Vortex dynamics, animal skin patterns, and ice fishing

Theodore Kolokolnikov

Joint works with Michael Ward and Juncheng Wei, Yuxin Chen, Daniel Zhirov, Ricardo Carretero, Panoyatis Keverkedis

Vortex dynamics

- Equations first given by Helmholtz (1858): each vortex generates a rotational velocity field which advects all other vortices. Vortex model:

$$
\frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, \quad j=1 \ldots N
$$

- Classical problem; observed in many physical experiments: floating magnetized needles (Meyer, 1876); Malmberg-Penning trap (Durkin \& Fajans, 2000), BoseEinstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides et.al, 2001)
- Conservative, hamiltonian system
- General initial conditions lead to chaos: movie - chaos
- Certain special configurations are "stable" in hamiltonial sense: movie - stable
- Rigidly rotating steady states are called relative equilibria:

$$
z_{j}(t)=e^{\omega i t} \xi_{j} \Longleftrightarrow 0=\sum_{k \neq j} \gamma_{k} \frac{\xi_{j}-\xi_{k}}{\left|\xi_{j}-\xi_{k}\right|^{2}}-\omega \xi_{j}
$$

PHYSICAL REVIEW E, VOLUME 64, 011603

Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms and molecules

Figure 2 Dynamic patterns formed by various numbers (m) of disks rotating at the ethylene glycol/water-air interface. This interface is 27 mm above the plane of the external magnet. The disks are composed of a section of polyethylene tube (white) of outer diameter 1.27 mm , filled with poly(dimethylsiloxane), POMS, doped with $25 \mathrm{wt} \%$ of magnetite (black centre). All disks spin around their centres at $\omega=700$ r.p.m., and the entire aggregate slowly ($\Omega<2$ r.p.m.) precesses around its centre. For $n<5$, the aggregates do not have a 'nucleus' - all disks are precessing on the rim of a circle. For $n>5$, nucleated structures appear. For $n=10$ and $n=12$, the patterns are bistable in the sense that the two observed patterns interconvert irregularly with time. For $n=19$, the hexagonal pattern (left) appears only above $\omega \approx 800$ r.p.m., but can be 'annealed' down

Observation of Vortex Lattices in Bose-Einstein Condensates

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle

Fig. 1. Observation of vortex lattices. The examples shown contain approximately (A) 16, (B) 32, (C) 80 , and (D) 130 vortices. The vortices have "crystallized" in a triangular pattern. The diameter of the cloud in (D) was 1 mm after ballistic expansion, which represents a
 magnification of 20. Slight asymmetries in the density distribution were due to absorption of the optical pumping light.

- Campbell and Ziff (1978) classified many stable configurations for small (eg. $N=$ 18) number of vortices of equal strength.

- Goal: describe the stable configuration in the continuum limit of a large number of vortices N (eg. $N=100,1000 \ldots$). These have been observed in several recent expriments: Bose Einstein Condensates, magnetized disks

Key observation

$$
\begin{gather*}
\text { Vortex model: } \frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, \quad j=1 \ldots N . \\
\text { Relative equilibrium: } z_{j}(t)=e^{\omega i t} \xi_{j} \Longleftrightarrow 0=\sum_{k \neq j} \gamma_{k} \frac{\xi_{j}-\xi_{k}}{\left|\xi_{j}-\xi_{k}\right|^{2}}-\omega \xi_{j} \\
\text { Aggregation model: } \frac{d x_{j}}{d t}=\sum_{k \neq j} \gamma_{k} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}-\omega x_{j} . \tag{A}
\end{gather*}
$$

- One-to-one correspondence between the steady statates $x_{j}(t)=\xi_{j}$ of (A) and the relative equilibrium $z_{j}(t)=e^{\omega i t} \xi_{j}$ of (V).
- Spectral equivalence of (\mathbf{V}) and (\mathbf{A}) : The equilibrium $x_{j}(t)=\xi_{j}$ is asymptotically stable for the aggregation model (A) if and only if the relative equilibrium $z_{j}(t)=e^{\omega i t} \xi_{j}$ is stable (neutrally, in the Hamiltonian sense) for the vortex model (V)!
- Aggregation model fully describes relative equilibria and their linear stability in the vortex model.
- Aggregation model is easier to study than the vortex model.

