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Predator-swarm interactions

e Collective behaviour occur at all levels of living organisms, from bacterial colonies to
fish schools to to human cities.

e Hypothesis: swarming behaviour is an evolutionary adaptation that confers certain
benefits on the individuals or group as a whole [Parrish,Edelstein-Keshet 1999;
Sumpter 2010, Krause&Ruxton2002, Penzhorn 1984]

e Benifits:
- efficient food gathering [Traniello1989]
- heat preservation in penguins huddles [Waters,Blanchette&Kim 2012]
- predator avoidance in fish shoals [Pitcher&Wyche 83] or zebra [Penzhorn84]
* evasive maneuvers,
* confusing the predator,
* safety in numbers

* increased vigilance

e Counter-hypothesis: swarming can also be detrimental to prey

- Makes it easier for the predator to spot and attack the group as a whole
[Parrish,Edelstein-Keshet 1999].
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Minimal model of predator-swarm interaction

dx; 1 al Ti— X xi— 2
d—tj N Z (x‘?xkzg(azjxkl) +b‘x_j_2’2 (1)
S~~~ k=1,k#j g,_/ e Hj,_/
Prey prey-prey prey-prey prey-predator
repulsion attraction repulsion
dz ¢ o I — 2
P —
BN T o @)
~~ k=1 e e
Predator predator_—prey
attraction

e \We take prey-prey and prey-redator interactions to be Newtonian

- makes the analysis possible!

e c : predator "strength”. We will use it as control parameter.

® p : predator "sensitivity”.
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Continuum limit

Coarse grain:

Let N — oo we get

pt(wv t) +V- (p(w, t)v(a:, t)) =0 3)
B r— —alr— Tr— z
v(z,t) = /RQ (\x—yP ( y)) ,O(y,lf)d?ﬁrb‘x_Z‘2 4)

dz y—z
= /R Py, t)dy. (5)

2 |y — 2|P



Ring state (“confused” predator)

q=2, a=1.26, b=0.27

e Define
:\/%; RQ:\/(l—i—b)/a. (6)

The system (3-5) admits a steady state for which z = 0, p is a positive constant inside
an annulus R; < || < Ry, and is otherwise.

e Main result of the paper: The ring is stable whenever 2 < p < 4 and

2—p 2—p
ba 2 a 5
7 = Cp < €< Chopf =

(1+0)2 (14T

(7)
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e Increasing c past ¢ triggers hopf bifurcation!



Key calculation 1

Define characterisitic coordinates:

% =v(X,t); X(Xo,0) = X,. (8)
Recall:
o(a, ) = /R 2 ( e y>> ply, )dy + b\( " )
Vxln\:cv— Y| V. Inl|z rz\
Vv = / 270 (x — y) — 2a]p(y)dy + 27bd(x — 2)
= 235;(3:) — 2aM

So along characteristics,

dp .
E__(vx U)p 9

(2aM — 2mp)p (10)

e Conclusion 1: p — aM /mast — o0
- p — const regardless of the swarm shape!

e Conclusion 2: Radial steady state is an annulus of constant density whose dimensions
are as above.



Key calculation 2

e The density quickly approaches a constant, so the swarm is fully characterised by the
motion of its boundaries.

e To determine its stability, it's enough perturb the boundary and the predator at the

center:
Inner boundary: © = Rye" + ,e™ (11)
Outer boundary: © = Roe' + e9e™ (12)
Predator: z = ) + e3e™ (13)

e Get a 3x3 eigenvalue problem

€1 €1
(R—R)A| &2 | =A| & (14)
€3 €3
where
—b—1 b 1
b b
A= —b— 12?;3 b 1+b
b b



Implications

2—p
a2

Chopf = =5 —, 2<p<i4 (15)

bz —(1+b)7
® Cjpf IS @n increasing function of b (prey-predator repulsion)

- increasing b makes it harder for the predator to catch the prey.

® s IS a decreasing function of a (prey-prey attraction strength)

- increasing a makes it easier for the predator to catch the prey.

- Swarming behaviour makes it easier for predator to catch prey (i.e. swarming is
bad for prey)!

- Example: in [Fertl&Wursig95] the authors observed groups of about 20-30
dolphins surrounding a school of fish and blowing bubbles underneath it in an
apparent effort to keep the school from dispersing, while other members of the
dolphin group swam through the resulting ball of fish to feed.



