that

R̃(x, x0) ∼
1

2π
K0 [λ|x̃− x0|] , x̃ = (x1,−x2) , x = (x1, x2) . (3.60a)

Now substituting (3.60a) into (3.57), and using the large argument expansion (3.59), we obtain

R0 ∼ 1

4
√
πλξ

e−2λξ +
1

2π
(ln 2 − γ − lnλ) , 2∇R0 ∼ −1

2

√
λ

πξ
e−2λξ ̂ , (3.60b)

where ̂ is a unit vector in the positive x2 direction. Substituting (3.60b) into (3.17), we obtain

an evolution equation for ξ

dξ

dt
∼ q

p− 1

(
ε2
√
πλ

ln 2 − γ − ln[ελ]

)
e−2λξ

√
ξ
. (3.61)

We now make a few remarks. The ODE (3.61) breaks down when ελ = O(1). This occurs when

D = O(ε2). Thus, we require that ε � 1 and λ � 1, but ελ � 1. In this limit, (3.61) shows

that ξ is increasing exponentially slowly without bound as t increases. The ODE, however, was

113



0.2

0.25

0.3

0.35

0.4

3.5 4 4.5 5 5.5 6

ξ

log10 t

Figure 3.3: Movement of the center (0.5, ξ(t)) of a single spike of (3.16) within a unit box [0, 1]2

versus log10 t, with ε = D = 0.01. The solid curve is the numerical solution to (3.61) with
ξ(0) = 0.2. The broken curve is the approximation (3.63).

derived under the assumption that O
(

1
λ

)
� ξ < 1

2 −O
(

1
λ

)
. When ξ is near the value ξ = 1/2,

the ODE must be rederived by retaining an additional image point in the infinite sum in (3.58a)

corresponding to (n,m) = (0, 1). The effect of this additional term is to ensure that ξ → 1/2

as t→ ∞. This implies that the spike tends to the center of the square as t→ ∞.

Consider (3.61) with the initial condition ξ(0) = ξ0. To determine the time T for which

ξ(T ) = ξ1, where O
(

1
λ

)
� ξ0 < ξ1 <

1
2 −O

(
1
λ

)
, we integrate (3.61) to obtain

∫ ξ1

ξ0

√
ξ e2λξ dξ =

q

p− 1

(
ε2
√
πλ

ln 2 − γ − ln[ελ]

)
T . (3.62)

Evaluating the integral asymptotically for λ� 1 we get

T ∼ p− 1

q

(
ln 2 − γ − ln [ελ]

2ε2
√
πλ3/2

)√
ξ1 e

2λξ1 , λ� 1 . (3.63)

Thus, when D � 1, the motion of the spike is metastable. The spike moves exponentially slowly

with time (see Fig. 3.3) as it approaches the center of the square. Indeed, this behavior is not

specific to a square domain as we will now demonstrate.

More generally, consider any domain Ω with smooth boundary. Let R̃(x, x0) be defined as in

(3.54). Then, R̃ satisfies

4R̃− λ2R̃ = 0 x ∈ Ω ; ∂nR̃ = −∂nV , x ∈ ∂Ω , (3.64)
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where V (x) is given in terms of x0 by (3.56a). To obtain a representation formula for R̃, we

apply Green’s theorem to R̃ and V . This yields,

R̃0 ≡ R̃(x0, x0) =

∫

∂Ω

[
V (x

′

)∂nR̃(x
′

, x0) − R̃(x
′

, x0)∂nV (x
′

)
]
dx

′

. (3.65)

The only term in the integrand of (3.65) that we still need to calculate is R̃(x
′

, x0) for x
′ ∈ ∂Ω.

We now calculate this term for λ� 1 using a boundary layer analysis on (3.64). Since λ� 1,

the solution to (3.64) has a boundary layer of width O
(
λ−1

)
near ∂Ω. Thus, it suffices to

estimate R̃ inside the boundary layer. Let η = λ|x′ − x| where x
′

is the point on ∂Ω closest

to x (one can always find such an x
′

assuming that x is within the boundary layer and λ

is sufficiently large). Let ξ represent the other coordinate orthogonal to η. Then, using this

coordinate change in (3.64), we have to leading order that

R̃ηη − R̃ = 0 , η ≥ 0 ; λR̃η|η=0 ∼ ∂nV (x
′

) . (3.66)

Since x0 is assumed to be strictly in the interior of Ω, we can estimate V on ∂Ω using the far

field behavior (3.59). This yields, for λ� 1, that

∂nV (x
′

) ∼ −λV (x
′

)〈r̂′ , n̂〉 , r̂
′ ≡ x

′ − x0

|x′ − x0|
, (3.67)

where n̂ is the unit outward normal to ∂Ω at x
′

, and the angle brackets denote the scalar dot

product. The solution to (3.66) that is bounded as η → +∞ is proportional to e−η. Therefore,

R̃ ∼ −λ−1∂nV (x
′

)e−η . (3.68)

Using (3.67), and evaluating (3.68) on ∂Ω where η = 0, we obtain the following key results for

λ� 1:

R̃(x
′

, x0) ∼ V (x
′

)〈r̂′ , n̂〉 , x
′ ∈ ∂Ω , (3.69a)

∂nR̃(x
′

, x0) ∼ λV (x
′

)〈r̂′ , n̂〉 , x
′ ∈ ∂Ω . (3.69b)

Next, we substitute (3.69) and (3.67) into (3.65). This yields, for λ� 1, that

R̃0 ≡ R̃(x0, x0) ∼ λ

∫

∂Ω

[
V (x

′

)
]2 (

〈r̂′, n̂〉2 + 〈r̂′, n̂〉
)
dx

′

. (3.70)
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We now evaluate this integral asymptotically for λ� 1. To do so we use Laplace’s formula (see

[86]),
∫

∂Ω

1

r′
F (r

′

) e−2λr
′

dx
′ ∼

(
π

λrm

) 1

2

e−2λrm

∑
F (rm)

(
1 − rm

κm

)− 1

2

. (3.71)

Here rm = dist(∂Ω, x0), κm ≥ 0 is the curvature of ∂Ω at xm, and the sum is taken over all

xm ∈ ∂Ω that are closest to x0. Comparing (3.70) with (3.71), we get

F (r
′

) ≡ 1

8π

(
〈r̂′, n̂〉2 + 〈r̂′, n̂〉

)
. (3.72)

At the points xm ∈ ∂Ω closest to x0, we have that r
′

= rm and r̂
′

= n̂. This yields, F (rm) =

1/4π. Therefore, for λ� 1, the estimate (3.71) for (3.70) becomes

R̃0 ∼ 1

4
√
λπrm

e−2λrm

∑(
1 − rm

κm

)− 1

2

. (3.73)

Finally, to calculate ∇R0 needed in (3.17), we use (3.57) and the reciprocity relation R̃(x, x0) =

R̃(x0, x) to get

∇R0 = ∇R̃(x, x0)|x=x0
=

1

2

d

dx0
R̃(x0, x0) =

1

2

d

dx0
R̃0 . (3.74)

Differentiating (3.73), and substituting into (3.74), we obtain

2∇R0 ∼ −1

2

√
λ

πrm
e−2λrm

∑(
1 − rm

κm

)− 1

2

r̂m , (3.75)

where r̂m ≡ (xm − x0)/|xm − x0|. Substituting (3.75) and (3.57) into (3.17), we obtain the

following proposition:

Proposition 3.2.1 For ε2 � D � 1 and ε � 1, the trajectory of the center of a one-spike

solution to (3.16) satisfies the differential equation

dx0

dt
∼

√
πλ q

p− 1

(
ε2

ln 2 − γ − ln[ελ]

)
1√
rm
e−2λrm

∑(
1 − r

κm

)− 1

2

r̂m . (3.76)

Here λ ≡ D− 1

2 , r̂m is defined following (3.75), and the other symbols are defined in the sentence

following (3.71).

The formula (3.76) agrees with (3.61) when Ω is a unit box. Moreover, we have the following

result:
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Proposition 3.2.2 Let r(x) = dist(∂Ω, x). Suppose that x0 is a local minimum of f(x0) ≡

R(x0, x0) as λ→ ∞. Then, for λ→ ∞, x0 is a local maximum of r(x).

Proof. The proof is by contradiction. Suppose that x0 is not a local maximum of r(x). Since

r is continuous, we can find x1 with |x1 − x0| > 0 arbitrary small, with r(x1) − r(x0) > 0.

However, (3.73) yields

R̃(x1, x1)

R̃(x0, x0)
∼ Ce−2λ[r(x1)−r(x0)] , (3.77)

where C = C(x0, x1) is independent of λ. Hence, for λ sufficiently large, R̃(x1,x1)

R̃(x0,x0)
< 1. This

implies that R̃(x1, x1) < R̃(x0, x0) for λ large enough. Hence, x0 is not a local minimizer of R̃

as λ→ ∞. Using (3.57) to relate R̃ to R completes the proof.

It follows that for D � 1 and for convex domains, the center of the spike moves towards a

point within the domain located at the center of the largest disk that can be inserted into the

domain.

3.2.2 Dynamics For Large D

The dynamics for the limiting case where D � 1 is significantly different from the previous

analysis where D � 1.

When D is large, we may expand G defined in (3.10) as

G = DG0 +Gm +
1

D
G2 + · · · . (3.78)

Substituting (3.78) into (3.10), and collecting powers of D, we obtain

4G0 = 0 , x ∈ Ω ; ∂nG0 = 0 , x ∈ ∂Ω , (3.79a)

4Gm = G0 − δ(x− x0) , x ∈ Ω ; ∂nGm = 0 , x ∈ ∂Ω . (3.79b)

From (3.79a) we conclude that G0 is a constant. The solvability condition for (3.79b) then

yields

G0 =
1

vol Ω
, (3.80)
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where vol Ω is the area of Ω. The solvability condition for the problem for G2 also yields that
∫
ΩGm dx = 0. Hence, Gm is the modified Green’s function for Ω satisfying

4Gm =
1

vol Ω
− δ(x− x0) , x ∈ Ω ; ∂nGm = 0, x ∈ ∂Ω ;

∫

Ω
Gm dx = 0 . (3.81)

Let Rm be the regular part of Gm defined by

Rm(x, x0) =
1

2π
ln |x− x0| +Gm(x, x0) . (3.82)

Combining (3.11), (3.78), (3.80), and (3.82), we conclude that for D � 1

R(x, x0) ∼
D

vol Ω
+Rm(x, x0) +O (1/D) . (3.83)

Substituting (3.83) into (3.17), we obtain the following proposition:

Proposition 3.2.3 If D � 1 and ε � 1, the trajectory of a one-spike solution of (3.16)

satisfies

dx0

dt
= −4πqε2

p− 1

(
1

− ln ε+ 2π D
vol Ω + 2πRm0

)
∇Rm0 , (3.84a)

where Rm0 and its gradient are defined by

Rm0 ≡ Rm(x0, x0), ∇Rm0 = ∇xRm(x, x0)|x=x0
. (3.84b)

As a corollary, we obtain the following proposition, which was originally derived in [14] and

[76]:

Proposition 3.2.4 (Ward et al, [76], Proposition 3.2) Let ε� 1 and assume that D � − ln ε.

Then, the trajectory of a one-spike solution of (3.16) satisfies

dx0

dt
= −

(
2q vol Ω

p− 1

)
ε2

D
∇Rm0 , (3.85)

where Rm0 and ∇Rm0 are defined in (3.84b).
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Several general observations can be made by comparing (3.17), (3.76), and (3.85). In all three

cases, the activator diffusivity ε only controls the timescale of the motion. The precise trajectory

traced by x0 as t increases depends only on D and on the shape of the domain inherited through

the terms ∇R0 and ∇Rm0. For the case of small D, where ε2 � D � 1, the motion is

exponentially slow, or metastable, and D controls the dynamics. In contrast, when D = O(1),

the speed of the spike is of the order ε2

− ln ε , with a complicated dependence on D through R0.

Finally for D � − ln ε, the speed is controlled by both ε and D and is of order ε2

D . In the

limit D → ∞ and τ = 0, the system (3.1) is approximated by the so-called shadow system (see

[37], [10]). In this case the motion of the spike is again metastable. However, for the shadow

system a one-spike interior equilibrium solution is unstable and the spike moves towards the

closest point on the boundary of the domain. This behavior is in direct contrast to what we

have found for small D, whereby by Propositions 3.2.1 and 3.2.2 the spike moves exponentially

slowly towards a point that is the furthest away from the boundary. This suggests that as D

is increased, the number of possible equilibria for x0 may decrease. In §3.3 we will show that

for a certain dumbell-shaped domain, there is only one possible stable equilibrium location for

D sufficiently large, whereas there are two stable equilibrium locations when D is sufficiently

small.

The analysis of this chapter breaks down in the near-shadow system when D is exponentially

large, i.e. when (3.3) fails. In such a case, there is an exponentially weak boundary effect that

must be taken into account, since it becomes of the same order as the effect due to ∇Rm. The

near-shadow system will be considered in detail in the next chapter.

3.3 Exact Calculation Of The Modified Green’s Function

In this section we will use complex analysis to derive an exact formula for ∇Rm0 defined in

(3.84b) for domains of the form

Ω = f(B) , (3.86)

where B is the unit circle, and f is a rather general class of analytic functions. We will then

use this formula to further explore the dynamics of a spike for the GM system on a certain
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dumbell-shaped domain. Our main result here is the following:

Theorem 3.3.1 Let f(z) be a complex mapping of the unit disk B satisfying the following

conditions:

(i) f is analytic and is invertible on B. Here B is B together with its boundary ∂B.

(ii) f has only simple poles at the points z1, z2, .., zk, and f is bounded at infinity.

(iii) f = g/h where both g and h are analytic on the entire complex plane, with g(zi) 6= 0.

(iv) f(z) = f(z).

On the image domain Ω = f(B), let Gm and Rm be the modified Green’s function and its regular

part, as defined in (3.81) and (3.82), respectively. Let Rm0 and ∇Rm0 be the value of Rm and

its gradient evaluated at x0, as defined in (3.84b). Then, we have

∇Rm0 =
∇s(z0)
f ′(z0)

, (3.87)

where z0 ∈ B satisfies x0 = f(z0), and ∇s(z0) is given by

∇s(z0) =
1

2π

(
z0

1 − |z0|2
+
f

′′

(z0)

2f ′(z0)

)

−
f

′

(z0)

(
f(z0) − f(

1

z0
)

)
+
∑

j

g(zj)f
′

( 1
zj

)

z2
jh

′(zj)

(
1

zj − z0
+

zj
1 − zjz0

)

2π
∑

j

g(zj)f
′

( 1
zj

)

z2
jh

′
(zj)

.

(3.88)

In the equation above, and for the rest of this section, we will treat vectors v = (v1, v2) as

complex numbers v1 + iv2. Thus vw is assumed to be complex multiplication. The dot product

will be denoted by 〈v,w〉 ≡ 1
2 (vw̄ + v̄w).

Proof. Given x, x0 ∈ Ω, choose z, z0 such that x = f(z), x0 = f(z0). We will use n̂ and N̂ to

denote the normal to ∂B at a point z and the normal to ∂Ω at x = f(z), respectively. Since f

is analytic on B we obtain

N̂ =
n̂f

′

(z)

|f ′(z)| =
zf

′

(z)

|f ′(z)| , dσ(z) =
dz

iz
, (3.89)
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where dσ is the length element on ∂B.