Vortices of equal strength $\gamma_{k}=\gamma$

$$
\frac{d z_{j}}{d t}=i \gamma \sum_{k \neq j} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, j=1 \ldots N .
$$

- In the limit $N \rightarrow \infty$, the steady state density of (A) is constant inside the ball of radius

$$
R_{0}=\sqrt{N \gamma / \omega} .
$$

Fig. 1. Stable relative equilibria of $N=25,50$ and 200 vortices of equal strength. The dashed line shows the analytical prediction $R_{0}=\sqrt{N \gamma / \omega}$ of the swarm radius in the $N \rightarrow \infty$ limit (see (6)).

Connection to the biological aggregation model

- [FHK,2011] Multi-particle interaction model:

$$
\begin{align*}
& \frac{d x_{j}}{d t}=\frac{1}{N} \underbrace{\sum_{k \neq j} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}}-\underbrace{x_{j}} j=1 \ldots N . \tag{1}\\
& \text { Newtonian repulsion Linear attraction } \tag{2}
\end{align*}
$$

- This is just the first two terms of the ice-fishing problem (no reflection in the boundary)
- This model results in a constant density swarm.

- Newtonian repulsion, linear attraction.
- In the limit $N \rightarrow \infty$, the density is constant inside a ball of radius 1 ; zero outside.

Continuum limit

- We define the density ρ as

$$
\int_{D} \rho(x) d x \approx \frac{\# \text { particles inside domain } D}{N}
$$

- The flow is then characterized by density ρ and velocity field v :

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(\rho v)=0 ; \quad v(x)=\int_{\mathbb{R}^{n}}\left(\frac{x-y}{|x-y|^{2}}-x-y\right) \rho(y) d y \tag{3}
\end{equation*}
$$

- We have

$$
\begin{gathered}
v(x)=\int \nabla_{x}\left(\log |x-y|-\frac{1}{2}|x-y|^{2}\right) \rho(y) d y \\
\nabla \cdot v=\int(2 \pi \delta(x-y)-2) \rho(y) d y \\
=2 \pi \rho(x)-2 M
\end{gathered}
$$

- Inside, the swarm, $\nabla \cdot v=0 \Longrightarrow \rho=M / \pi$ is constant!
- Radius is determined by conservation of mass: $M=\rho \pi R^{2} \Longrightarrow R=1$.

$N+1$ problem

- N vortices of equal strength and a single vortex of a much higher strength:

$$
\begin{align*}
\frac{d x_{j}}{d t} & =\frac{a}{N} \sum_{\substack{k=1 \ldots N \\
k \neq j}} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}+b \frac{x_{j}-\eta}{\left|x_{j}-\eta\right|^{2}}-x_{j}, \quad j=1 \ldots N \tag{4}\\
\frac{d \eta}{d t} & =\frac{a}{N} \sum_{k=1 \ldots N} \frac{\eta-x_{k}}{\left|\eta-x_{k}\right|^{2}}-\eta \tag{5}
\end{align*}
$$

- Mean-field limit $N \rightarrow \infty$:

$$
\left\{\begin{array}{l}
\rho_{t}+\nabla \cdot(\rho \nabla v)=0 \tag{6}\\
v(x)=a \int_{\mathbb{R}^{2}} \rho(y) \frac{x-y}{|x-y|^{2}} d y+b \frac{x-\eta}{|x-\eta|^{2}}-x \\
\frac{d \eta}{d t}=a \int_{\mathbb{R}^{2}} \rho(y) \frac{\eta-y}{|\eta-y|^{2}} d y-\eta
\end{array} .\right.
$$

- Main result:. Define $R_{1}=\sqrt{b}, R_{0}=\sqrt{a+b}$ and suppose that η is any point such that $B_{R_{1}}(\eta) \subset B_{R_{0}}(0)$. Then the equilibrium solution for (6) is constant inside $B_{R_{0}}(0) \backslash B_{R_{1}}(\eta)$ and is zero outside.

- Unlike the $N+0$ problem, the relative equilibrium for the $N+1$ problem is non-unique: any choice of η yields a steady state as long as $|\eta|<R_{0}-R_{1}$.

Degenerate case: big central vortex

- Small vortices are constrained to a ring of radius R_{0}. with big vortex at the center.
- Non-uniform distribution of small particles!
- Question: Determine the size of the gap $\Theta_{\text {gap }}$.