- Swarming may be result of other factors such as food gathering, ease of mating,
energetic benifits, or even constraints of physical environment are responsible for
prey aggregation.

e When c crosses ¢y, chasing dynamics result. But the prey may still escape!

- Linear stability is a precursor to capturing the prey, but is insufficient to explain the
capturing process itself!

- Further (non-linear) analysis is needed to explain prey capture.

- Chasing dynamics “look similar” to shephard chasing sheep:




Far from the ring state

e Transition from oscillatory to chaotic dynamics
e Development of a "tail” behind the predator
e Predator can catch prey for sufficiently large c.

e Difficult to say anything analytically

- But can can compute rotating states numerically by evolving the boundary:




Vortex dynamics

e Equations first given by Helmholtz (1858): each vortex generates a rotational velocity
field which advects all other vortices. Vortex model:

dz; = 2k
]_ Z’Y}g 29 ]_1 . N.
k#j 1 = 2

e Classical problem; observed in many physical experiments: floating magnetized
needles (Meyer, 1876); Malmberg-Penning trap (Durkin & Fajans, 2000), Bose-
Einstein Condensates (Ketterle et.al. 2001); magnetized rotating disks (Whitesides
et.al, 2001)

e Conservative, hamiltonian system
e General initial conditions lead to chaos: movie — chaos
e Certain special configurations are “stable” in hamiltonial sense: movie — stable

e Rigidly rotating steady states are called relative equilibria :

zi(t) = “’“ffj <— O—Z Vp—r—— — & 5 — W
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ure 1 Experimental set-up and magnetic force profiles. a, A scheme of the
ierimental set-up, & bar magnet rotates at angular velocity w below a dish filled with
iid {fypically ethylene plycol'water or ghycerine/water solutions), Magnetically doped
<5 are placed on the liquid—air interface, and are fully immersed in the liguid except for
ir top surface. The disks spin-at angular velocity w around their axes. A magnetic force
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Figure 2 Dynamic patterns formed by various numbers (1 of disks rotating at the ethylene
glycol/water—air Interface. This interface is 27 mm above tha plang of the external
magnet. The disks are composed of & section of polyethylene tube {white) of outer
diameter 1,27 mm, filled with poly{dimethylsilaxane), POMS, doped with 25 wi of
magnetite (black cantre), All disks spin around their centres at w = 7001.p.m., and the
entire aggregate slowly (€2 << 2 r.p.m.) precesses around its centre. For q < 5, the
aggregates do not have a ‘nucleus’—all disks are precessing on the fim of a circle, For
1 = B, nucleated structures appear. For 1= 10 and n= 12, the patterns are bistable in
the sense that the two observed patterns intercorwert irregularly with time. For n=19, the
hexagonal pattern left) appears only above w == B0Or.p.m., but can be ‘annealed’ down



Observation of Vortex Lattices

in Bose-Einstein Condensates PUARAST: VOLME SHEEE
J- R. Abo-Shaeer, C. Raman, |. M. Vogels, W. Ketterle

Fig. 1. Observation of
vortex  |attices. The
examples shown con-
tain  approximately
(&) 16, (B] 32, [C) 8O,
and (D) 130 vortices.
The wortices have
"erystallized” in a tri-
angular pattern. The
diameter of the cloud
in (D) was 1 mm after
ballistic  expansion,
which represents a
magnification of 20.
Slight asymmetries in the density distribution were due to absorption of the optical pumping light.




e Campbell and Ziff (1978) classified many stable configurations for small (eg. N =
18) number of vortices of equal strength.

18, 18,

+2524 . 2832 3521 <3511
1 6§11 1 512 B 12 3 312

e Goal: describe the stable configuration in the continuum limit of a large number of
vortices NV (eg. N = 100, 1000...). These have been observed in several recent
expriments: Bose Einstein Condensates, magnetized disks



Key observation

Vortex model: —= =1 nyk 5, J=1...1V. (V)
k Rj — “k ‘
#J
Relative equilibrium: z;(t) = ¢*"¢;, <= 0= Z Vp——— — & — w;
£ \ —&P
Aggregation model: —= nyk W (A)

kA 10T

e One-to-one correspondence between the steady statates :cj(t) = &; of (A) and the
relative equilibrium z;(t) = e“'*¢; of (V).

e Spectral equivalence of (V) and (A): The equilibrium :cj(t) = ¢ is asymptotically
stable for the aggregation model (A) if and only if the relative equilibrium zj(t) = e‘”tfj
is stable (neutrally, in the Hamiltonian sense) for the vortex model (V)!

e Aggregation model fully describes relative equilibria and their linear stability in the
vortex model.

e Aggregation model is easier to study than the vortex model.