We now define S(x) by

S(x) = Gm(x, x0) +
1

2π
ln |x− x0| −

1

4 vol Ω
|x− x0|2 . (3.90)

Substituting (3.90) into (3.81), we find that S satisfies




4S = 0 , in Ω ,

〈∇S, N̂〉 = 〈x− x0, N̂〉
(

1
2π|x−x0|2 − 1

2 vol Ω

)
, on ∂Ω ,

(3.91a)

with ∫

Ω
S dx =

1

2π

∫

Ω
ln |x− x0| −

1

4 vol Ω

∫

Ω
|x− x0|2 dx . (3.91b)

Combining (3.90) and (3.82), we relate ∇Rm to ∇S as

∇Rm(x, x0)|x=x0
= ∇S(x0) . (3.92)

The problem (3.91a) determines S up to an additive constant. This constant is determined by

(3.91b). However, the precise value of this additive constant does not influence ∇Rm0, since

this term depends only on the gradient of S. Hence, without loss of generality, in the derivation

below we only calculate S up to an additive constant.

Let s(z) = S(f(z)). Since f is analytic and S is harmonic, s satisfies Laplaces’s equation.

Using (3.89), and the fact that f is analytic, we get 〈∇s, n̂〉 = 〈∇S, N̂〉|f ′

(z)|. Hence, (3.91a)

transforms to




4s = 0 , in B ,

〈∇s, n̂〉 = χ(z, z0) ≡ 〈x− x0, zf
′

(z)〉
(

1
2π|x−x0|2 − 1

2 volΩ

)
, on ∂B .

(3.93)

On the unit ball Ω = B, let gm(z, ξ) be the solution to the modified Green’s function problem

(3.81), with singular point at z = ξ. It [76] it was shown that

gm(z, ξ) =
1

2π

( |z|2
2

− ln |z − ξ| − ln |z − ξ

|ξ|2 |
)

+ C(ξ) , (3.94)

where C is a constant depending on ξ. Notice that if |z| = 1 then |z − ξ
|ξ|2 |2 = |z−ξ|2

|ξ|2 . Hence,

∇ξgm(z, ξ)|z∈∂B =
1

π

z − ξ

|z − ξ|2 + C1(ξ) , (3.95)

121



where C1 is another constant.

Next, we use Green’s identity to represent the solution to (3.93) as the boundary integral

s(ξ) =

∫

∂B
gm(z, ξ)χ(z, z0) dσ(z) + C2 , χ(z, z0) ≡ 〈∇s, n̂〉 , (3.96)

where C2 is a constant. Since s(z) = S(f(z)), we get from (3.92) that

∇Rm0 ≡ ∇Rm(x, x0)|x=x0
=

∇s(z)
f ′(z)

∣∣∣∣
z=z0

. (3.97)

Differentiating (3.96) with respect to ξ and using (3.95), we evaluate the resulting expression

at ξ = z0 to get

∇s(z0) =

∫

∂B
∇ξgm(z, z0)χ(z, z0) dσ =

1

π

∫

∂B

z − z0
|z − z0|2

χ(z, z0) dσ +C1

∫

∂B
χ(z, z0) dσ . (3.98)

From (3.93) it follows that
∫
∂B χ(z, z0) dσ(z) = 0. Then, using (3.93) for χ(z, z0) and (3.89) for

dσ(z), (3.98) becomes

∇s(z0) =

∫

∂B
〈x− x0, zf

′

(z)〉
(

1

2π|x− x0|2
− 1

2 vol Ω

)
1

π

z − z0
|z − z0|2

dz

iz

=
1

2πi

∫

∂B

(
(x− x0)zf

′(z) + x− x0zf
′

(z)
)( 1

2π|x− x0|2
− 1

2 vol Ω

)
1

1 − zz0
dz

=
1

4π2i

∫

∂B

(
zf ′(z)

x− x0

)
1

1 − zz0
dz +

1

4π2i

∫

∂B

zf
′

(z)

x− x0

1

1 − zz0
dz

− 1

4πi vol Ω

∫

∂B
(x− x0)zf

′(z)
1

1 − zz0
dz − 1

4πi vol Ω

∫

∂B
x− x0zf

′

(z)
1

1 − zz0
dz .

(3.99a)

This equation is written concisely as

∇s(z0) = J1 + J2 + J3 + J4 , (3.99b)

where the Jk are, consecutively, the four integrals in the last equality in (3.99a). We now

calculate each of these terms.

We first calculate J2. Using the residue theorem, the relations x = f(z) and x0 = f(z0), and

the invertibility of f , we readily calculate that

J2 ≡ 1

4π2i

∫

∂B

zf
′

(z)

x− x0

1

1 − zz0
dz =

z0
2π [1 − |z0|2]

. (3.100)
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To calculate J1 we use an identity. For any function H(z), it is easy to show that

1

2πi

∫

∂B
H(z) dz =

1

2πi

∫

∂B
H(z)

1

z2
dz . (3.101)

This determines J1 as

J1 ≡ 1

4π2i

∫

∂B

(
zf

′
(z)

x− x0

)
1

1 − zz0
dz =

f
′′

(z0)

4πf ′(z0)
. (3.102)

To show this, we use zz = 1 for z ∈ ∂B, and (3.101) and (3.102), to get

J1 =
1

4π2i

∫

∂B

(
f ′(z)

(x− x0)(z − z0)

)
1

z2
dz =

1

4π2i

∫

∂B

f ′(z)

(x− x0)(z − z0)
dz . (3.103)

Using x = f(z) and x0 = f(z0), we write (3.103) as

J1 =
1

4π2i

∫

∂B

φ(z)

(z − z0)2
dz , φ(z) ≡ f

′

(z)(z − z0)

f(z) − f(z0)
. (3.104)

The function φ(z) is analytic in B and φ
′

(z0) = f
′′

(z0)/
[
2f

′

(z0)
]
. Thus, using the residue

theorem, and property (iv) of Theorem 4.1, we get

J1 =
1

2π
φ′(z0) =

1

4π

f
′′

(z0)

f ′(z0)
. (3.105)

This completes the derivation of (3.102).

To calculate J3 and J4, we need to evaluate vol Ω given by

vol Ω =

∫

Ω
dx =

∫

∂Ω

1

2
〈x, N̂ 〉 dΣ . (3.106)

Using dΣ = |f ′

(z)|dσ, x = f(z), zz = 1 on ∂B, and (3.89) for N̂ and dσ, we get

vol Ω =
1

4i

∫

∂B
f(z)f

′

(z) dz +
1

4i

∫

∂B
f ′(z)

f(z)

z2
dz . (3.107)

To evaluate (3.107), J3, and J4, we need another identity. Let F (z) be any function analytic

inside and on the unit disk, and assume that F (z) = F (z). Then

I ≡ 1

2πi

∫

∂B
f(z)F (z) dz = −

∑

j

g(zj)

z2
jh

′
(zj)

F (
1

zj
) . (3.108)

To show this result, we use (3.101) to write I as

I =
1

2πi

∫

∂B
z2f(z)F (z)

1

z2
dz =

1

2πi

∫

∂B
z2f(z)F (z) dz . (3.109)
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Since zz = 1 and F (z) = F (z) = F (1/z) on ∂B, we get

I = J , where J ≡ 1

2πi

∫

∂B

f(z)F (1/z)

z2
dz . (3.110)

Then, since F (1/z) is analytic in |z| ≥ 1 and f(z) is bounded at infinity by property (ii)

of Theorem 4.1, we can evaluate J by integrating the integrand of J over the boundary of

the annulus 1 ≤ |z| ≤ R and letting R → ∞. By properties (ii) and (iii) of Theorem 4.1,

f(z) = g(z)/h(z) has simple poles at z = zj with |zj | > 1. Using the residue theorem over the

annulus, and letting R→ ∞, we obtain

J = −
∑

j

g(zj)

z2
jh

′(zj)
F (

1

zj
) . (3.111)

Substituting (3.111) into (3.110) and using f(z) = f(z), F (z) = F (z), and the fact that zj is a

pole of f(z) if and only if zj is, we obtain the result (3.108) for I.

Next, we use (3.101) to write vol Ω in (3.107) as

vol Ω =
π

2

[
1

2πi

∫

∂B
f(z)f

′

(z) dz +
1

2πi

∫

∂B
f(z)f ′(z) dz

]
. (3.112)

Then, using (3.108), we can calculate the two integrals in (3.112) to get

vol Ω = −π
2

∑

j

(
g(zj)f

′

( 1
zj

)

z2
jh

′(zj)
+
g(zj)f

′

( 1
zj

)

z2
jh

′(zj)

)
= −π

∑

j

g(zj)f
′

( 1
zj

)

z2
jh

′(zj)
. (3.113)

The last equality above follows from property (iv) of Theorem 4.1, which implies that zj is a

pole of f(z) if and only if zj is.

Next, we evaluate J4 of (3.99a). We calculate that

J4 ≡ − 1

4πi vol Ω

∫

∂B
f(z) − f(z0) zf

′

(z)
1

1 − zz0
dz =

1

2vol Ω

∑

j

g(zj)f
′

( 1
zj

)

z2
jh

′(zj)(zj − z0)
. (3.114)

To obtain this result, we use the fact that zf
′

(z)/(1 − zz0) is analytic in B to get

J4 = − 1

2 vol Ω

(
1

2πi

∫

∂B
f(z)

zf
′

(z)

1 − zz0
dz

)
. (3.115)

The result (3.114) then follows by using the identity (3.108) in (3.115).
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Lastly, we calculate J3 of (3.99a). We find,

J3 ≡ − 1

4πi vol Ω

∫

∂B
[f(z) − f(z0)] zf

′(z)
1

1 − zz0
dz

=
1

2vol Ω

∑

j

g(zj)f
′

( 1
zj

)

h′(zj)zj(1 − zjz0)
+

1

2 vol Ω
f

′

(z0)

[
f(z0) − f(

1

z0
)

]
. (3.116)

To obtain this result, we use (3.101) to rewrite J3 as

J3 = − 1

2 vol Ω

(
1

2πi

∫

∂B
f(z) − f(z0)F (z) dz

)
, F (z) ≡ f

′

(z)

z − z0
. (3.117)

Now we repeat the steps (3.109)–(3.111) used in the derivation of (3.108), except that here

we must include the contribution from the simple pole of F (z) at z = z0, which lies inside B.

Analogous to (3.110), we obtain

J3 = − 1

2 vol Ω

(
1

2πi

∫

∂B

[f(z) − f(z0)] f
′

(1/z)

z2 (z−1 − z0)
dz

)
. (3.118)

Outside the unit disk the integrand has simple poles at z = zj and at z = 1/z0. Integrating

over the annulus 1 ≤ |z| ≤ R, using the residue theorem, and then letting R → ∞, we obtain

(3.116).

Finally, combining (3.99b) and (3.97), we obtain our result for the gradient of the modified

Green’s function

∇Rm0 ≡ ∇Rm(x, x0)|x=x0
=

1

f ′(z0)

4∑

k=1

Jk . (3.119)

Substituting the results for Jk and vol Ω given by (3.100), (3.102), (3.113), (3.114), and (3.116),

into (3.119), we obtain our main result (3.87) and (3.88).

3.3.1 Uniqueness Of The One-Spike Equilibrium Solution For Large D

Consider the following example from [30]:

f(z) =
(1 − a2)z

z2 − a2
. (3.120)

Here a is real and a > 1. The resulting domain Ω = f(B) for several values of a is shown

in Fig. 3.4. Notice that Ω → B as a → ∞. One can also show that as ε ≡ a − 1 → 0+, Ω
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Figure 3.4: Left: The boundary of Ω = f(B), with f(z) as given in (3.120), for the values of a
as shown. Right: The vector field ∇Rm0 in the first quadrant of Ω with a = 1.1.

approaches the union of two circles centered at (±1
2 , 0), with radius 1

2 , which are connected by

a narrow channel of length 2ε+O(ε2). From Theorem 3.3.1, we calculate

∇s(z0) =
1

2π

(
z0

1 − |z0|2
−
(
z2
0 + 3a2

)
z0

z4
0 − a4

+
a2z0

z2
0a

2 − 1
+

z0

z2
0 − a2

−(a4 − 1)2(|z0|2 − 1)(z0 + a2z0)(z
2
0 + a2)

(a4 + 1)(z2
0a

2 − 1)(z2
0 − a2)(z2

0 − a2)2

)
.

(3.121)

In the limit a → ∞, Ω → B, x0 → z0, and f
′

(0) → 1. In this limit, we calculate from (3.87)

and (3.121) that

∇Rm0 =
1

2π

(
2 − |x0|2
1 − |x0|2

)
x0 . (3.122)

This is precisely the formula for ∇Rm0 on the unit disk, which can be derived readily from (3.94)

as was done in [76]. This provides an independent verification of a limiting case of Theorem

3.3.1. We have also verified the formula (3.121) by using the boundary element method to

compute ∇Rm0 for Ω as obtained by the mapping (3.120). The two solutions are graphically

indistinguishable.

Next, we calculate from (3.121) that

∇s(z0)|a→1+ =
Re(z0)

π(1 − |z0|2)(z2
0 + 1)

. (3.123)
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In the limit a→ 1+, Ω becomes the union of two disks of radius 1/2 centered at (±1
2 , 0). Thus,

the unique root of ∇s(z0)|a→1+ = 0 in Ω is z0 = 0. This root is easily verified to be a simple

root. Hence, it follows from the implicit function theorem that ∇s(z0) has a unique root for

any ε = a− 1 > 0 small enough. By symmetry, this root must be at the origin. We summarize

our result as follows:

Proposition 3.3.2 Consider a domain Ω = f(B) with f given by (3.120) as shown in Fig. 3.4.

Then for ε = a−1 > 0 small enough, Ω is approximately a union of two disks of radius 1
2 centered

at (±1
2 , 0), connected by a narrow channel of size 2ε + O(ε2). Furthermore, ∇Rm0 given by

(3.84b) has a unique root located at the origin. Thus, in this case, there is a unique equilibrium

location for the single-spike solution of (3.16).

We now show that there are no roots ∇s(z0) along the real axis when a > 1, except the one at

z0 = 0. Thus, there are no equilibrium spike-layer locations in the lobes of the dumbell for any

a > 1. In (3.121) we let z0 = z0 = ξ, where −1 < ξ < 1. After a tedious but straightforward

calculation, we get

∇s(z0) =
ξ

2π
µ(ξ) , (3.124a)

µ(ξ) ≡ 2a2(a2 + 1) − (ξ2 + a2)2

(a4 − ξ4)(1 − ξ2)
+

1

a2ξ2 − 1

[
a2 +

(a4 − 1)2(a2 + 1)(ξ2 + a2)(ξ2 − 1)

(a4 + 1)(a2 − ξ2)3

]
.

(3.124b)

The function µ is even. Thus, to establish our result, we need only show that µ(ξ) is of one

sign on the interval 0 ≤ ξ ≤ 1 for any a > 1. A simple calculation shows that the term in the

square brackets in (3.124b) vanishes at ξ = 1/a. In fact, ξ = 1/a is a removable singularity of

µ. It is also easy to show that µ(0) > 0 for any a > 1, µ → +∞ as ξ → 1−, and µ
′

(ξ) > 0 on

0 < ξ < 1. Hence, for any a > 1, µ(ξ) > 0 on 0 ≤ ξ < 1. Thus, ∇s(z0) has a unique root at

z0 = 0. Consequently, there is only one equilibrium spike location, and it is at z0 = 0. This

leads us to propose the following conjecture:

Conjecture 3.3.3 Let Ω be any simply-connected domain, not necessarily convex. Then the

gradient ∇Rm0 of the regular part of the modified Green’s function given in (3.84b) has a unique
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root inside Ω. Thus, there is a unique equilibrium location of a one-spike solution of (3.16).