- Main Result:

$$
\Theta_{g a p} \sim C N^{-1 / 3}
$$

where the constant $C=8.244$ satisfies

$$
\left(8-6 u+2 u^{3}\right) \ln (u-1)=3 u\left(u^{2}-4\right) ; \quad C=2\left(\frac{6 \pi(2-u)}{u\left(u^{2}-1\right)}\right)^{1 / 3}
$$

Sketch of proof

- [Barry+Wayne, 2012]: Set $x_{j}(t) \sim R_{0} e^{i \theta_{j}(t)}$ then at leading order we get

$$
\begin{equation*}
\frac{d \theta_{j}}{d t}=\frac{1}{N} \sum_{k \neq j}\left(\frac{\sin \left(\theta_{j}-\theta_{k}\right)}{2-2 \cos \left(\theta_{j}-\theta_{k}\right)}-\sin \left(\theta_{j}-\theta_{k}\right)\right) \tag{7}
\end{equation*}
$$

- In the mean-field limit $N \rightarrow \infty$, the density distribution $\rho(\theta)$ for the angles θ_{j} satisfies

$$
\left\{\begin{array}{l}
\rho_{t}+\left(\rho v_{\theta}\right)_{\theta}=0 \tag{8}\\
v(\theta)=P V \int_{-\pi}^{\pi} \rho(\phi)\left(\frac{\sin (\theta-\phi)}{2-2 \cos (\theta-\phi)}-\sin (\theta-\phi)\right) d \phi
\end{array}\right.
$$

where $P V$ denotes the principal value integral, and $\int_{-\pi}^{\pi} \rho=1$.

- [Barry, PhD Thesis]: Up to rotations, the steady state density $\rho(\theta)$ for which $v=0$ must be of the form

$$
\begin{equation*}
\rho(\theta)=\frac{1}{2 \pi}(1+\alpha \cos \theta) . \tag{9}
\end{equation*}
$$

This follows from (8) and (formal) expansion

$$
\frac{\sin t}{2-2 \cos t}-\sin t=\sin (2 t)+\sin (3 t)+\sin (4 t)+\ldots
$$

- α is free parameter in the continuum limit.
- For discrete N, particle positions satisfy

$$
\int_{\theta_{j-1}}^{\theta_{j}} \frac{1}{2 \pi}(1+\alpha \cos \theta) d \theta=\frac{1}{N}
$$

To estimate $\Phi_{\text {gap }}$, choose θ_{1} so that $v\left(\theta_{1}\right) \sim 0$. See our paper for hairy details.

$N+K$ problem

Main result: Let $R_{k}=\sqrt{b_{k}}, \quad k=1 \ldots K$ and $R_{0}=\sqrt{a+b_{1}+\ldots+b_{K}}$. Suppose $\eta_{1} \ldots \eta_{K}$ are such $B_{R_{1}}\left(\eta_{1}\right) \ldots B_{R_{K}}\left(\eta_{K}\right)$ are all disjoint and are contained inside $B_{R_{0}}(0)$. The equilibrium density is constant inside $B_{R_{0}}(0) \backslash \bigcup_{k=1}^{K} B_{R_{k}}\left(\eta_{k}\right)$ and is zero outside.

$N+K$ problem, with very large K vortices

- The blue ellipse is described by the reduced system

$$
\begin{equation*}
\frac{d \xi_{j}}{d t}=\frac{1}{N} \sum_{\substack{k=1 \ldots . N \\ k \neq j}} \frac{1}{\overline{\xi_{j}-\xi_{k}}}+\frac{1}{2} \bar{\xi}_{k}-\xi_{k} \tag{10}
\end{equation*}
$$

- From [K, Huang, Fetecau, 20011], its axis ratio is 3.

Crystallization

$$
\begin{equation*}
\text { Vortex model: } \frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}, \quad j=1 \ldots N \tag{V}
\end{equation*}
$$

Reltive equiliria: $z_{j}(t)=e^{\omega i t} \xi_{j} \Longleftrightarrow 0=\sum_{k \neq j} \gamma_{k} \frac{\xi_{j}-\xi_{k}}{\left|\xi_{j}-\xi_{k}\right|^{2}}-\omega \xi_{j}$
Vortex with dissipation: $\frac{d z_{j}}{d t}=i \sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}+\mu\left(\sum_{k \neq j} \gamma_{k} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}-\omega z_{j}\right)$

- In many physical experiments of BEC there is damping or dissipation involved.
- Spectral equivalence: Relative equilibria and their stability are the same for (V) and (D)
- Both the vortex model and the "aggregation model" model are limiting cases of (D).
- Taking $\mu>0$ stabilizes vortex dynamics! chaos damped stable
- This allows us to find stable relative equilibria numerically.