Vortices of equal strength .. = v

Corresponding aggregation model:

dx ; Ti— T

2
dt k] ‘xj _ajk|

e Coarse-grain by defining the particle density to be

pla) = Y oz —ap). (16)
k=1..N
Then (??) is equivalent to #; = v(x;) where
w J—
v(z) = —wr + 7/ Y n(y)dy, (17)
R? |2 — Y|

and density is subject to conservation of mass

pr+ V- (pv) =0. (18)



e [Fetecau&Huang&Kolokolnikov2011]: In the limit N — oo, the steady state density
of (A) is constant inside the ball of radius

Fig. 1. Stable relative equilibria of N = 25,50 and 200 vortices of equal

strength. The dashed line shows the analytical prediction Ry = /N~y /w of the
swarm radius in the N — oc limit (see (6)).




Crystallization

dz _
Vortex model: ——zZ%—ZkQ, j=1...N. V)
dt k |ZJ - Zk|
#J
Reltive equiliria: z;(t) = e*'’¢; <= (0= Z T——— . — w¢;
oy \ &P
d _ _
Vortex with dissipation: & =1 Z %—2152 + U Z %ZJ—%Q —wz; | (D)
dt |2 — 2] |2 — 2]

k#j

e In many physical experiments of BEC there is damping or dissipation involved.

e Spectral equivalence: Relative equilibria and their stability are the same for (V)
and (D)

e Both the vortex model and the “aggregation model” model are limiting cases of (D).
e Taking v > 0 stabilizes vortex dynamics!  chaos damped stable

e This allows us to find stable relative equilibria numerically.



Vortex dynamics in BEC with trap

e For BEC, dynamics have extra term corresponding to prcession around the trap:

: . a : Zj— Rk :
Zi =1 5%j T ZCZ]—Q, j=1...N. (19)
1 —r 3 ‘Zj - Z]{‘
# _J/
trap-interaction self-interaction

e Large NV limit: non-uniform vortex lattice:
a _ :
pr~w——=ifr <R, p=0otherwise,
(1 =72
a N cN
1—-R?> R?

with w =
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Figure 2. Top row: stable equilibrium of Eqg. (2.4) with f(r) as in Eg. (2.2), with NV as shown in the title and with ¢ =
0.5/N, w = 2.95139, a = 1. The dashed circle is the asymptotic boundary whose radius & = (.6 is the smaller solution

to Eq. (4.9). Bottom row: average of p {|=|)/p(0) as a function of r = |x|. Solid curve corresponds to the numerical
computation. Dashed curve is the formula (4.10). Vertical line is the boundary r = K.
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2 ) VeN
W, = (\/E—F\/W) ; RC_\/5+]\\/[W.
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e No solutions if w < w,
e Two solutions R = Ry if w > w,
- smaller is stable, larger has negative density (unphysical).

e Corrollary: must have N < N,,.« Where

N = (VW _C V) 2. (20)




N + 1 problem

e /V vortices of equal strength and a single vortex of a much higher strength

g B _
ﬂ:_z Ly Tk bxi—nQ_g;j,j:L..N, (21)
—xk‘ ‘xj_n‘
k#]
d R
n_a 77—95"32_77 (22)

at N p oy I —

e Mean-field limit N — oo:
IOt + V- (pVv) = 0;
oy >dy + b—

v(@ “fRzp T o e
d
7] = a f]RQ p |,r] y‘ dy ?7

e Main result: . Define Ry = Vb, Ry = va + b and suppose that 7 is any point
such that Bp, (1) C Bgr,(0). Then the equilibrium solution for (23) is constant inside

Br,(0)\ Br,(n) and is zero outside.