In experiments 3 and 4 of §3.4 we consider another example of a non-convex domain that adds

further support to this conjecture.

To illustrate the novelty of our conjecture, we consider a similar problem for the conventional

Green’s function Gd with Dirichlet boundary conditions satisfying

4Gd = −δ(x− x0) x ∈ Ω , (3.125a)

Gd = 0 , x ∈ ∂Ω . (3.125b)

The regular part of Gd and its gradient are defined by

Rd(x, x0) = Gd(x, x0) +
1

2π
ln |x− x0| , ∇Rd0 = ∇Rd(x, x0)|x=x0

. (3.126)

It was shown in [30] that

f
′

(z0)∇Rd0 = − 1

2π

(
z0

1 − |z0|2
+
f

′′

(z0)

2f ′(z0)

)
, (3.127)

where x0 = f(z0) (compare this result with Theorem 3.3.1). Unlike computing the modified

Green’s function Rm0 with Neumann boundary conditions, no knowledge of the singularities of

f(z) outside the unit disk is required to compute Rd0 = Rd(x0, x0).

It was shown by several authors (cf. [30], [7]) that for a convex domain Ω, the function Rd0

is convex. Thus, for convex domains, its gradient has a unique root. However the derivation

of this result explicitly uses the convexity of the domain. For non-convex domains generated

by the mapping (3.120), it was shown in [30] that ∇Rd0 can have multiple roots. Thus, the

Neumann boundary conditions are essential for Conjecture 3.3.3.

From Conjecture 3.3.3 together with (3.85), it follows that for D large enough, there is exactly

one possible location for a one-spike equilibrium solution. On the other hand, for a dumbell-

shaped domain such as in Fig. 3.4, we know from Proposition 3.2.2, that when D is small

enough, the only possible minima of the regular part R0 of the reduced wave Green’s function

are near the centers of the lobes of the two dumbells. In Appendix 3.5, we show that R0 → +∞
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as x0 approaches the boundary of the domain. Hence, R0 must indeed have a minimum inside

the domain. By symmetry, it follows that for D small enough, the centers of both lobes of

the dumbell correspond to stable equilibrium locations for the spike dynamics. In addition,

it also follows by symmetry and by Proposition 3.2.2 that the origin is an unstable equilibria.

Hence, this suggests that a pitchfork bifurcation occurs as D is increased past some critical

value Dc. As D approaches Dc from below, the two equilibria in the lobes of the dumbell

should simultaneously merge into the origin. For the non-convex domain of experiment 4 in

§3.4, this qualitative description is verified quantitatively by using a boundary element method

to compute R0.

3.4 Numerical Experiments and Discussion

In this section we perform numerical experiments to verify the results of this chapter.

In experiments 1 and 2 we compare the asymptotic formulas (3.17), (3.84) and (3.85) with

corresponding full numerical solutions of (3.16). In experiment 3 we provide some further

numerical evidence for Conjecture 3.3.3. Finally in experiment 4 we will study the effect of the

shape of the domain and the constant D on the the existence of spike equilibria location.

The asymptotic results require us to compute R0, Rm0, and their gradients. For experiments

1 and 2 we restrict ourselves to a square domain. For this case R0 can be computed using the

method of images solution (3.58). Equation (3.58) also works well for D = O(1). However,

note that the number of terms needed in (3.58) to achieve a specified error bound is directly

proportional to D. Therefore the time cost is given by O(D) (the storage cost being constant).

To compute R0 on a non-square domain (or on a square domain when D is large) as well as

to compute Rm0 on any domain to which Theorem 3.3.1 does not apply, we have adopted a

Boundary Element algorithm as described in §8.5 of [4]. Details are given in §3.4.1

To compare with our asymptotic results we use a finite element method to solve (3.16). A

standard numerical finite element method code does not perform well over long time intervals

due to the very slow movement of the spike and the very steep gradients near the core of
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the spike. To overcome this, we have collaborated with Neil Carlson who kindly provided us

with his moving-mesh program, mfe2ds with adaptive time step (cf. [8], [9]). This has reduced

the computer time dramatically, because much fewer mesh nodes or time steps were required.

However, the solution obtained from the current version of mfe2ds, tends to deviate from the

expected solution after a long time period. This is because as the spike moves, it moves the mesh

along with it, until eventually the mesh is overstretched (see Fig. 3.5). In spite of this limitation

for long-time computations, full numerical results for (3.16) are computed using mfe2ds.

3.4.1 Boundary Element method

We now describe the Boundary Element method (BEM) used to compute the regular part

R(x, x0). We write:

G(x, x0) = V (x, x0) + R̃(x, x0) , V (x, x0) ≡
1

2π
K0 (λ|x− x0|) . (3.128)

where K0(z) is the modified Bessel function of order zero. From (3.10) we obtain

R̃(x, x0) = R(x, x0) +
1

2π
[log |x− x0| +K0 (λ|x− x0|)] (3.129)

Using the local behavior of K0(z), (3.56b) we obtain

R̃(x, x0) = R(x, x0) −
1

2π
(log 2 − γ − log λ) + o(1) , as x→ x0 , (3.130)

where γ is Euler’s constant. Therefore, since ∇R̃(x;x0)|x=x0
= ∇R(x;x0)|x=x0

, it suffices to

compute R̃(x, x0).

Substituting (3.128) into (3.10), we obtain that R̃(x, ξ) satisfies

4R̃(x, ξ) − λ2R̃(x, ξ) = 0 , x ∈ Ω , (3.131a)

∂nR̃(x, ξ) = −∂nV (x, ξ) , x ∈ ∂Ω (3.131b)

where λ = 1√
D
. The integral representation for R̃ is

R̃(x, ξ) = −
∫

∂Ω
G(x, η)∂nV (η, ξ) dS(η) . (3.132a)
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Using (3.128), this can be written as

R̃(x, ξ) = −
∫

∂Ω
R̃(x, η)∂nV (η, ξ) dS(η) −

∫

∂Ω
V (x, η)∂nV (η, ξ) dS(η) . (3.132b)

Next, we discretize the boundary ∂Ω into n pieces ∂Ω1, · · · , ∂Ωn, and approximate R̃(x, ξ) =

R̃(x, ξi) for ξi ∈ ∂Ωi, where ξi is the midpoint of the arc ∂Ωi. Letting R̃j = R̃(x, ξj), we can

then approximate (3.132b) by the dense linear system

R̃j =

n∑

i=1

(
aijR̃i + bij

)
, (3.133a)

where

aij = −
∫

∂Ωi

∂nV (η, ξj)dS(η) , bij = −
∫

∂Ωi

V (x, η)∂nV (η, ξj) dS(η) . (3.133b)

After calculating the solution to (3.133a), we can determine R̃(x, x0) by discretizing (3.132b).

This leads to

R̃(x, x0) = −
n∑

i=1

(
V (x, ηi) + R̃i

)
∂nV (ηi, x0)li . (3.134)

Here li is the length of ∂Ωi.

It remains to compute the coefficients aij and bij in (3.133b). When i 6= j we have

aij = −li∂nV (ηi, ξj) , bij = −liV (x, ηi)∂nV (ηi, ξj) . (3.135)

The case i = j requires a special treatment because of the logarithmic singularity of the free-

space Green’s function V . Let r be the radius of curvature of ∂Ωi at ξi, and set κi = 1/r. Let

l = li be the length of ∂Ωi. Since ∂Ωi is small, we may assume that ∂Ωi is parametrized for

t� 1 as

η(t) = r(cos t, sin t), − l

2r
≤ t ≤ l

2r
, (3.136a)

with

ξ = ξi = (r, 0) . (3.136b)

The asymptotic behavior V (η, ξ) ∼ − 1
2π log |η − ξ| +O(1) as |η − ξ| → 0 yields

∂nV (η, ξ) ∼ − 1

2π

η − ξ

|η − ξ|2 · n̂ . (3.137)
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Figure 3.5: Numerical solution using the moving mesh method. At the beginning, the mesh
vertices concentrate at the spike. Then they move along with the spike, eventually overstretch-
ing the mesh geometry and resulting in a loss of precision over a long time period. In this
example, ε = 0.01,D = 5, and the initial conditions at t = 0 were a = sech(|x− (0.3, 0.5)|) and
h = 1.

Since n̂ = (cos t, sin t) we calculate (η−ξ) · n̂ = r(1−cos t), and |η−ξ|2 = r2(2−2 cos t). Hence,

from (3.137),

∂nV (η, ξ) ∼ − 1

4πr
, as r → 0 , (3.138)

Therefore, the coefficients aii and bii in (3.133b) are

aii =
κi

4π
li, bii = aiiV (x, ηi) . (3.139)

3.4.2 Experiment 1: Effect Of ε With D = 1.

Fig. 3.6 shows the the peak location (x(t), 0.5) versus time for a unit box [0, 1]2, with D = 1

at several values of ε. It shows that the asymptotic approximation (3.17) is very close to the

full numerical results when ε = 0.01, and it still gives a reasonable approximation even when

ε = 0.1. Presumeably, we would have a much closer agreement at ε = 0.1 if we had retained

higher order terms in the infinite logarithmic expansion of a0, h0, and the adjoint eigenfunction

ψ, in the derivation of (3.17) from (3.39). From Fig. 3.6 we note that the full numerical solution

for x(t) seems to settle at something less than 0.5. This is a numerical artifact of the current

implementation of the moving mesh code. We think that this is caused by the over-stretching

of the mesh topology.
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Figure 3.6: Movement of the center (x(t), 0.5) of a single spike of (3.16) within a unit box
[0, 1]2 versus time t. Here D = 1 and ε = 0.01, 0.05, 0.01 as shown. The solid lines show the
asymptotic approximation (3.17). The broken lines show the full numerical solution computed
using mfe2ds. The figure on the right compares the asymptotic and numerical results on a
smaller time interval than the figure on the left.

3.4.3 Experiment 2: Effect Of D With ε = 0.01

Fig. 3.7 shows the peak location (x(t), 0.5) versus time for a unit box [0, 1]2, with ε = 0.01

and D = 1, 3, 5. For each value of D, the full numerical solution as well as the asymptotic

approximations (3.17), (3.84) and (3.85) are shown.

While we assumed in the derivation of (3.84) that D � 1, the simulation shows that even

for D = 1, the approximation (3.84) is rather good. Notice that the approximation (3.85),

which does not involve any terms involving − ln ε and the modified Green’s function in the

denominator, provides a significantly worse approximation to the spike dynamics than either

(3.84) or (3.17). This point was mentioned at the end of §2.

As before, the numerical solution given by mfe2ds seems to deviate from the expected solution

after a long time due to excessive mesh stretching. This effect is especially pronounced for

larger D. We are currently working with Neil Carlson to address this problem by combining

moving mesh with mesh refinement algorithms.
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Figure 3.7: Movement of the center (x(t), 0.5) of a single spike of (3.16) within a unit box
[0, 1]2 versus time t, with ε = 0.01 and D = 1, 3, 5. The solid curves show the asymptotic
approximation (3.17). The bottom and and top curves show the approximations (3.84) and
(3.85), respectively. The diamonds show the results from the full numerical simulation.

3.4.4 Experiment 3: Uniqueness Of Equilibria For Large D

We have used a boundary element method to numerically compute ∇Rm0 for the non-convex

domain Ω shown in Fig. 3.8. There is only one equilibrium solution in Ω and it lies along the

imaginary axis as indicated in the figure caption. This provides more evidence for Conjecture

3.3.3.

3.4.5 Experiment 4: A Pitchfork Bifurcation.

In this experiment we consider the dumbell-shaped domain Ω = f(B) as given by (3.120), and

we study the effect of the neck width as well as D on the roots of ∇R0. To compute ∇R0

we used the boundary element method described in §3.4.1, discretising the boundary into 200

elements. Since Ω is symmetric we look for spike equilibria that are along the x-axis.

When the dumbbell shape-parameter is b = 1.2, and for the values of λ as shown, in Fig. 3.9a we

plot Rx along the segment of the positive x-axis that lies within the dumbbell. Notice that there

are either one, two, or three spike equilibria on x ≥ 0 depending on the range of λ = D−1/2. The

resulting subcritical pitchfork bifurcation diagram for the spike equilibria is shown in Fig. 3.9b.

Our computations show that there is a pitchfork bifurcation at λ ≈ 3.74, where λ = D−1/2.

Furthermore, there is a fold-point bifurcation of spike equilibria when λ ≈ 2.59. The spike at
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0

0.464

1

–1 1

Figure 3.8: Plot of ∇Rm0 for a non-convex domain whose boundary is given by (x, y) =
(sin2 2t + 1

4 sin t)(cos(t), sin(t)), t ∈ [0, π]. Its center of mass is at about (0, 0.464), which lies
outside the domain. The resulting vector field has only one equilibrium, at approximately
(0, 0.2). The discretization of the boundary that was used for the boundary element method is
also shown.

the origin is stable when λ < 3.74, and is unstable for λ > 3.74. In Fig. 3.9b, the upper branch

of spike equilibria is stable, while the middle branch is unstable. A subcritical bifurcation

diagram of this type has not computed previously. Notice that as λ → ∞ (D → 0), the upper

branch corresponds to stable spike equilibria that tend to the lobes of the dumbbell as D → 0.

4
2.8

2.4

2.25

2

0

0.02

0.04

0.06

Rx

0 0.1 0.2 0.3 0.4 0.5
x

(a) Rx versus x for x > 0

–0.4

–0.2

0

0.2

0.4

x

1 2 3 4 5 6
lambda

(b) x versus λ = D−1/2

Figure 3.9: (a) Plot of Rx when x is along the positive real axis, for the values of λ as indicated.
The dumbbell shape-parameter is b = 1.2. (b) The subcritical bifurcation diagram of the roots
of Rx = 0 versus λ = D−1/2 when b = 1.2.

Next, we investigate numerically the effect of changing the dumbbell shape-parameter b. In

Fig. 3.10 we plot the numerically computed bifurcation diagram of spike equilibria for nine
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different values of b. The leftmost curve in this figure correspond to b = 1.15. Successive

curves, from left to right in Fig. 3.10, correspond to an increment in b of 0.05. Qualitatively, we

observe from this figure that the equilibrium spike at the origin has a subcritical bifurcation in

λ only when 1 < b < bc. For b > bc, the origin has a more conventional supercritical pitchfork

bifurcation. We estimate numerically that bc ≈ 1.4. Since for b→ 1+ the domain Ω reduces to

the union of two disconnected circles each of radius 1/2, Fig. 3.10 suggests that the bifurcation of

spike equilibria at the origin is subcritical when the neck of the dumbbell is sufficiently narrow,

and is supercritical when the domain is close to a unit circle (b large). It would be interesting

to investigate more generally whether certain broad classes of dumbbell-shaped domains with

thin necks will always yield subcritical pitchfork bifurcations for a one-spike equilibrium of

(3.1) when D = O(1). We remark that the stability properties of the branches of equilibria in

Fig. 3.10 are precisely the same as described previously for Fig. 3.10. For each b > 1, there is

still a stable spike equilibrium that tends to a lobe of the dumbbell as λ→ ∞ (D → 0).