Vortex dynamics in BEC with trap

- For BEC, dynamics have extra term corresponding to prcession around the trap:

$$
\begin{equation*}
\dot{z}_{j}=\underbrace{i \frac{a}{1-r^{2}} z_{j}}_{\text {trap-interaction }}+\underbrace{i c \sum_{k \neq j} \frac{z_{j}-z_{k}}{\left|z_{j}-z_{k}\right|^{2}}}_{\text {self-interaction }}, \quad j=1 \ldots N . \tag{11}
\end{equation*}
$$

- Large N limit: non-uniform vortex lattice:

$$
\begin{aligned}
\rho & \sim \omega-\frac{a}{\left(1-r^{2}\right)^{2}} \text { if } r<R, \quad \rho=0 \text { otherwise, } \\
\text { with } \omega & =\frac{a}{1-R^{2}}+\frac{c N}{R^{2}} \\
& \underbrace{200}_{0} \omega_{0}^{\omega}
\end{aligned}
$$

$$
\omega_{c}=(\sqrt{a}+\sqrt{c N})^{2} ; \quad R_{c}^{2}=\frac{\sqrt{c N}}{\sqrt{a}+\sqrt{c N}}
$$

- No solutions ofr $\omega<\omega_{c}$
- Two solutions $R=R_{ \pm}$if $\omega>\omega_{c}$, smaller is stable, larger unstable.

N -body problem

$$
\begin{equation*}
\ddot{z}_{j}=\sum_{k \neq j} c_{k} c_{j} \frac{z_{k}-z_{j}}{\left|z_{k}-z_{j}\right|^{3}} \tag{12}
\end{equation*}
$$

- Relative equilibria $z_{j}=e^{i \omega t} x_{j}$ satisfy:

$$
\begin{equation*}
0=\sum_{k \neq j} c_{k} c_{j} \frac{x_{k}-x_{j}}{\left|x_{k}-x_{j}\right|^{3}}+\omega^{2} x_{j} \tag{13}
\end{equation*}
$$

- Gradient flow (to find steady states):

$$
\begin{equation*}
-\dot{x}_{j}=\sum_{k \neq j} c_{k} c_{j} \frac{x_{k}-x_{j}}{\left|x_{k}-x_{j}\right|^{3}}+\omega^{2} x_{j} \tag{14}
\end{equation*}
$$

relative equilibrium for 300 -body problem (unstable)

- For N equal-mass bodies, the relative equilibrium is known to be unstable when $N \geq$ 3.
- Unlike the vortex model, there is no spectral equivalence between (12) and (14)

Spot solutions in Reaction-diffusion systems

seashells * fish * crime hotspots in LA * stressed bacterial colony

Classical Gierer-Meinhardt model

$$
A_{t}=\varepsilon^{2} \Delta A-A+\frac{A^{2}}{H} ; \quad \tau H_{t}=D \Delta H-H+A^{2}
$$

- Introduced in 1970's to model cell differentation in hydra
- Mostly of mathematical interest: one of the simplest RD systems
- Has been intensively studied since 1990's [by mathematicians!]
- Key assumption: separation of scales

$$
\varepsilon \ll 1 \text { and } \varepsilon^{2} \ll D
$$

- Roughly speaking, H is constant on the scale of A so the steady state looks "roughly" like $A(x) \sim C w\left(\frac{x-x_{0}}{\varepsilon}\right)$ where

$$
\Delta w-w+w^{2}=0
$$

- Questions: What about stability? What about location of the spike x_{0} ?

"Classical" Results in 1D:

- Wei 97, 99, Iron+Wei+Ward 2000: Stability of K spikes in the GM model in one dimension
- Two types of possible instabilitities: structural instabilities or translational instabilities
- Structural instabilities (large eigenvalues) lead to spike collapse in $O(1)$ time
- Translational instabilities can lead to "slow death": spikes drift over large time scales
- Main result 1: There exists a sequence of thresholds D_{K} such that K spikes are stable iff $D<D_{K}$.
- Main result 2: Slow dynamics of K spikes is described by an ODE with $2 K$ variables (spike heights and centers) subject to K algebraic constraints between these variables.