- (23)

ﬁ".‘r"‘.‘ ‘."hi 'r‘\
Iy -':F ‘,:: o .:l " f.-:o:-:- :‘._
E:.:t O E::l @ :E::::E: 3 @
\ -]
e ': o “h‘-‘. \ /.'.':.:i ,‘F \
:.'o#""'-" -"}q' E";‘..'.-..l
Megssnes® st oose®



e Unlike the N 40 problem, the relative equilibrium for the /N +1 problem is non-unique:
any choice of 7 yields a steady state as long as || < Ry — R;.



Degenerate case: big central vortex

e Small vortices are constrained to a ring of radius R. with big vortex at the center.
e Non-uniform distribution of small particles!

e Question: Determine the size of the gap @gap.



e Main Result:
Ogap ~ CN 3,

where the constant C' = 8.244 satisfies

1/3
(5 6ut 20 (a1 =3u o - 1) € =2 (O




Sketch of proof

e [Barry+Wayne, 2012]: Set (t) ~ Roe'®i!) then at leading order we get

sin (6; — 6y .
dt N Z (2 — 90 (9 — 6y — Sl (‘9] 9k>> : (24)

e In the mean-field limit N — oo, the density distribution p(f) for the angles 6, satisfies

Pt + (PW)G — 07

o0) =2V [ o) (5 s i@ )) o

where PV denotes the principal value integral, and f; p =1

e [Barry, PhD Thesis]. Up to rotations, the steady state density p(@) for which v = 0

must be of the form |

pO) =5

This follows from (25) and (formal) expansion

1+ acosf). (26)

sint

Py sint = sin(2t) 4 sin(3t) 4 sin(4¢) +



e (v is free parameter in the continuum limit.

e For discrete [V, particle positions satisfy

eji(1+ e)de—i
, . COS —N

i 2m
0.4r
0.2r
0
e0 e1 e3/2 e5
_02 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3

To estimate ®,,,, choose 6, so that v(¢;) ~ 0. See our paper for hairy details.



N + K problem

Main result: Let R, = /b, k= 1...K and Ry = a+b; + ...+ bg. Suppose
M ...nxk are such Br,(n1)... Br,(nx) are all disjoint and are contained inside Bp,(0).

The equilibrium density is constant inside Bp,(0)\ Uszl Br,(nx) and is zero outside.



N + K problem, with very large K vortices

e The blue ellipse is described by the reduced system

@ 1
dtj = Z + fk — &k (27)

k%}



e From [K, Huang, Fetecau, 20011], its axis ratio is 3.



Spot solutions in Reaction-diffusion systems

seashells * fish * crime hotspots in LA * stressed bacterial colony




Classical Gierer-Meinhardt model

2
At:EQAA—A+%; TH, = DAH — H + A

e Introduced in 1970’s to model cell differentation in hydra
e Mostly of mathematical interest: one of the simplest RD systems
e Has been intensively studied since 1990’s [by mathematicians!]

e Key assumption: separation of scales

e lande® < D.




e Roughly speaking, H is constant on the scale of A so the steady state looks "roughly”
: L — Xo
like A(z) ~ Cw ( ) where

€

Aw —w + w? = 0.

e Questions: What about stability? What about location of the spike x(?



“Classical” Results in 1D:

e Wei 97, 99, Iron+Wei+Ward 2000: Stability of K spikes in the GM model in one
dimension

e Two types of possible instabilitities: structural instabilities or translational instabilities
e Structural instabilities (large eigenvalues) lead to spike collapse in O(1) time
e Translational instabilities can lead to "slow death”: spikes drift over large time scales

e Main result 1 : There exists a sequence of thresholds Dy such that /& spikes are
stable iff D < Dy.

e Main result 2: Slow dynamics of K spikes is described by an ODE with 2K
variables (spike heights and centers) subject to /K algebraic constraints between
these variables.