–0.4

–0.2

0

0.2

0.4

x

3 4 5 6
lambda

Figure 3.10: Plot of the bifurcation diagram for the spike equilibria versus λ = D−1/2 for
various values of the dumbbell shape-parameter b. The curves from left to right correspond to
b = 1.15, b = 1.2, b = 1.25, b = 1.3, b = 1.35, b = 1.4, b = 1.45, b = 1.5, and b = 1.55.

In Fig. 3.11a we plot the bifurcation diagram in the λ versus b parameter plane. From this

figure we observe that when b > 1.4, there is only one bifurcation value of λ, and it corresponds

to the pitchfork bifurcation point for the equilibrium x0 = 0. For 1.15 < b < 1.4, there are two

bifurcation values for λ. The larger value of λ corresponds to the pitchfork bifurcation value, and
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the smaller value of λ corresponds to the fold-point value where the middle and upper branches

of spike equilibria associated with the subcritical bifurcation coincide. Finally, in Fig. 3.11b,

we plot the fold-point value for the spike equilibria as a function of b for 1.15 < b < 1.4. The

non-smoothness of this curve reflects the fact that, due to computational resource limitations,

we only had nine data points to fit with a spline interpolation.
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(a) λ = D−1/2 versus b
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(b) Fold-point locations xf versus b

Figure 3.11: (a) Curves of λ versus b where the spike equilibria have either a pitchfork bifurcation
or a fold-point bifurcation. (b) Locations xf of the fold-point bifurcation versus b.

3.4.6 Discussion

There are several open problems that await a rigorous proof. A main conjecture 3.3.3, is that

the gradient ∇Rm of the regular part of the modified Green’s function with Neumann boundary

conditions has a unique root in an arbitrary, possibly non-convex, simply-connected bounded

domain. In contrast, as was shown in [30], this is not true if Dirichlet boundary conditions are

used instead. Many properties of the gradient of the regular part of the Green’s function for the

Laplacian with Dirichlet boundary condition have been given in the survey [4]. The uniqueness

of a root to this gradient with Dirichlet boundary conditions in a convex domain is established

in [30] and [7]. Our conjecture shows that further work is needed to understand the properties

of the regular part of the Green’s function associated with a Neumann boundary condition.

A second conjecture, based on §6, is that the zeroes of the gradient ∇R of the reduced wave

Green’s function will have a subcritical bifurcation with respect to λ = D−1/2 in a dumbbell-

shaped domain, whenever the neck of the dumbbell is sufficiently thin. Alternatively, we con-

jecture that the zeroes of ∇R will have a supercritical bifurcation in λ when a dumbbell-shaped
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domain is sufficiently close to a circular domain.

3.5 Appendix: The Behavior Of R0 On The Boundary

Theorem 3.5.1 Suppose ∂Ω is C2 smooth. Let x
′ ∈ ∂Ω and let x0(d) = x

′ − dn̂ be the point

a distance d away from x
′

and ∂Ω. Then there exist positive constants C1, C2, ε such that

R(x0, x0) ≥ C1 ln
1

d
+C2 , (3.140)

for all d ≤ ε sufficiently small, where R is given by (3.18).

Proof. When Ω is convex, this theorem was proven in the Appendix of [84]. However, the

convexity assumption was critical in their proof. Our proof below does not require this assump-

tion. The proof in [84] utilized a boundary integral representation of R. We use the comparison

principle instead.

It suffices to prove this result for R replaced by R̃. From (3.10) and (3.54), R̃ satisfies

4R̃(x, x0) − λ2R̃(x, x0) = 0 , x ∈ Ω ; ∂nR̃(x, x0) = −∂nV (|x− x0|) , x ∈ ∂Ω ,

where λ ≡ 1/
√
D, and

V (r) =
1

2π
K0(λr) .

By rotating and translating, we may assume that x0 = (d, 0) and x
′

= 0. We parametrize ∂Ω

by its arclength x(s) with x(0) = x
′

. We let xr
0 = (−d, 0) be the reflection of x0 in x

′

and define

κ be the curvature of ∂Ω at x
′

.

Step 1. Show that

∂nV (|x− xr
0|) − C ≤ −∂nV (|x− x0|) , (3.141)

for some constant C, for all s, d < ε, and ε small enough.

If κ > 0, then it follows geometrically that for ε small enough, |x−xr
0| ≥ |x−x0| and − 〈x−xr

0
,n̂〉

|x−xr
0
| ≤

〈x−x0,n̂〉
|x−x0| . Hence (3.141) follows with C = 0 from the monotonicity of V .
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The case κ < 0 is more involved. We have,

x(s) = (
κ

2
s2 + o(s3), s + o(s3)), n̂ = (−1 + o(s2), κs + o(s2)) ,

where κ is the curvature at x
′

. Here and below, o(sp, dq) is some function such that o(sp, dq) ≤

C(|s|p + |d|q) for some constant C and for all |s|, |d| ≤ ε. For x = x(s), we have

〈x− x0(d), n̂〉 =
κ

2
s2 − d+ o(s2)d+ o(s3) ,

and

|x− x0|2 = d2 + s2(1 − κd) + o(s3).

Next, we calculate that

−∂nV (|x− x0|) =
1

2π

〈x− x0, n̂〉
|x− x|2 + o(|x− x0|) by (3.3b) ,

=
1

2π

κ
2s

2 − d+ o(s2)d+ o(s3)

d2 + s2(1 − κd) + o(s3)
+ o(s, d) ,

=
1

2π

κ
2s

2 − d+ o(s2)d+ o(s3)

d2 + s2(1 − κd)

(
1 − o(s3)

d2 + s2(1 − κd)
+ . . .

)
+ o(s, d) ,

=
1

2π

( κ
2s

2 − d

d2 + s2(1 − κd)
+ o(s)

)
(1 + o(s)) + o(s, d) ,

=
1

2π

κ
2s

2 − d

d2 + s2(1 − κd)
+ o(s)

d

d2 + s2(1 − κd)
+ o(s, d),

=
1

2π

κ
2s

2 − d

d2 + s2
(1 + o(d)) + o(s)

d

d2 + s2
+ o(s, d) ,

=
1

2π

κ
2s

2 − d

d2 + s2
+

o(sd)

d2 + s2
+ o(s, d) ,

=
1

2π

κ
2s

2 − d

d2 + s2
+ o(1) + o(s, d) .

In a similar way, we get

∂nV (|x− xr
0|) =

1

2π

−κ
2s

2 − d

d2 + s2
+ o(1) + o(s, d) .

Therefore,

−∂nV (|x− x0|) ≥
1

2π

κ
2s

2 − d

d2 + s2
+ C1 ,

∂nV (|x− xr
0|) ≤

1

2π

−κ
2s

2 − d

d2 + s2
+ C2 ,
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for some constants C1, C2 independent of d, s. Notice that

−κ
2s

2 − d

d2 + s2
+ κ ≤

κ
2s

2 − d

d2 + s2
+ |κ| .

Hence,

∂nV (|x− xr
0|) +

κ− |κ|
2π

+ C1 − C2 ≤ −∂nV (|x− x0|) ,

which completes the proof of Step 1.

Step 2. By the compactness of the set (∂Ω\{x(s), |s| < ε})×{x0(d), 0 ≤ d ≤ ε}, the continuity

of V (|x− x0|) on this set, and (3.141), it follows that (3.141) holds for all x ∈ ∂Ω and all d < ε

if the constant C is large enough.

Step 3. Let u(x) be the solution of

4u− λ2u = 0 , x ∈ Ω ; ∂nu = −C , x ∈ ∂Ω ,

where C is as in step 2. Then v = V (|x − xr
0|) + u also satisfies 4v − λ2v = 0 and ∂nv(x) <

∂nR(x, x0) for x ∈ ∂Ω and any d, ε. By the maximum principle, it follows that v(x) < R(x, x0)

for x ∈ Ω. Recalling (3.56b) completes the proof.
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Chapter 4

Bifurcation of spike equilibria in the
near-shadow Gierer-Meinhardt model and
near-boundary spikes

In this chapter we continue the study of (3.1), but in the regime where the diffusivity coefficient

D becomes exponentially large. The motivation for this is as follows. It is known (see for

instance [37]) that when D = ∞, a single interior spike will drift exponentially slowly towards

the nearest boundary. As such, there is no stable spike equilibria in the interior of the domain.

On the other hand, as shown in §3, when D is large enough (but not not exponentially large),

there is a unique stable interior equilibrium. The reason for this apparent discrepancy is that the

motion of the spike is driven by the superposition of two fields: an exponentially small boundary

field which is of O(ε2e−2d/ε) where d is the distance of the spike to the nearest boundary, and

the field due to the Green’s function whose strength is of O( 1
D ). Thus the boundary only starts

to have an effect when D = O(ε−2e2d/ε). In such a regime, there is a transition between the

dynamics driven by the Green’s function as discussed in §3, and the dynamics driven by the

boundary, as discussed in [37]. The primary purpose of this chapter is to study this transition

and the bifurcations that occur therein.

As an example of the complicated bifurcation structure that results, we again consider the

dumbell-shaped domain discussed in §3. In Figure 4.1 we schematically illustrate the various

bifurcations that occur as D is decreased from infinity to O(ε2). Note that the unstable equi-

libria at D = ∞ undergoes a complicated bifurcation structure, resulting in a single stable

equilibria at the origin as D is decreased to 1 � D � exp(d/ε).
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(a) D = ∞ (b) D = O(ε2e2d/ε)

(c) − log ε� D � O(ε2e2d/ε) (d) D = O(1)

(e) D = O(1) (f) O(ε2) � D � O(1)

Figure 4.1: Schematic representations of vector fields and the bifurcations that occur for interior
spike solutions in a dumbbell-shaped domain as D is decreased from ∞ to O(ε2). Stable
equilibria, saddle points, and unstable equilibria correspond to black dots, hatched dots, and
white dots, respectively. (a) For the shadow system all equilibria are unstable and correspond
to critical points of the distance function from the center of the spike to the boundary. (b)
In the intermediate regime, a competition between ∇Rm and the distance function determines
the locations of an equilibrium interior spike. (c) For D large, but not exponentially large,
there is a unique (stable) spike equilibrium inside the domain located where ∇Rm = 0. (d) For
D = O(1) and O(ε2) � D � O(1), an interior spike is located where ∇R = 0. (e) An intricate
bifurcation structure may be present in the intermediate regime between (c) and (f). (f) On
the range O(ε2) � D � O(1), R can be approximated by the distance function. Thus, in (f)
the field is the the same as (a), except that the direction is reversed.
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This transition, from a stable interior spike when D is large, to the dynamics driven by the

nearest boundary in the case D = ∞, is made possible by the existence of what we call near

boundary spikes, in the transition regime when D is exponentially large. More precisely, we

show that there exists a spike equilibria location, at a distance σ from the boundary, whenever

ε� σ � 1 and

D ∼ C(p)q
( ε

πσ

)1/2
|Ω| e2σ/ε, (4.1)

where C(p) is some positive constant depending only on p. We find that such a near-boundary

equilibria is always unstable in the radial direction. Its stability in the tangential direction, as

well as its location, depends on the behaviour of the modified Green’s function at the boundary.

For the dumbell example above, we show that there are four such equilibria, two of them stable

and two unstable, as shown on Figure 4.2.

We further conjecture that these near-boundary spikes are related to the boundary spike solu-

tions. For the case D = ∞, such solution was derived in [38]. There, it was found that a single

boundary spike is located at the minimum of the curvature of the boundary. For the case of

exponentially large D, we expect that the Green’s function on the boundary will also play a

role in determining the boundary spike location.

Figure 4.2: Plot of local vector field associated with near-boundary spikes for the transition
regime (4.1).

The results of this chapter first appeared in [47].
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4.1 The dynamics of a spike for exponentially large D

We now outline the derivation of the equation of motion for a spike solution to (3.1) in Ω ∈ R
2.

We will use the following scaling of (3.1):

at = ε24a− a+
ap

hq
, x ∈ Ω , t > 0 , (4.2a)

τht = D4h− h+ ε−2 a
m

hs
, x ∈ Ω , t > 0 , (4.2b)

∂na = ∂nh = 0 , x ∈ ∂Ω . (4.2c)

For the shadow problem where D = ∞, the spike motion is metastable and is determined by

the exponentially weak interaction between the far-field behavior of the spike and the boundary

∂Ω (cf. [37]). For D � 1, but with D not exponentially large as ε→ 0, the exponentially weak

interaction of the spike with the boundary is insignificant in comparison to the local behavior

of the inhibitor field near x = x0, which is determined by the Green’s function Gm of (3.81).

When D is exponentially large, the dynamics of x0 is determined by a competition between the

exponentially weak interaction of the spike with the boundary and the gradient of the regular

part of the modified Green’s function. Since this competition is essentially a superposition of

the previous results in [37] and §3 (also [46]), we only outline the key steps in the derivation of

the dynamics for x0.

Let x0 ∈ Ω, with dist(x0; ∂Ω) � O(ε). For D � 1, we get from (4.2) that h ∼ H on Ω, and

that

a ∼ Hγw
(
ε−1|x− x0|

)
, γ ≡ q

p− 1
. (4.3)

Here the radially symmetric solution w(ρ), with ρ ≡ |y|, satisfies

w
′′

+
1

ρ
w

′ − w + wp = 0, ρ ≥ 0 , (4.4a)

w(0) > 0 , w
′

(0) = 0 ; w(ρ) ∼ αρ−1/2e−ρ , as ρ→ ∞ , (4.4b)

for some α > 0. Substituting (4.3) and the expansion h = H + h1/D + · · · into (4.2b), we find
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that h1 satisfies

4h1 = H− bmHγm−sδ(x− x0) , x ∈ Ω ; ∂nh = 0 , x ∈ ∂Ω , (4.5)

where bm ≡
∫

R2 w
m dy. This problem has a solution only when H satisfies Hγm−(s+1) = |Ω|/bm,

where |Ω| is the area of Ω. The solution for h1 is h1 = H|Ω|Gm, where Gm satisfies (3.81).