Large eigenvalues

- Careful derivation leads to a nonlocal eigenvalue problem (NLEP) of the form

$$
\lambda \phi=\Delta \phi+(-1+2 w) \phi-\chi w^{2} \frac{\int w \phi}{\int w^{2}} ; \quad \chi:=\frac{4 \sinh ^{2}\left(\frac{1}{\sqrt{D}}\right)}{2 \sinh ^{2}\left(\frac{1}{\sqrt{D}}\right)+1-\cos [\pi(1-1 / K)]}
$$

- Key theorem (Wei, 99): $\operatorname{Re}(\lambda)<0$ iff $\chi<1$
- Corrollary: On a domain $[-1,1]$, large eigenvalues are stable iff $D<D_{K \text {,large }}$ where

$$
D_{K, \text { large }}=\frac{1}{\operatorname{arcsinh}^{2}(\sin 2 \pi / K)}
$$

- When unstable, this can lead to competition instability.
- Movies: stable; unstable

Small eigenvalues

- Causes a very slow drift
- Iron-Ward-Wei 2000: The slow dynamics of the system can be reduced to a coupled algbraic-differential system of ODEs
- Movie: slow drift

Two dimensions

- Structural stability is similar
- Dynamics [Ward et.al, 2000, K-Ward, 2004, K-Ward 2005]:

$$
\frac{d x_{0}}{d t} \sim-\frac{4 \pi \varepsilon^{2}}{\ln \varepsilon^{-1}+2 \pi R_{0}} \nabla R_{0}
$$

where

$$
\begin{gathered}
R_{0}=\lim _{x \rightarrow x_{0}}\left[G\left(x, x_{0}\right)+\frac{1}{2 \pi} \ln \left(\left|x-x_{0}\right|\right)\right] \\
\nabla R_{0}=\lim _{x \rightarrow x_{0}} \nabla_{x}\left[G\left(x, x_{0}\right)+\frac{1}{2 \pi} \ln \left(\left|x-x_{0}\right|\right)\right] \\
\Delta G-\frac{1}{D} G=-\delta\left(x-x_{0}\right) \text { on } \Omega ; \quad \partial_{n} G=0 \text { on } \partial \Omega
\end{gathered}
$$

- Equilibrium location x_{0} satisfies $\nabla R_{0}=0$, occurs at the extremum of the regular part of the Neumann's Green's function

Dumbbell-shaped domain

- QUESTION: Suppose that a domain has a dumb-bell shape. Where will the spike drift??
- What are the possible equilibrium locations for a single spike?

Small D limit

- If D is very small, $R_{0}\left(x_{0}\right) \sim C\left(x_{0}\right) \exp \left(-\frac{1}{\sqrt{D}}\left|x_{0}-x_{m}\right|\right)$ where x_{m} is the point on the boundary closest to x_{0}
- This means that R_{0} is minimized at the point furthest away from the boundary when $D \ll 1$
- In the limit $\varepsilon^{2} \ll D \ll 1$, the spike drifts towards the point furthest away from the boundary.
- For a dumbell-shaped domain above, the three possible equilibria are at the "centers" of the dumbbells (stable) and at the center of the neck (unstable saddle point)
- For multiple spikes, their locations solve "ball-packing problem".
- Movie: $D=0.03, \varepsilon=0.04$

Large D limit

- We get the modified Green's function:

$$
\begin{aligned}
\Delta G_{m}-\frac{1}{|\Omega|} & =-\delta\left(x-x_{0}\right) \text { inside } \Omega, \quad \partial_{n} G=0 \text { on } \partial \Omega \\
R_{m 0} & =\lim _{x \rightarrow x_{0}}\left[G_{m}\left(x, x_{0}\right)+\frac{1}{2 \pi} \ln \left(\left|x-x_{0}\right|\right)\right]
\end{aligned}
$$

- [K, Ward, 2003]: For a domain which is an analytic mapping of a unit disk, $\Omega=f(B)$, we derive an exact formula for $\nabla R_{m 0}$ in terms of the residues of $f(z)$ outside the unit disk.
- Take $f(z)=\frac{\left(1-a^{2}\right) z}{z^{2}+a^{2}} ; \quad x_{0}=f\left(z_{0}\right)$:

Then

$$
\nabla R_{m 0}\left(x_{0}\right)=\frac{\nabla s\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}
$$

where

$$
\nabla s\left(z_{0}\right)=\frac{1}{2 \pi}\binom{\frac{z_{0}}{1-\left|z_{0}\right|^{2}}-\frac{\left(\bar{z}_{0}^{2}+3 a^{2}\right) \bar{z}_{0}}{\bar{z}_{0}^{4}-a^{4}}+\frac{a^{2} \bar{z}_{0}}{\bar{z}_{0}^{2} a_{0}-1}+\frac{\bar{z}_{0}}{\bar{z}_{0}^{2}-a^{2}}}{-\frac{\left(a^{4}-1\right)^{2}\left(\left|z_{0}\right|^{2}-1\right)\left(z_{0} a^{2} \bar{z}_{0}\right)\left(\bar{z}_{0}^{2}+a^{2}\right)}{\left(a^{4}+1\right)\left(\bar{z}_{0}^{2} a^{2}-1\right)\left(z_{0}^{2}-a^{2}\right)\left(\bar{z}_{0}^{2}-a^{2}\right)^{2}}}
$$

- Corrollary: for above $\Omega, \nabla R_{m 0}$ has a unique root at the origin!
- In the limit $D \gg 1$, all spikes will drift towards the neck.
- Complex bifurcation diagram as D is increased.
- Movie: $\varepsilon=0.05, D=0.1 ; D=1$.

"Huge" D

- In the limit $D \rightarrow \infty$, (Shadow limit), an interior spike is unstable and moves towards the boundary [Iron Ward 2000; Ni, Polácik, Yanagida, 2001].
- For exponentially large but finite $D=O(\exp (-C / \varepsilon))$, boundary effects will compete with the Green's function.
-

$$
\sigma:=\frac{\varepsilon}{2} \ln \left(\frac{C_{0}}{|\Omega|} D \varepsilon^{-1 / 2}\right) ; \quad C_{0} \approx 334.80
$$

Then the spike will move towards the boundary whenever its distance from the closest point of the boundary is at most σ; otherwise it will move away from the boundary.

- Movies: $\varepsilon=0.05, D=10 ; D=100$

Spike dynamics inside a disk

In the limit $\varepsilon \ll 1, D \gg 1$, inside the disk we get

$$
C \frac{d x_{j}}{d t} \sim \underbrace{2 \sum_{k \neq j} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}-\sum_{k} x_{j}}_{\text {inter - particle force }}+\underbrace{\sum_{k} \frac{x_{j}-x_{k} /\left|x_{k}\right|^{2}}{\left|x_{j}-x_{k} /\left|x_{k}\right|^{2}\right|^{2}}-\sum_{k} \frac{-x_{j}\left|x_{k}\right|^{2}+x_{k}\left|x_{j}\right|^{2}}{\left.\left|x_{j}\right| x_{k}\right|^{2}-\left.x_{k}\right|^{2}}}_{\text {reflection in the boundary of unit disk }} .
$$

- The first two terms are identical to vortex stability model!
- The last two terms represent "reflection in the wall"
- Just like for vortex model, the steady state consists of uniformly-distributed particles inside the domain!
- Movies: disk; dumbbell.

Mean first passage time (ice fishing)

- Question: Suppose you want to catch a fish in a lake covered by ice. Where do you drill a hole to maximize your chances?
- Related questions: cell signalling; oxygen transport in muscle tissues; cooling rods in a nuclear reactor...
- Consider N non-overlapping small "holes" each of small radius ε. A particle is performing a random walk inside the domain Ω. If it hits a hole, it gets destroyed; if it hits a boundary, it gets reflected. Question: what is the expected lifetime of the wondering particle? How do we place the holes to minimize this lifetime [i.e. catch the fish, cool the nuclear reactor...]?

- The expected lifetime is proportional to $1 / \lambda$ where λ is the smallest eigenvalue of the problem:

$$
\Delta u+\lambda u=0 \text { inside } \Omega \backslash \Omega_{p} ; \quad u=0 \text { on } \partial \Omega_{p} ; \partial_{n} u=0 \text { on } \partial \Omega
$$

where $\Omega_{p}=\bigcup_{i=1}^{N} \Omega_{\varepsilon}$.