To determine an equation of motion for x0, we substitute a = Hγw(y)+v and h = H+h1/D+· · ·

into (4.2a), where y = ε−1 [x− x0(t)]. Assuming that v � 1, we then obtain the following quasi

steady-state problem for v:

Lεv ≡ ε24v − v + pwp−1v =
q|Ω|Hγ

D
wpGm − ε−1 (x− x0)

|x− x0|
· x′

0 Hγw
′

, x ∈ Ω , (4.6a)

∂nv = −Hγ∂nw , x ∈ ∂Ω . (4.6b)

As shown in [37], the eigenvalue problem Lεφ = λ0φ in Ω, together with ∂nφ = 0 on ∂Ω, has

two exponentially small eigenvalues λi, with i = 1, 2. The corresponding eigenfunctions have

the boundary layer form

φi ∼ ∂xi
w + φ̂i . (4.7)

Here x = (x1, x2), and φ̂i is a boundary layer function localized near ∂Ω that allows the no-flux

condition for φi on ∂Ω to be satisfied. Multiplying (4.6a) by φi, and integrating over Ω, we let

ε→ 0 to get the limiting solvability condition

ε−1x
′

0 ·
∫

Ω

(x− x0)

|x− x0|
w

′

∂xi
w dx =

q|Ω|
D

∫

Ω
Gm wp∂xi

w dx+

∫

∂Ω
ε2φi∂nw dS , (4.8)

for i = 1, 2. Since w is localized near x = x0, we let y = ε−1(x − x0) in (4.8), and use the

following local behavior for Gm:

Gm(x0 + εy, x0) = − 1

2π
log (ε|y|) +Rm(x0, x0) + εy · ∇Rm0 +O(|y|2) . (4.9)

Here ∇Rm0 ≡ ∇Rm|x=x0
. In this way, we obtain from (4.8) that

x
′

0 ·
∫

R2

yyi

|y|2
[
w

′

(|y|)
]2
dy =

ε2q|Ω|
D(p+ 1)

∇Rm0 ·
∫

R2

yyi

|y|
[
wp+1(y)

]′
dy +

∫

∂Ω
ε2φi∂nw dS , (4.10)

for i = 1, 2, where y = (y1, y2). The integrals over R
2 in (4.10) were calculated in (3.48). The

integral in (4.10) over ∂Ω was calculated in [37] (see §3.3 of [37]). In this way, we obtain the

following main result:
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Proposition 4.1.1 Let ε � 1, and assume that x0 ∈ Ω with dist(x0; ∂Ω) � O(ε). Then, for

D exponentially large as ε→ 0, the spike location x0 satisfies the differential equation

dx0

dt
∼ 2εq

p− 1

[
α2

2πβ

(
p− 1

q

)
J − ε|Ω|

D
∇Rm0

]
, (4.11a)

where the vector boundary integral J is defined by

J =

∫

∂Ω

r̂

r
e−2r/ε (1 + r̂ · n̂) r̂ · n̂ dS . (4.11b)

Here r = |x− x0|, and r̂ = (x− x0)/r. The constant α is defined in (4.4b) and β is defined by

β ≡
∫ ∞

0
ρ
[
w

′

(ρ)
]2
dρ . (4.12)

The dynamics (4.11) for x0 expresses a competition between ∇Rm0, inherited from the local

inhibitor field, and the boundary integral J , representing the exponentially weak interaction

between the tail of the spike and the boundary ∂Ω. The dynamics depends on the constants

α and β, defined in (4.4b) and (4.12). For several values of p, these constants were computed

numerically in [73], with the result

α = 10.80, β = 2.47, p = 2;

α = 3.50, β = 1.86, p = 3;

α = 2.12, β = 1.50, p = 4.

(4.13)

When D � 1, but with D not exponentially large as ε→ 0, (4.11) reduces to the gradient flow

dx0

dt
∼ − 2ε2q|Ω|

D(p− 1)
∇Rm0 . (4.14)

This limiting result was derived independently in [76] and [14], and was also obtained in §3.2.2.

The conjecture 3.3.3 is that ∇Rm0 = 0 has exactly one root in the interior of an arbitrary,

possibly non-convex, bounded and simply-connected domain Ω.

4.2 A Radially Symmetric Domain: D Exponentially Large

In this section we analyze the dynamics and equilibria of a spike solution to the Gierer-

Meinhardt model (4.2) in a two-dimensional unit disk Ω = {x : |x| < 1} when D is exponentially

large.
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We look for a solution to (4.2) that has an interior spike centered at x0 ∈ Ω. Since |Ω| = π, we

obtain from (4.11) that the dynamics of the spike satisfies

dx0

dt
∼ 2εq

p− 1

[
α2

2πβ

(
p− 1

q

)
J − επ

D
∇Rm0

]
, (4.15)

where J was defined in (4.11b), and the constants α and β were defined in (4.4b) and (4.12),

respectively. For such a ball domain, the gradient of Rm0 was calculated previously in [76] as

∇Rm0 =
1

2π

(
2 − |x0|2
1 − |x0|2

)
x0 . (4.16)

By symmetry, we need only look for an equilibrium solution to (4.15) on the segment x0 ∈ [0, 1)

of the positive real axis. To do so, we need Laplace’s formula (cf. [86]) valid for ε� 1,
∫

∂Ω
r−1F (r)e−2r/ε dS ∼

∑(
πε

rm

)1/2

F (rm) (1 − κmrm)−1/2 e−2rm/ε . (4.17a)

Comparing (4.11b) with (4.17a), we take

F (r) ≡ r̂ (1 + r̂ · n̂) r̂ · n̂ . (4.17b)

In (4.17a), rm = dist (x0; ∂Ω), κm is the curvature of ∂Ω at xm, and the sum is taken over all

xm ∈ ∂Ω that are closest to x0. The sign convention is such that κm > 0 if Ω is convex at xm.

We first suppose that x0 � O(ε) and that 1 − x0 � O(ε). In this case, the point (1, 0) on ∂Ω

is the unique point closest to x0. Using (4.17) with r̂ = (1, 0), n̂ = (1, 0), and κm = 1, we get

for ε� 1 that

J ∼ 2

(
πε

x0(1 − x0)

)1/2

e−2ε−1(1−x0) ı̂ , (4.18)

where ı̂ = (1, 0).

Next, suppose that x0 > 0 with x0 = O(ε). In this case, Laplace’s formula (4.17) fails since

the asymptotic contribution to J arises from the entire integral over the boundary rather than

from a discrete set of points. Parameterizing ∂Ω by x = cos t and y = sin t, we calculate for

x0 � 1 that

r = 1 − x0 cos t+O
(
x2

0

)
;

r̂ = (cos t, sin t) + x0

(
− sin2 t, sin t cos t

)
+O

(
x2

0

)
;

r̂ · n̂ = 1 +O
(
x2

0

)
.

(4.19)
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Substituting (4.19) into (4.11b), we obtain to leading order that

J ∼ 2 ı̂ e−2/ε

∫ 2π

0
(cos t) e2ε−1x0 cos t dt . (4.20)

Since the modified Bessel function I1 of the first kind of order one has the integral representation

(cf. [1]),

I1(x) =
1

2π

∫ 2π

0
(cos θ) ex cos θ dθ , (4.21)

we obtain that

J ∼ 4πı̂ e−2/εI1 (2x0/ε) . (4.22)

This expression is valid for x0 = O(ε). When x0 � O(ε), the asymptotic evaluation of J is

obtained by using the local behavior I1(z) ∼ z/2 as z → 0 in (4.22). This yields,

J ∼ 4πε−1 ı̂ x0e
−2/ε . (4.23)

Using I1(z) ∼ (2πz)−1/2ez in (4.22), we obtain that the far-field form of (4.22) for x0 � O(ε)

agrees with the leading order behavior of (4.18) as x0 → 0. Combining (4.18) and (4.22), we

can write a uniformly valid leading order approximation to J as

J ∼ 4πı̂e−2/ε

√
1 − x0

I1 (2x0/ε) . (4.24)

This formula is valid for x0 ≥ 0, with 1 − x0 � O(ε).

The origin x0 = 0 is an equilibrium point for (4.15) for any D > 0. Using (4.23) and (4.16) we

can write the local behavior for (4.15) when x0 � 1 as

dx0

dt
∼ 2ε2q

(p − 1)D

(
D

Dc
− 1

)
x0 , (4.25a)

where Dc is defined by

Dc =
ε2qβ

2α2(p− 1)
e2/ε . (4.25b)

Hence, the equilibrium x0 = 0 is unstable when D > Dc, and is stable when D < Dc. The

constants α and β in (4.25b) are given for various p in (4.13). Substituting (4.16) and (4.24)

into (4.15), we obtain the following main result:
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Proposition 3.1: Let ε� 1 and assume that the spike location x0 within the unit ball is along

the segment of the real axis satisfying x0 ≥ 0 with 1− x0 � O(ε). Then, the trajectory x0(t) of

an interior spike solution satisfies

dx0

dt
∼ 2ε2q

(p− 1)D

[
D

Dc
− 1

H(x0)

]
εI1(2x0/ε)√

1 − x0
, (4.26a)

where Dc is defined in (4.25b), and H(x0) is defined by

H(x0) ≡
ε
√

1 − x0(1 + x0)I1 (2x0/ε)

x0

(
1 − x2

0/2
) . (4.26b)

Since H(0) = 1, the equilibrium location x0 = 0 is stable when D < Dc and is unstable when

D > Dc. On the range x0 > 0 with 1 − x0 � O(ε), for each D < Dc there is a unique unstable

equilibrium solution to (4.26a) satisfying

Dc

D
= H(x0) . (4.27)

The local behavior of the bifurcating branch, obtained by setting y = x0/ε in (4.27), is given by

D

Dc
=

y

I1(2y)
. (4.28)
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Figure 4.3: Plot of the local bifurcation diagram (4.28) where y = x0/ε.

In Fig. 4.3 we plot the local bifurcation behavior (4.28). Qualitatively, we see that, except

within an O(ε) neighborhood of x0 = 1 where (4.27) is not valid, (4.27) shows that the ratio

Dc/D increases as x0 increases. Therefore, the unstable spike, which bifurcated from x0 = 0 at
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the value D = Dc, moves towards the boundary of the circle as D decreases below Dc. From

(4.25b), the critical value Dc is exponentially large as ε→ 0 and depends on the parameters α

and β given numerically in (4.13).

Since our analysis has only considered interior spike solutions that interact exponentially weakly

with the boundary, we cannot describe the process by which the unstable interior spike merges

onto the boundary of the unit ball at some further critical value of D. However, using (4.27)

we can give an estimate of the value of D for which a spike approaches to within an O(σ)

neighborhood of the boundary, where ε � σ � 1. Let x0 = 1 − σ in (4.27). A simple

calculation using (4.25b), (4.26b), and the large argument expansion of I1(z), yields

D ∼ β
√
π

4α2

(
q

p− 1

)( ε
σ

)1/2
e2σ/ε . (4.29)

Since we have specified x0 ∈ (0, 1] at the outset of the analysis, our bifurcation analysis cannot

determinine the direction in which the equilibrium spike moves towards the boundary as D is

decreased. This degeneracy in the fundamental problem can be broken by a slight perturbation

in the shape of the domain. A resulting imperfection senstitivity analysis would presumeably

be able to resolve the degeneracy and determine a unique direction for the bifurcating spike.

4.3 A Dumbbell-Shaped Domain: D Exponentially Large

When D is exponentially large, we now analyze the dynamics and equilibria of a one-spike

solution to (4.2) with τ = 0 in a one-parameter family of dumbbell-shaped domains introduced

in [30] and studied further in §3.3.1. There, we considered a family of domains given by

Ω = f(B) where B = {z : |z| < 1} is the unit disk in a complex plane and

w = f(z) =
(1 − b2)z

z2 − b2
. (4.30)

Here b is real and b > 1. The resulting domain Ω = f(B) is shown in Figure 3.4 for several

values of b. Notice that Ω → B as b → ∞. Moreover, as δ ≡ b − 1 → 0+, Ω approaches the

union of two circles centered at (±1/2, 0), with radius 1/2, that are connected by a thin neck

region of width 2δ +O(δ2). This class of dumbbell-shaped domains is symmetric with respect
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to both the x and y axes. Therefore, when D = ∞, and for a certain range of b, we expect that

there will be three equilibrium one-spike solutions, one centered at the origin and the other two

centered on the x-axis in the lobes of the dumbbell. It is easy to show that Ω is non-convex

only when 1 < b < bc ≡ 1 +
√

2.

Let x0 be the location of a one-spike solution to (4.2) in Ω, with pre-image point z0 ∈ B

satisfying x0 = f(z0). Recall from 3.3.1 that ∇Rm0 as defined in (4.9) is given by:

∇Rm0 =
∇s(z0)
f ′(z0)

, (4.31a)

where

∇s(z0) =
1

2π

(
z0

1 − |z0|2
− 2b2z0

z4
0 − b4

+
b2z0

z2
0b

2 − 1

−(b4 − 1)2(|z0|2 − 1)(z0 + b2z0)(z
2
0 + b2)

(b4 + 1)(z2
0b

2 − 1)(z2
0 − b2)(z2

0 − b2)2

)
,

(4.31b)

and

f
′

(z0) = (b2 − 1)
(z2

0 + b2)

(z2
0 − b2)2

, x0 = f(z0) . (4.31c)

In (4.31), we interpret vectors as complex numbers so that ∇Rm0 = ∂xRm0 + i∂yRm0. The area

|Ω| of Ω, which is needed below, was also derived in 3.3.1 to be

|Ω| = π
(b4 + 1)

(b2 + 1)2
. (4.32)

Note that |Ω| → π as b→ ∞, and |Ω| → π/2 as b→ 1+, when Ω reduces to two circles each of

radius 1/2.

The dynamics and equilibria of a one-spike solution to (4.2) in Ω is obtained by substituting

(4.31) and (4.32) into (4.11). We show below that the bifurcation behavior of equilibria to

(4.11) is as sketched in Figure 4.1. In §4.3.1 we analyze this behavior for the equilibrium spike

located at the origin (0, 0) in the neck region of the dumbbell. In §4.3.2 we analyze equilibrium

spikes in the lobes of the dumbbell.

4.3.1 The Neck Region of the Dumbbell

When D = ∞, the equilibrium spike solution at the origin is unstable. However, as we show

below, as D decreases below some critical value Dc this equilibrium solution regains its stability,
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and new unstable equilibria appear at the points (0,±y0) in Ω for some y0 > 0. These equilibria

move along the vertical axis towards the boundary ∂Ω as D is decreased below Dc (see Figure

4.1(b)).

To analyze the spike behavior, we must calculate the integral J in (4.11) asymptotically. To do

so, we parameterize ∂Ω by letting z = eit, for −π ≤ t < π, and w(t) = f
(
eit
)

= ξ(t) + iη(t).

Using (4.30), we calculate

ξ(t) =
(b2 − 1)2 cos t

b4 + 1 − 2b2 cos 2t
, η(t) =

(b4 − 1) sin t

b4 + 1 − 2b2 cos 2t
. (4.33)

For a spike located at (0, y0) in Ω, with y0 > 0 but small, the dominant contribution to J arises

from the points corresponding to t = ±π/2, labelled by (0,±ym), where

ym =

(
b2 − 1

b2 + 1

)
. (4.34)

A simple calculation using (4.33) shows that the curvature κm of ∂Ω at (0,±ym) is

κm =
ξ
′

η
′′ − η

′

ξ
′′

[η
′2 + ξ

′2]
3/2

∣∣∣
t=±π/2

=

(
b2 + 1

b2 − 1

)3 [
1 − 8b2

(b2 + 1)2

]
. (4.35)

By symmetry, the vector integral J in (4.11) has the form J = (0, J2). When y0 � ym − ε, we

evaluate the integral J asymptotically in (4.11) for ε→ 0, to obtain

J2 ∼ 2
√
πεe−2ym/ε

[
e2y0/ε

√
rm1

(1 − κmrm1)
− e−2y0/ε

√
rm2

(1 − κmrm2)

]
, (4.36a)

where

rm1 = ym − y0 , rm2 = ym + y0 . (4.36b)

When |y0| = O(ε), we calculate

J2 ∼ 4

(
πε

ym (1 − κmym)

)1/2

e−2ym/ε sinh (2y0/ε) . (4.37)

Next, we calculate ∇Rm0 near the origin. Let z0 = iv0 ∈ B, and w0 = iy0 ∈ Ω. Since w = f(z),

we calculate that

v0 =
(b2 − 1)

2y0
−
[(

b2 − 1

2y0

)2

− b2

]1/2

, (4.38a)
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and

y0 ∼ f
′

(0)v0 , where f
′

(0) =
(b2 − 1)

b2
, as v0 → 0 . (4.38b)

Using (4.32) and (4.38b), we can calculate |Ω|∂yRm0 in (4.31) in terms of y0 for |y0| � 1. A

simple, but lengthy, calculation yields that

|Ω|∂yRm0 = yG(b) , G(b) =
(b2 − 1)

2(b4 − 1)2
[
2b6 + 3b4 + 2b2 − 1

]
. (4.39)

Substituting (4.37) and (4.39) into (4.11a), we obtain the following main result:

Proposition 4.3.1 Let ε� 1 and assume that the spike location (0, y0) on the y-axis satisfies

y0 = O(ε). Then, the local trajectory y0(t) satisfies

dy0

dt
∼ ε1/2 µ0 e

−2ym/ε

[
sinh (2y0/ε)

(2y0/ε)
− Dc

D

]
y0 , (4.40a)

where Dc and µ0 satisfy

Dc =
ε2β

4α2

(
q

p− 1

)(π
ε

)1/2
[ym (1 − κmym)]1/2 G(b)e2ym/ε , (4.40b)

µ0 =
8α2

√
πβ

[ym (1 − κmym)]−1/2 . (4.40c)

When D > Dc, y0 = 0 is the unique, and unstable, equilibrium solution for (4.40a). For

D < Dc, y0 = 0 is stable, and there are two unstable equilibria with |y0| = O(ε), satisfying

2ζ

sinh (2ζ)
=

D

Dc
, ζ = y0/ε . (4.41)

The bifurcation value Dc depends on the dumbbell shape-parameter b, and on α and β defined

in (4.4b) and (4.12), respectively. The values α and β were computed numerically in (4.13) for

a few exponents p. In the limiting case b − 1 = δ → 0+, we calculate from (4.34), (4.35), and

(4.39), that

ym → δ , κm → −δ−3 , G → 3δ−1/8 , as δ → 0+ . (4.42)

Substituting (4.42) into (4.40b), we obtain

Dc ∼
3β

√
π

32α2

(
q

p− 1

)(ε
δ

)3/2
e2δ/ε , as δ → 0+ . (4.43)
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This limiting formula for the bifurcation point is valid for 0 < ε� δ � 1.

Next, we determine the global bifurcation branch for y0 > 0 with O(ε) � y0 � ym −O(ε). We

set z0 = iv0 in (4.31b) with 0 < v0 < 1. From (4.31b) and (4.32), we then obtain

|Ω|∂yRm0 = v0χI(b; v0) , (4.44)

where χI(b; v0) is defined by

χI(b; v0) ≡
(b4 + 1)(b2 − 1)

2(b4 − 1)2
(b2 + v2

0)
2

(b2 − v2
0)

×
[

(1 + b2)

(1 − v2
0)(1 + b2v2

0)
+

2b2

v4
0 − b4

− (b4 − 1)2(b2 − 1)(1 − v2
0)(b

2 − v2
0)

(b4 + 1)(1 + b2v2
0)(b

2 + v2
0)

3

]
.

(4.45)

Here v0 = v0(y0) is given by (4.38a). Comparing (4.44) with the local behavior (4.39), and

using y0 ∼ f
′

(0)v0 for v0 � 1, it follows that

χI(b; 0) = G(b)f
′

(0) , (4.46)

where G(b) is defined in (4.39). As v0 → 1−, or equivalently y0 → y−m, ∂yRm0 → +∞. From

(4.45), we calculate

χI(b; v0) ∼
(b4 + 1)

4(b2 − 1)2
(1 − v0)

−1 , as v0 → 1− . (4.47)

On the range y0 > 0 with O(ε) � y0 � ym −O(ε), the term in (4.36a) proportional to e−2y0/ε

can be neglected. To determine the dynamics of y0 on this range, we substitute (4.36a), and

(4.45), into (4.11). After some algebra, we get

dy0

dt
∼ ε1/2µ0e

−2ym/ε

[(
C(ym)

C(rm)

)
e2y0/ε

(4v0/ε)
− Dc

D

(
χI(b; v0)

G(b)

)]
v0 , (4.48a)

where rm = ym − y0. Here Dc and µ0 are defined in (4.40), and the function C(s) is defined by

C(s) = [s(1 − κms)]
1/2 . (4.48b)

The equilibria of (4.48a) satisfy

D

Dc
= 4v0ε

−1

(
C(rm)

C(ym)

) (
χI(b; v0)

G(b)

)
e−2y0/ε . (4.49)

Using the formula (4.38a) for v0 = v0(y0), we can write D/Dc as a function of y0. For ε � 1,

the right-hand side of (4.49) is a decreasing function of y0. Thus, D is a decreasing function of

y0.
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4.3.2 The Lobe Region of the Dumbbell

Next, we analyze the behavior of an equilibrium spike in the right lobe L of the dumbbell as D

is decreased from infinity. Let R denote the largest inscribed circle within L. Let xin and rin

denote the center and radius of R, respectively. For b = 1.8, in Fig. 4.4 we show the right lobe

L and the largest inscribed circle R, with center on the x-axis.

When D = ∞, the location x0 of an equilibrium spike satisfies J = 0, where J is defined in

(4.11). To leading order as ε→ 0, x0 ∼ xin satisfies J = 0. The correction term is of O(ε) and

may also be computed as in [73]. Therefore, to leading order, it suffices to determine xin.

Figure 4.4: The domain Ω with b = 1.8 and the largest inscribed circle R inside its right lobe
L.

The largest inscribed circle R makes two-point contact with ∂Ω at xc = (ξc,±ηc), with ηc > 0.

These points are such that the normal to ∂Ω at xc is parallel to the y-axis. From (4.33), this

implies that η
′

= 0. We write (4.33) as

ξ(t) =
(b2 − 1)2

χ
cos t , η(t) =

(b4 − 1)

χ
sin t , (4.50a)

where

χ ≡ b4 + 1 − 2b2 cos(2t) = (b2 + 1)2 − 4b2 cos2 t . (4.50b)

Setting η
′

= 0, we get

sin2 t =
χ

8b2
, or cos t = 0 . (4.51)

Two roots are t = ±π/2. Combining (4.51) and (4.50b), we get χ = 2(b2 − 1)2, and that the
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other root satisfies

cos2 t =

[
6b2 − (b4 + 1)

]

4b2
. (4.52)

Substituting (4.52) into (4.50), we obtain that the contact points satisfy

(ξc,±ηc) =

(
1

4b

[
6b2 − (b4 + 1)

]1/2
,±(b2 + 1)

4b

)
. (4.53)

Hence, xin = (ξc, 0), and rin = ηc.

0

0.2
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0.8

1

0.2 0.4 0.6 0.8 1

Figure 4.5: Plot of ∂xRm0(x, 0) versus x for b = 1.05, 1.1, 1.2, 1.5, 2, 2.5, ∞. The top (bottom)
curve corresponds to b = 1.05 (∞), respectively. Note that ∂xRm0(x, 0) is positive on the
positive x-axis.

The formula (4.53) is valid only when 6b2 − (b4 + 1) > 0. Therefore, we require that 1 < b <

bc ≡ 1 +
√

2. In order to show, that rin is the radius of the largest inscribed circle for this

range of b, we must verify that a circle centered at xin will lie strictly inside the domain, and

will only touch the boundary at (ξc,±ηc). This global verification has been done numerically.

As b → b−c , we have xin → (0, 0) and rin → 1/
√

2. Alternatively as b → 1+, we have

xin →
(

1
2 , 0
)

and rin → 1/4. From (4.35) we conclude that the curvature κm of ∂Ω at the point

x = 0 tends to zero as b→ b−c , Moreover, more algebra shows that the domain is convex when

b > bc. The convexity of the domain for b > bc explains the nonexistence of a largest inscribed

circle in the right lobe of the dumbbell for this range of b.
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Next, we determine the equilibrium point x0 of (4.11a) in the right lobe of the dumbbell when

D is exponentially large. In Fig. 4.5, we use (4.31) to plot ∂xRm0 along the positive x-axis.

Note that ∂xRm0 > 0 for x > 0. This inequality was shown in §3.3.1. Therefore, as D decreases,

the equilibrium location (x0, 0) tends to the point (1, 0) ∈ ∂Ω. When D is sufficiently small, the

point (1, 0) will be the closest point on the boundary to (x0, 0). In this range of D, we conclude

from (4.11) that the location of the spike is determined by a balance between ∂xRm0 and the

dominant contribution to the x-component J1 of the integral J obtained from the closet point

(1, 0) ∈ ∂Ω. From (4.11), this unstable equilibrium satisfies

α2

2πβ

(
q

p− 1

)
J1 =

ε

D
|Ω|∂xRm0 . (4.54)

Calculating J1 asymptotically as in (4.17), we get

J1 ∼ 2

(
πε

1 − x0

)1/2 e−2(1−x0)/ε

[1 − κ1(1 − x0)]
1/2

, (4.55)

where κ1 is the curvature at the point (1, 0) given by

κ1 = 1 + 4b2/(b2 + 1)2 . (4.56)

4.4 Spike Equilibria Near the Boundary

In this section we will compute the leading-order behavior of ∇Rm0 near the boundary of

the dumbbell-shaped domains of §4.3. We then use this formula to analyze equilibrium spike

locations near the boundary. We begin with the following result, which describes the behavior

of the Green’s function near the boundary.

Proposition 4.4.1 Let Ω = f(B), where B is the unit ball and f is given by (4.30). Let z be

a point on the boundary ∂B and let x = f(z) be the corresponding point on the image boundary

∂Ω. Let N̂ be the outward pointing normal at x. Let

x0 = x− σN̂ , 0 < σ � 1 , (4.57)

and z0 satisfy x0 = f(z0). Then

∇Rm0(x0) =
N̂

4πσ
+

N̂

2π|f ′(z)|

[
z2b2

z2b2 − 1
−
(
z4 + 5b2z2

)

z4 − b4
− 1

4

]
+O(σ) . (4.58)
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Here and below, ab denotes complex multiplication and 〈a, b〉 = Re(ab) will denote a vector dot

product.

Proof.

We calculate N̂ as

N̂ =
−i d

dtf(eit)∣∣ d
dtf(eit)

∣∣ =
zf ′(z)
|f ′(z)| =

z|f ′(z)|
f ′(z)

. (4.59)

From (4.57) and (4.59) we have:

f(z0) = x0 = f(z) − σzf ′(z)
|f ′(z)| ∼ f

(
z − σz

|f ′(z)|

)
. (4.60)

Thus, for 0 < σ � 1, we obtain

z0 ∼ z − σz

|f ′(z)| = z

(
1 − σ

|f ′(z)|

)
. (4.61)

For σ � 1, we calculate from (4.31b) that

∇s(z0) ∼ 1

2π

(
z0

1 − |z0|2
)

+
z0b

2

2π

(
1

z2
0b

2 − 1
− 2

z4
0 − b4

)
+O(σ) . (4.62)

Substituting (4.61) into (4.62), and using |z| = 1, we obtain

1

2π

(
z0

1 − |z0|2
)

=
|f ′(z)|z

4πσ

(
1 − σ

2|f ′(z)|

)
+O(σ) . (4.63)

Next, we note that

1

f ′(z0)
=

1

f ′(z)

[
1 +

σz

|f ′(z)|f ′(z)f
′′(z) +O(σ2)

]
. (4.64)

Therefore, using (4.30) for f(z), we get

1

f ′(z0)

1

2π

(
z0

1 − |z0|2
)

=
|f ′(z)|z
4πσf ′(z)

(
1 − σ

2|f ′(z)|

)(
1 +

σzf ′′(z)

|f ′(z)|f ′(z)

)
+O(σ) , (4.65a)

= N̂

(
1

4πσ
− 1

8π|f ′(z)| +
1

4π

zf ′′(z)

|f ′(z)|f ′(z)

)
+O(σ) , (4.65b)

= N̂

(
1

4πσ
− 1

8π|f ′(z)| +
1

4π|f ′(z)|

[
−2
(
z2 + 3b2

)
z2

z4 − b4

])
+O(σ) . (4.65c)
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Finally, substituting (4.65c) and the second term of (4.62) into (4.31a), we obtain

∇R =
∇s(z0)
f ′(z0)

(4.66a)

=
N̂

2π

(
1

2σ
− 1/4

|f ′(z)| −
1

|f ′(z)|

[(
z2 + 3b2

)
z2

z4 − b4

]

+
1

|f ′(z)|

[
z2b2

z2b2 − 1
− 2z2b2

z4 − b4

])
+O(σ),

(4.66b)

=
N̂

2π

(
1

2σ
− 1

4|f ′(z)| +
1

|f ′(z)|

[
z2b2

z2b2 − 1
−
(
z4 + 5b2z2

)

z4 − b4

])
+O(σ) . (4.66c)

This completes the proof. �

We now use this proposition to describe the spike dynamics and equilibria near the boundary.

Let x0 = x0(t) be O(σ) close to the boundary, as defined in (4.57), and assume that ε� σ � 1.

We then use Laplace’s method to calculate the integral J in (4.11a) as

J ∼ 2

√
πε

σ
e−2σ/εN̂ , (4.67)

where J is defined in (4.11b). In deriving (4.67) we have assumed that κσ � 1, where κ is the

curvature of ∂Ω. Substituting (4.67) and (4.66c) into (4.11a), we obtain

dx0

dt
∼ 2εq

p− 1

[
α2

πβ

(
p− 1

q

)√
πε

σ
e−2σ/εN̂

−ε|Ω|
D

{
N̂

4πσ
− N̂

8π|f ′(z)| +
N̂

2π |f ′(z)|

(
z2b2

z2b2 − 1
− z4 + 5b2z2

z4 − b4

)}]
. (4.68)

Note that the first three terms on the right hand side of (4.68) point in the direction of N̂ .

Therefore, a necessary condition for x0 to be in equilibrium is that the last term on the right

hand-side of (4.68) also points in the normal direction, i.e.

Im

(
z2b2

z2b2 − 1
− z4 + 5b2z2

z4 − b4

)
= 0 . (4.69)

This condition is clearly satisfied when z = ±1 and when z = ±i. Next we show that there are

no other solutions to (4.69). Setting w = z2 and using 2 Im(x) = x− x, (4.69) becomes

−
(
w2 + 5b2w

)

w2 − b4
+

wb2

wb2 − 1
+
w2 + 5b2w

w2 − b4
− wb2

wb2 − 1
= 0 . (4.70)
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Using the relation ww = 1, (4.70) simplifies to

4(1 + b4)b2
w (w − 1) (w + 1)

(b4w2 − 1) (b4 −w2)
= 0 . (4.71)

It follows z = ±1,±i. are the only possible equilibria.

When the condition (4.69) is satisfied, we obtain to leading order from (4.68) that the equilib-

rium location for σ is related to D by

D ∼ β

4α2

(
q

p− 1

)( ε

πσ

)1/2
|Ω| e2σ/ε . (4.72)

Notice that this relation is the same for any equilibrium location. Moreover, (4.72) involves only

the leading order behavior of ∇R ∼ N̂
4πσ near the boundary, which is independent of the shape

of the boundary. Therefore, the result (4.72) is also independent of the domain shape. Notice

also that (4.72) with |Ω| = π agrees with the result (4.29) derived earlier for an equilibrium

spike near the boundary of a circular cylindrical domain of radius one.