- [K-Ward-Titcombe, 2005]: The smallest eigenvalue is given by

$$
\lambda \sim \frac{2 \pi N}{\ln \frac{1}{\varepsilon}}\left(1-\frac{2 \pi}{\ln \frac{1}{\varepsilon}} p\left(x_{1}, \ldots x_{N}\right)+O\left(\frac{1}{\left(\ln \frac{1}{\varepsilon}\right)^{2}}\right)\right)
$$

where

$$
\begin{gathered}
p\left(x_{1}, \ldots x_{N}\right):=\sum \sum G_{i j} \\
G_{i j}=\left\{\begin{array}{c}
G_{m}\left(x_{i}, x_{j}\right) \text { if } i \neq j \\
R_{m}\left(x_{i}, x_{i}\right) \text { if } i=j
\end{array}\right. \\
\Delta G_{m}\left(x, x^{\prime}\right)-\frac{1}{|\Omega|}=-\delta\left(x-x^{\prime}\right) \text { inside } \Omega, \quad \partial_{n} G=0 \text { on } \partial \Omega ; \quad R_{m} \equiv \text { reg.part }
\end{gathered}
$$

- For a unit disk:

$$
\begin{aligned}
& 2 \pi G_{m}\left(x, x^{\prime}\right)=-\ln \left|x-x^{\prime}\right|-\ln |x| x^{\prime}\left|-\frac{x^{\prime}}{\left|x^{\prime}\right|}\right|+\frac{1}{2}\left(|x|^{2}+\left|x^{\prime}\right|^{2}\right) \\
& 2 \pi R_{m}\left(x, x^{\prime}\right)=-\ln |x| x^{\prime}\left|-\frac{x^{\prime}}{\left|x^{\prime}\right|}\right|+\frac{1}{2}\left(|x|^{2}+\left|x^{\prime}\right|^{2}\right)
\end{aligned}
$$

- The optimum trap placement is at the minimum of $p\left(x_{1}, \ldots x_{N}\right)$

Disk domain, N holes

We need to minimize
$p\left(x_{1} \ldots x_{N}\right)=-\sum_{j \neq k} \ln \left|x_{j}-x_{k}\right|-\sum_{j, k}\left(\ln \left|x_{j}-\frac{x_{k}}{\left|x_{k}\right|^{2}}\right|+\ln \left|x_{k}\right|\right)+\frac{1}{2} \sum_{j, k}\left(\left|x_{j}\right|^{2}+\left|x_{k}\right|^{2}\right)$
Gradient flow is uniform swarm model plus two extra terms $\frac{d x_{j}}{d t}=2 \sum_{k \neq j} \frac{x_{j}-x_{k}}{\left|x_{j}-x_{k}\right|^{2}}-\sum_{k} x_{j}+\sum_{k} \frac{x_{j}-x_{k} /\left|x_{k}\right|^{2}}{\left|x_{j}-x_{k} /\left|x_{k}\right|^{2}\right|^{2}}-\sum_{k} \frac{-x_{j}\left|x_{k}\right|^{2}+x_{k}\left|x_{j}\right|^{2}}{\left.\left|x_{j}\right| x_{k}\right|^{2}-\left.x_{k}\right|^{2}}$.

Particles on a ring: $x_{k}=r e^{i k 2 \pi / N}$. The min occurs when

$$
\frac{r^{2 N}}{1-r^{2 N}}=\frac{N-1}{2 N}-r^{2}
$$

Note that $r \rightarrow 1 / \sqrt{2}$ as $N \rightarrow \infty$; the optimal ring divides the unit disk into two equal areas.

Particles on 2,3,... m rings: Similar results are derived with complicated but numerically useful formulas.

Constrained optimization on up to 3 rings

Full optimization of K traps

Comparison

Conclusion

- We looked at three very different problems: vortex dynamics; spike dynamics and first mean-passage time
- All three problems reduce to nonlocal particle aggregation model with Newtonial repulsion
- In the limit of large number of particles, the steady state approaches a uniform distribution.
- Spectral equivalence of aggregation and vortex model shows stability

```
These papers are available for download from my website:
http://www.mathstat.dal.ca/~ tkolokol
```

Thank you! Any questions?