Next, we analyze the stability of these equilibria with respect to the direction normal to the

boundary. Notice that D = D(σ) has a minimum at σm = ε
4 . At this point, D(σm) ≡ Dm =

√
2e

1

2
|Ω|qβ

4α2
√

π(p−1)
. However, since we have assumed that σ � ε, we have D � Dm. Furthermore,

for any givenD withD � Dm, (4.72) has two solutions for σ: σ1 � ε and σ2 � ε. By examining

the sign of the right hand side of (4.68), we conclude that the equilibrium at σ2 is unstable with

respect to the normal direction. Alternatively, σ1 is stable with respect to the normal direction.

However, our analysis is invalid for the root σ1, since σ1 � ε. Nevertheless, this formal analysis

may suggest the existence of boundary spike equilibria located on the boundary of ∂Ω at f(z),

where z = ±1 or z = ±i. See Conjecture 4.5.1 below. We summarize:

Proposition 4.4.2 For an arbitrary smooth domain Ω, let D be given by (4.72), where ε �

σ � 1. Then there exists a spike equilibria location at a distance σ away from the boundary.

Such an equilibria is unstable in the direction normal to the boundary.
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Next, we analyze the stability of these equilibria with respect to the tangential direction. The

unit tangent vector to ∂Ω, measured in the counterclockwise direction, is

T̂ (t) = i
zf ′(z)
|f ′(z)| where z = eit . (4.73)

The stability in the tangential direction is controlled by the last term on the right hand side of

(4.68). The direction of this term, up to a positive constant scalar multiple, is given by

~v(t) = − 1

|f ′(z)|N̂
(

z2b2

z2b2 − 1
−
(
z4 + 5b2z2

)

z4 − b4

)
, (4.74a)

= − f ′(z)

|f ′(z)|2

(
zb2

z2b2 − 1
−
(
z3 + 5b2z

)

z4 − b4

)
, (4.74b)

where z = eit.

The differential equation (4.68) can be written in the form

dx0

dt
∼ a1N̂ + ω~v , (4.75)

where a1 and ω > 0 are real. Multiplying (4.75) by T̂ and taking real parts of the resulting

expression we get

Re
(
x

′

0T̂
)

= ωRe
(
~vT̂
)
. (4.76)

We decompose the velocity field as x
′

0 = sN N̂ + sT T̂ , and we let θ denote the angle between

the tangential direction and ~v. Using the identity < a, b >= Re(ab) for the dot product, we

then reduce (4.76) to

sT = ω|~v| cos θ , (4.77)

where

cos θ =
1

|~v| < T̂ ,~v > , (4.78a)

=
1

|~v| Re

[
i
zf ′(z)f ′(z)

|f ′(z)||f ′(z)|2
(
z3 + 5b2z

z4 − b4
− zb2

z2b2 − 1

)]
, (4.78b)

= −C(t) Im

(
z4 + 5b2z2

z4 − b4
− z2b2

z2b2 − 1

)
. (4.78c)

Here C(t) is some irrelevant positive scalar.
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At the equilibrium points z = ±1 and z = ±i we have that ~v points in the normal direction.

Therefore, at these points, we have < T̂ ,~v >= 0 and cos θ = 0. From (4.77) we observe that

if d cos θ
dt < 0 at the equilibrium position, then we have stability in the tangential direction. At

the equilibrium positions, where sin θ = 1, we calculate from (4.78) that

dθ

dt
= C(t) Im

[
d

dt
F(eit)

]
, where F(z) ≡ z4 + 5b2z2

z4 − b4
− z2b2

z2b2 − 1
. (4.79)

At t = 0 and t = π/2 where z = 1 and z = i, respectively, we obtain from (4.79) that

dθ

dt

∣∣∣
t=0

= C(0)Re
[
F ′

(0)
]
,

dθ

dt

∣∣∣
t= π

2

= −C
(π

2

)
Im
[
F ′(i)

]
. (4.80)

From (4.79) and (4.80), we calculate

dθ

dt

∣∣∣
t=0

= −C(0)

(
8b2(1 + b4)

(b2 + 1)2(b2 − 1)2

)
< 0 , (4.81a)

dθ

dt

∣∣∣
t= π

2

= C
(π

2

)( 8b2(1 + b4)

(b2 + 1)2(b2 − 1)2

)
> 0 . (4.81b)

Since d cos θ
dt = −dθ

dt at the equilibrium positions, we conclude from (4.77) and (4.81) that the

equilibrium position near f(±i) (near f(±1)) is stable (unstable) in the tangential direction,

respectively. We summarize our results in the following proposition.

Proposition 4.4.3 For the dumbbell-shaped domain Ω = f(B), where f is given by (4.30),

let σ be such that ε � σ � 1. For the value of D given by (4.72), there are precisely four

equilibrium spike locations, all at a distance σ away from the boundary. They are given by

x±s = f(±i) − N̂σ and x±u = f(±1) − N̂σ, where N̂ is the normal to the boundary ∂Ω at

f(±i) and f(±1), respectively. All four equilibria are unstable in the direction N̂ normal to the

boundary. Moreover, x±s (x±u ) are stable (unstable) in the tangential direction, respectively.

In Figure 4.2 we illustrate the local vector field and stability properties of near-boundary spikes.

Our results suggest that the unstable manifold of the equilibrium near-boundary spike along

the x-axis connects with the stable manifold of the near-boundary spike along the y-axis in the

neck region of the dumbbell.
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Our analysis has been restricted to the case where the distance σ between the spike and the

boundary satisfies σ � ε. We expect that the equilibrium locations of spikes that are located

on the boundary of the domain should result from a competition between the zeroes of the

derivative of the curvature (as for the shadow problem where D = ∞) and the local behavior

of the gradient of the regular part Rm of the Green’s function on the boundary. To this end,

we define Rb by

Rb(x) = lim
y→x

[
Rm(x, y) +

1

4π
ln |x− y|

]
. (4.82)

We now show that for the dumbbell-shaped domain of §4 that the minimum of Rb occurs at

that point of the boundary where the curvature is at its minimum.

For the dumbbell-shaped domains of §4 we obtain the following result:

Proposition 4.4.4 Let Ω = f(B) where f is given by (4.30) and B is the unit ball. Then Rb

defined in (4.82) is given by:

Rb(x) =
1

4π
ln

(
b4 + 2b2 cos 2t+ 1

b4 − 2b2 cos 2t+ 1

)
+ C , where x = f(eit) . (4.83)

Here C is some constant independent of x.

The proof of this result is given in Appendix §4.6. Notice that the expression inside the log

term of (4.83) has its maximum at t = 0, π and its minimum at t = π
2 ,

3π
2 . Therefore, Rb has

a minimum on the y axis in the neck of the dumbbell, where the curvature of ∂Ω is at its

minimum.

4.5 Discussion

For different ranges of the inhibitor diffusivity D, we have described the bifurcation behavior of

an equilibrium one-spike solution to the GM model (4.2) in a radially symmetric domain, and

in a class of dumbbell-shaped domains. In a radially symmetric domain, we have calculated

the bifurcation value Dc = O(ε2e2d/ε), where d is the distance of the spike to the boundary,

for which an equilibrium spike at the midpoint of the domain becomes stable as D decreases

below Dc. For a dumbbell-shaped domain of Figure 4.1, the center at the neck also bifurcates
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as D is increased beyond some exponentially large value; however the bifurcation occurs along

the y axis, as shown in Figure 4.1(b). Since this bifurcation occurs when D is exponentially

large as ε → 0, a main conclusion of our study is that spike behavior for the shadow system

corresponding to D = ∞, has very different properties from that of spike solutions to (4.2) when

D is large, but independent of ε. Moreover, in §3.4, we showed that when D decreases below

some O(1) value, the spike in the neck of the dumbbell loses its stability through a pitchfork

bifurcation to two stable spike locations that tend to the lobes of the dumbbell as D → 0.

Although there have been many studies of the existence and stability of boundary spikes for

the shadow GM system with D = ∞, the problem of constructing equilibrium boundary spike

solutions for different ranges of D is largely open. The analysis in this paper has been restricted

to the situation where the spike is away from the boundary, i.e. the distance σ of a spike to the

boundary is such that σ � O(ε). Therefore, we have not described boundary spikes or spikes

that are O(ε) close to the boundary. Some work on equilibrium boundary spikes for the case

where D is algebraically large as ε→ 0 is given in [11].

For the case where D = ∞, the dynamical behavior of a boundary spike was derived in [38].

The equilibrium case was studied in [81] and [82] (see also the references therein). From

these studies, it is well-known that the dynamics and equilibrium locations depend only on

the curvature of the boundary of the domain. For the domain in Fig. 4.1, the boundary spike

located on the y-axis is stable when D = ∞. For asymptotically large values of D, we expect

that the dynamics of a boundary spike depends on both the derivative of the curvature of the

boundary and on the behavior of the gradient of the regular part of the Green’s function Rm on

the boundary. For the dumbbell-shaped domain of in Fig. 4.1, we showed in §4.sec:4.5 that this

gradient vanishes at the same points where the curvature of the boundary has a local maxima

or minima. This suggests the following conjecture:

Conjecture 4.5.1 Suppose that O(1) � D � O(εqec/ε) for some q and c to be found. Then,

a boundary spike for the domain Ω = f(B) shown in Figure 4.1 is at equilibrium if and only

if its center is located on either the x or the y-axes. Furthermore, the equilibrium locations on
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the y and the x-axes are stable and unstable, respectively.

Finally, it is well-known (cf. [5], [49], [27]) that the shadow system admits unstable multi-

spike equilibrium solutions where the locations of the spikes satisfy a ball-packing problem.

These solutions are unstable with respect to both the large O(1) and the exponentially small

eigenvalues of the linearization. Since when D � 1, the distance function plays a central role,

the locations of the spikes should also satisfy a ball packing problem. However, in a strictly

convex domain these solutions should be stable. It would be interesting to extend the analysis

given here to determine the bifurcation properties, and the exchange of stability, of multi-spike

solutions as D is decreased.

4.6 Appendix: The Proof of Proposition 5.3

Here we prove Proposition 5.3. Let x = x(t) = f(eit), N̂ be the normal at x, and label

y(t) = x(t) − σN̂(t). We define h(t) by

h(t) = Rm(y(t), y(t)) , (4.84)

and calculate

h′(t) = ∇Rm(y(t), y(t)) · y′(t) . (4.85)

Note that x′(t) = T̂ |f ′(z)|, where z = eit and T̂ = iN̂ is the tangential direction at x = f(z).

Therefore, we have

y′(t) = |f ′(z)|T̂ − σcT̂ , (4.86)

where c(t) = d
dt |N̂ | is some irrelevant function. From Proposition 5.1 and using a · b = Re(ab),

we obtain

h′(t) =

(
N̂

4πσ
+

N̂

2π|f ′(z)|

[
z2b2

z2b2 − 1
−
(
z4 + 5b2z2

)

z4 − b4
− 1

4

]
+O(σ)

)

·
(
T̂ |f ′(z)| − σcT̂

)

= − 1

2π
Im

[
z2b2

z2b2 − 1
−
(
z4 + 5b2z2

)

z4 − b4

]
+O(σ) =

1

2π
ImF(z) ,

(4.87)
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where F is given by (4.79). Note that the singular part N̂
4πσ does not enter into h′(t) since it is

perpendicular to the tangent direction.

Integrating (4.87), we obtain

h(t) =

∫
h′(t)dt =

1

2π

∫
ImF(z)

dz

iz
. (4.88)

Therefore,

ImF(z) =
F(z) −F( 1

z )

2i
(4.89a)

=
1

i
2(1 + b4)b2

w(w2 − 1)

(b4w2 − 1)(w2 − b4)
, (4.89b)

=
−1

i
w

(
b2

wb2 + 1
− b2

wb2 − 1
+

1

w + b2
− 1

w − b2

)
. (4.89c)

Here w = z2. In addition, dz
z = 1

2
dw
w so that

h(t) =
1

4π

∫ (
b2

wb2 + 1
− b2

wb2 − 1
+

1

w + b2
− 1

w − b2

)
dw , (4.90a)

=
1

4π
ln

∣∣∣∣
(wb2 + 1)(w + b2)

(wb2 − 1)(w − b2)

∣∣∣∣+ C . (4.90b)

This result can be simplified as

h(t) =
1

4π
ln

∣∣∣∣
(wb2 + 1)(w + b2)

(wb2 − 1)(w − b2)

∣∣∣∣+ C , (4.91a)

=
1

8π
ln

(wb2 + 1)(wb2 + 1)(w + b2)(w + b2)

(wb2 − 1)(wb2 − 1)(w − b2)(w − b2)
+C , (4.91b)

=
1

8π
ln

(
1 + b4 + 2b2 cos 2t

)2

(1 + b4 − 2b2 cos 2t)2
+C , (4.91c)

=
1

4π
ln

(
1 + b4 + 2b2 cos 2t

1 + b4 − 2b2 cos 2t

)
+ C . (4.91d)

The constant C = C(σ) depends on the distance from the boundary but not on x. Finally, for

x ∈ ∂Ω and y ∈ Ω, we define the regular part of the boundary Green’s function by

S(x, y) = Rm(x, y) +
1

4π
ln |x− y|. (4.92)
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Note that S is smooth and bounded for all y ∈ Ω. Therefore, we have

Rb(x) = lim
y→x

S(x, y) = lim
y→x

[S(y, y) +O(x− y)] = lim
y→x

S(y, y) , (4.93a)

= lim
σ→0

h(t) +
1

4π
lnσ (4.93b)

=
1

4π
ln

(
1 + b4 + 2b2 cos 2t

1 + b4 − 2b2 cos 2t

)
+ C . (4.93c)

Since we are only concerned with determining points on the boundary where Rb has minima

and maxima, the constant C is irrelevant. This completes the proof. �
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Chapter 5

Q-switching instability in passively
mode-locked lasers

One of the applications of where pulse-like structures occur is in the field of nonlinear optics. In

this chapter we consider a model arising in lasers, which exhibits localized spike-like structures.

The following equations have been proposed as a continuous model of the mode-locked lasers

(see [31], [41], [23]):

ET =

(
N − 1 − a

1 + b|E|2
)
E + Eθθ (5.1a)

NT = γ

[
A−N −NL−1

∫ L

0
|E|2dθ

]
. (5.1b)

Here, θ represents the time describing a single laser pulse and T is a slow time variable describing

the modulation of its amplitude. E(θ, T ) represents the field satisfying the periodic boundary

condition E(θ, T ) = E(θ + L, T ), and N(T ) is the inversion of population. In addition, γ =

O(10−4 − 10−3) is the relaxation rate of the upper level relative to the coherence lifetime. The

constant A is the pump parameter defined so that A = 1 is the lasing threshold if a = 0. The

saturation term in (5.1) is the same as the one used by Kärtner et al [42]. This model has

been studied numerically in [41]. Taking a as a bifurcation parameter, the following typical

parameter values have been considered in [41]:

A = 8, L = 3800, γ = 0.00014, b = 0.01. (5.2)

Using numerical simulations, it was reported in [41] that for a = 0.0025, the solution E(θ)

settles to a steady state in the form of a spike. However as a was increased past 0.003, fast-

scale oscillations in the steady-state solution were observed. Such oscillations are called Q-switch
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instabilities, and are undesired for most of the applications. In this chapter, we use stability

analysis to predict the onset of a Q-switch instability via a Hopf bifurcation. The results of this

chapter have been previously reported in [23].

From the mathematical viewpoint, we consider the following generalization of (5.1):

ET = −(1 + a(1 − (b|E|2)
p−1

2 k(b|E|2))E +N(E + Eθθ), (5.3a)

NT = γ

[
A−

(
1 +

1

L

∫ L

0
|E|2dθ

)
N

]
(5.3b)

Here, k is a nonlinearity with k(0) = 1, p > 1, and where T is the time variable. Equation (5.1)

corresponds to choosing

k(t) =
1

1 + t
, p = 3. (5.4)

We will also study in more detail the case of no saturation,

k(t) = 1, p > 0, (5.5)

for which more explicit results are possible.

We scale (5.3) as follows:

N = 1 + ωx, E =
√
A− 1u (5.6a)

t = ωT, z =
√
ωθ (5.6b)

where

ω =
√

2γ(A − 1) (5.6c)

this yeilds,

ut = uzz(1 + ε2x) − u(α− x) + αβ
p−1

2 upk(βu2)) (5.7a)

xt =
1

2
(1 − 2ε1x) −

1

2
(1 + ε2x)

1

l

∫ l

0
u2 (5.7b)

where

α = a
1

ω
, β = b(A− 1), l =

√
ωL, ε1 =

ω

2A
, ε2 = ω. (5.8a)
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The typical values (5.2) then become

β = 0.07, ε1 = 0.0032, ε2 = ω = 0.044, l = 800. (5.9)

The numerical result from [41] is that for k and p as given in (5.4), there is a Hopf bifurcation

as α passes through αc = 0.068.

We will treat ε1, ε2 as small parameters in this problem. Our goal is to study the asymptotic

stability in terms of these parameters.

5.1 Stability analysis

Let u = u∗, x = x∗ be the steady state solution. It is convenient to further rescale the space

variable as follows:

z = dz, u = hz, x = x (5.10a)

where

d2 =
α− x∗

1 + ε2x∗
, h = (α− x∗)

1

p−1α− 1

p−1β−
1

2 . (5.10b)

Dropping the bars, (5.7) becomes

ut = uzz(1 + ε2x)
α− x∗

1 + ε2x∗
− u(α− x) + (α− x∗)upk(cu2), (5.11a)

xt =
1

2
(1 − 2ε1x) −

1

2
(1 + ε2x)

h2

ld

∫ ld

0
u2 (5.11b)

where

c = (α− x∗)
2

p−1α
− 2

p−1 . (5.11c)

The steady-state equations therefore become

0 = u∗zz − u∗ + u∗pk(cu∗2) (5.12a)

h2

ld

∫ ld

0
u∗2 =

1 − 2ε1x
∗

1 + ε2x∗
= 1 − x∗(2ε1 + ε2). (5.12b)
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Next we examine the stability. Letting

u = u∗ + eλtφ(z), x = x∗ + eλtψ(z) (5.13)

we obtain, up to O(ε1, ε2), the following eigenvalue problem:

λ

α− x∗
φ = φ′′ − φ+

d

du∗

(
u∗pk(cu∗2)

)
φ+ ψ

[
u∗

α− x∗
+ u∗zzε2

]
(5.14)

λψ = −ε1ψ − 1

2
ε2ψ

h2

ld

∫ ld

0
u∗2 − (1 + ε2x

∗)
h2

ld

∫ ld

0
φu∗ (5.15)

Using (5.15) to solve for ψ and substituting it into (5.15) we obtain

λ

α− x∗
φ = L0φ−

[
u∗

α− x∗
+ u∗zzε2

]
1 + ε2x

∗

λ+ ε1 + 1
2ε2

h2

ld

∫ ld

0
φu∗ (5.16)

where

L0φ
def
= φ′′ − φ+

d

du∗

(
u∗pk(cu∗2)

)
φ. (5.17)

For convenience we rescale

λ =
λ

α− x∗
(5.18)

Dropping bars we obtain

λφ = L0φ− χ(u∗ + 0(ε2))
h2

ld

∫ ld

0
φu∗, χ

def
=

1 + ε2x
∗

(α− x∗)
(
(α− x∗)λ+ ε1 + 1

2ε2
) (5.19)

Since this equation is linear in φ, we may scale it to obtain

1

χ
=
h2

ld

∫ ld

0
φu∗, (5.20a)

(L0 − λ)φ = u∗ + 0(ε2) (5.20b)

We now look for a hopf bifurcation. That is assume that λ is purely imaginary. We let

λ = iλI , φ = φR + iφI . (5.21)

to obtain

L0φR + λIφI = u∗ +O(ε2), L0φI − λIφR = 0 (5.22)

This equation decouples:

L2
0φI + λ2

IφI = λIu
∗ +O(ε2), L2

0φR + λ2
IφR = L0u

∗ (5.23)
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and hence (5.20a) becomes

ldh−2(α− x∗) ((α− x∗)λI)

1 + ε2x∗
=

∫ ld

0
u∗φI

def
= µI(λI) (5.24a)

ldh−2(α− x∗)
(
ε1 + 1

2ε2
)

1 + ε2x∗
=

∫ ld

0
u∗φR

def
= µR(λI) (5.24b)

Together, equations (5.24), (5.12) and (5.11c) yield a system of three equations for three un-

knowns λI , x
∗ and α which determine the hopf bifurcation. However the solution of this system

requires extensive computations since φI , φR have to be determined numerically for any given

α, λI as a solution to the boundary value problem of fourth order.

In practice, for reasonable nonlinearity k such as of type (5.4) or (5.5), we may assume that

c = O(1), or equivalently

α− x∗ = O(α). (5.25)

It then follows that d = O(
√
α), h−2 = O(β). Furthermore, from (5.12b) we obtain

∫ dl

0
u∗2 = O(lβ

√
α), (5.26)

from where we conclude that dl = O(l
√
α) � 1, since otherwise

∫ dl
0 u∗2 = O(l

√
α), which

contradicts (5.26) and the fact that β � 1. Therefore,

u∗ ∼ w,

∫ dl

0
u∗2 ∼

∫
w2, (5.27)

where w satisfies the same ODE (5.12a) as u∗, but on the whole space:

0 = wzz − w + wpk(cw2), (5.28a)

w(z) = ae−|z| as |z| → ∞ (5.28b)

Furthermore ldh−2 = O(l
√
αβ) and

∫
w2 = O(1) and hence it follows from (5.27) and (5.26)

that ldh−2 = O(1). Thus the left hand side of (5.24b) is of O(αε1), and therefore small. On

the other hand expanding φR, φI as a series in 1
λI

and using (5.22) we obtain

µR(λI) =
1

λ2
I

∫
wL0w +O(

1

λ4
I

), (5.29a)

µI(λI) =
1

λI

∫
w2 +O(

1

λ3
I

). (5.29b)
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Since the left hand side of (5.24b) is small, we may assume that φR is small and therefore the

expansion (5.29a) is valid. Thus λI is big and therefore the expansion (5.29b) is also valid.

Substituting (5.29) into (5.24) and eliminating λI , then using the approximation (5.27) we

obtain

ε1 + 1
2ε2

α− x∗
=

∫
wL0w∫
w2

. (5.30)

From (5.12b) and (5.11c) we obtain

α− x∗ =

(
c
∫
w2

lβ

)2

. (5.31)

Combining this with (5.30) we obtain an equation involving only c:

(lβ)2(ε1 +
1

2
ε2) = c2

(∫
w2

)(∫
wL0w

)
(5.32a)

γL2b2A(A− 1)2 = c2
(∫

w2

)(∫
wL0w

)
. (5.32b)

Once c is so determined, we may finally determine α from (5.31),(5.32a) and (5.11c):

α = c
5−p

2 (βl)−2

(∫ ∞

−∞
w2

)2

(5.33a)

= (lβ)
5−p

2
−2(ε1 +

1

2
ε2)

5−p

4

(∫
w2

)p−5

4
+2(∫

wL0w

) p−5

4

(5.33b)

Using (5.8) we finally obtain

a = γ
5−p

4 (A− 1)
1−p

2 A
5−p

4 (Lb)
1−p

2 F (c, p) (5.34a)

where

F (c, p) =

(∫
w2

) p+3

4
(∫

wL0w

) p−5

4

(5.34b)

Thus we obtain the following characterisation of the Hopf bifurcation of (5.7):

Proposition 5.1.1 Let w be the entire solution to (5.28) where c satisfies (5.32b), with c =

O(1). Then there is a Hopf bifurcation that occurs for the system (5.3) for the value of a given

by (5.34).
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5.2 Hopf bifurcation for for p = 3, k(t) = 1

1+t

To find c of Proposition 5.1.1 we need to be able to evaluate
∫∞
−∞w2 and

∫∞
−∞wL0w for various

values of c. There are two ways of doing this efficiently. Note that (5.28) admits a first integral

w′2

2
− w2

2
+ f(w, c) = 0 where f(w, c) =

∫ w

0
tpk(ct2)dt (5.35)

Thus dt = w2 dw√
w2−2f(w,c)

and so

∫
w2 = 2

∫ wm

0
w2 dw√

w2 − 2f(w, c)
,

∫
wL0w = 2

∫ wm

0
wL0w

dw√
w2 − 2f(w, c)

, (5.36)

where wm is the maximum of w given by

wm
2 − 2f(wm, c) = 0. (5.37)

However, the integral on the right hand side of (5.36) is singular at the right endpoint and a

numerical approximation on a uniform grid using for example Simpson’s method gives a very

bad approximation. This can be overcome by developing this integral in Taylor series at the

singular endpoint.

A simpler and a numerically cheap approach is to instead integrate the initial value problem

w(0) = wm, A(0) = 0, A′ = 2w2, w′′ −w+wpk(cw2) = 0, where wm and c are related by (5.37),

using a standard Runga-Kutta method from zero until t1 where say w(t1) < 10−8 (in typical

examples we tried, t1 was about 10-15). Then
∫∞
−∞w2 is numerically approximated by A(t1).

The integral
∫∞
−∞wL0w is analogously evaluated.

A physically relevant case studied in [41] is p = 3, k(t) = 1
1+t . Then we compute:

L0w =
2w3

(1 + cw2)2

and

w2 − 2f(w, c) =

(
1 − 1

c

)
w2 +

1

c2
ln(1 + cw2). (5.38)

For parameter values (5.2) used in [41], we used the method outlined above to numerically

obtain c = 0.580 (which is of O(1)), wm = 2.515,
∫∞
−∞w2 = 18.78,

∫∞
−∞wL0w = 12.60 which
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yields the predicted bifurcation value of α = 0.065 or a = 0.0029. This agrees to all significant

digits with the value of ac = 0.003 reported in [41], as observed from a full numerical simulation

of (5.3). Figure 5.1 lists the threhold value a at which the hopf bifurcation occurs, as a function

of b.

0
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0.008

0.01
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0.014

0.016

0.018

0.02

a

0.005 0.01 0.015 0.02
b

Figure 5.1: The hopf bifurcation diagram in the b− a plane. The solid curve is the numerically
computed bifurcation threhold from Proposition 5.1.1. Instability occurs above the solid curve.
The dashed curve is the asymptotic approximation valid for small b, given by (5.46a).

5.3 Hopf bifurcation without saturation

Next, we examine the case k = 1 for arbitrary p. Equations (5.37) and (5.36) then become

wm =

(
p+ 1

2

) 1

p−1

, (5.39)

∫
w2 = 2

∫ wm

0
w

dw√
1 − 2wp−1

p+1

= 2

(
p+ 1

2

) 2

p−1
∫ 1

0

vdv√
1 − vp−1

. (5.40)

To evaluate
∫
wL0w, note that L0w = (p− 1)wp. From (5.35) we have

∫
w′2 −

∫
w2 +

2

p+ 1

∫
wp+1 = 0. (5.41)

Multiplying (5.28a) by w, integrating, and using integration by parts on the first term we obtain

−
∫
w′2 −

∫
w2 +

∫
wp+1 = 0. (5.42)
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Thus we obtain ∫
wL0w =

2(p + 1)(p − 1)

p+ 3

∫
w2. (5.43)

For the cases p = 2, 3, 5, the integral (5.40) is easily evaluated using elementary techniques.

More generally, we have ∫ 1

0

v√
1 − vp−1

=
Γ(1

2 )Γ( 2
p−1)

(p− 1)Γ(1
2 + 2

p−1)
. (5.44)

In particular it is possible to to evaluate this integrals in terms of elementary functions when

the argument to Γ is of the form n/2 with n an integer. This happens when p is of the form

2+m
m or 4+m

m with m an integer.

We summarize these results below.

Proposition 5.3.1 Suppose that k = 1 in (5.3). Then a Hopf bifurcation occurs in (5.3) for

the value of a given by

a = (γA)
5−p

4 ((A− 1)Lb)
1−p

2 F (p), (5.45a)

where

F (p) = 2
3p−11

4 (p + 1)
p−1

4 (p− 1)
−3−p

4 (p + 3)
5−p

4

(
Γ(1

2)Γ( 2
p−1)

Γ(1
2 + 2

p−1)

) p−1

2

. (5.45b)

For special values of p we have the following:

p = 3 : a =

√
6γA

(A− 1)Lb
, F =

√
6 (5.46a)

p = 5 : a =
3

4
π2 1

[(A− 1)Lb]2
, F =

3

4
π2 = 7.402 (5.46b)

p =
7

3
: a = 15

1

3

(
πγA

4(A − 1)Lb

) 2

3

, F = π
2

3 15
1

3 2
−4

3 = 2.099 (5.46c)

p =
3

4
: a = 2.89(γA)

17

16 [(A− 1)Lb]
1

8 , F =
3

14
5−

1

8 42
3

4 = 2.89 (5.46d)

p = 2 : a = 2.136(γA)
3

4 ((A− 1)Lb)−
1

2 , F = 5
3

4 6−
1

4 = 2.136 (5.46e)

When p = 5, the value of a at which the Hopf bifurcation occurs does not depend on γ. When

p = 7
3 , it does not depend on A if A is large.
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5.4 Discussion

An open problem is to study how Hopf bifurcation behaves as we change the saturation pa-

rameter b. For very small b, which corresponds to the limit of no saturation, the asymptotic

expression for the Hopf bifurcation was derived in (5.46a). It would be also interesting to find

an asymptotic expression for large b. This corresponds to the case c near 1 in (5.38). Setting

c = 1 − δ, where 0 < δ � 1, we then obtain

g(w) = w2 − 2f(w, c) ∼ −δw2 + (1 + 2δ) ln(1 + w2).

Then setting g = 0 we obtain

δ ∼ lnw2
m

w2
m

, wm � 1.

This gives an expression for the height of the spike. To compute the hopf bifurcation in this

case, we need to evaluate the integrals in (5.36) asymptotically. It is an open question to

complete this computation.
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Figure 5.2: (a) Solution profile u(z) at different times. (b) Height of the spike and x(t) vs.
time. Here, α = 0.1, β = 0.07, l = 800, p = 3, k(t) = 1

1+t , ε1 = 0.0032 and ε2 = 0.044.

Another open question is to study the dynamics of an oscillating spike away from the Hopf

bifurcation, where the oscillations become strongly pulsating. Numerically, the oscillation con-

sists of a long, “pulse-building” phase, where the spike height N(L/2) is exponentially small;

followed by a short “pulse-firing” phase (see Figure 5.2).
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Finally, the analytical method could be used for more complicated situations such as taking

into account the finite relaxation time of the absorber, which is important for semiconductor

devices [22].
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