Large eigenvalues

e Careful derivation leads to a nonlocal eigenvalue problem (NLEP) of the form

4sinh? (L
A = Ag+(—1 + 2w) ¢_Xw2§zf; T 9 il (L) 11 <;ﬁs?7r(1 —1/K)]
VD

e Key theorem (Wei, 99): Re(\) < 0iff y < 1

e Corrollary : On adomain [—1, 1], large eigenvalues are stable iff D < D jarge Where

1
arcsinh?(sin 27 / K)

DK,Iarge —

e \When unstable, this can lead to competition instability.

e Movies: stable: unstable



Small eigenvalues

e Causes a very slow drift

e Iron-Ward-Wei 2000: The slow dynamics of the system can be reduced to a coupled
algbraic-differential system of ODEs

e Movie: slow drift



Two dimensions

e Structural stability is similar

e Dynamics [Ward et.al, 2000, K-Ward, 2004, K-Ward 2005]:

dﬂ?o 47’(’62

dt e !y 21 Ry

VR,
where

: 1
Ry = lim {G(x, o) + gln(\x — xo\)] ;

T—X

T—XQ

1
VRy= lim V, [G(:c,:co) — %ln(\x — xo\)] :
AG—%G:—(S(QZ—ZL’()) on(2; 0,G = 0on o)

e Equilibrium location x satisfies V Ry = 0, occurs at the extremum of the regular part
of the Neumann’s Green'’s function



Dumbbell-shaped domain

e QUESTION: Suppose that a domain has a dumb-bell shape. Where will the spike
drift??

e \What are the possible equilibrium locations for a single spike?




Small D limit

e If D is very small, Ry(xo) ~ C(xg) exp (—% E xm\) where z,,, is the point on
the boundary closest to x

e This means that R is minimized at the point furthest away from the boundary
when D < 1

- Inthelimite? < D < 1, the spike drifts towards the point furthest away from the
boundary.

- For a dumbell-shaped domain above, the three possible equilibria are at the
"centers” of the dumbbells (stable) and at the center of the neck (unstable saddle
point)

- For multiple spikes, their locations solve "ball-packing problem”.

e Movie: D = (.03, = 0.04



Large D limit

e We get the modified Green'’s function:

AG,, — |_g12| = —0(x — xg) inside €2, 0,G = 0on 0¢;

1
RmO = lim Gm<$,$0)+2—1ﬂ<‘x—xo‘) .
™

T—X0

e [K, Ward, 2003]: For a domain which is an analytic mapping of a unit disk, 2 = f(B),
we derive an exact formula for V R, in terms of the residues of f(z) outside the
unit disk.

(1—a*z

e Take f(z)= A

ro = f(20) :




Then

VS(Z())
VR 0(%0) =
" f'(20)
where
! o (213e%)% P %
_ 1—|20]? zd—at Z2a?—1 = z2—a?
Vs(z) = o i(a4—1)2(|0z0|2—1)(z0+a2z0)(z§+a2§

(a4+1)(28@2—1)(z§—a2)(2§—a2)2

e Corrollary: for above ), V R,,¢ has a unique root at the origin!

- In the limit D > 1, all spikes will drift towards the neck.

e Complex bifurcation diagram as D is increased.

e Movie: ¢ =0.05, D =0.1; D = 1.



”Huge” D

e In the limit D — oo, (Shadow limit), an interior spike is unstable and moves towards
the boundary [Iron Ward 2000; Ni, Polacik, Yanagida, 2001].

e For exponentially large but finte D = O(exp(—C'/¢)), boundary effects will
compete with the Green'’s function.

e [K, Ward, 2004]: Define

="In| ZZpDe V2 O ~ 334.80:
72 “(\m ) ) 0 |

Then the spike will move towards the boundary whenever its distance from the closest
point of the boundary is at most o; otherwise it will move away from the boundary.

e Movies: ¢ = 0.05, D = 10; D = 100



Spike dynamics inside a disk

In the limit e < 1, D > 1, inside the disk we get

R DLD N D D et o
2 L 2
dt ) “oj—al” 4 —xk/\xk\] o el —wl”

7

~ v~

inter — particle force re f lection in the boundary of unit disk

e The first two terms are identical to vortex stability model!
e The last two terms represent “reflection in the wall”

e Just like for vortex model, the steady state consists of uniformly-distributed
particles inside the domain!

e Movies: disk; dumbbell.



Mean first passage time (ice fishing)

e Question: Suppose you want to catch a fish in a lake covered by ice. Where do you
drill a hole to maximize your chances?

e Related questions: cell signalling; oxygen transport in muscle tissues; cooling rods in
a nuclear reactor...

e Consider N non-overlapping small "holes” each of small radius €. A particle is
performing a random walk inside the domain (). If it hits a hole, it gets destroyed;
if it hits a boundary, it gets reflected. Question: what is the expected lifetime of the
wondering particle? How do we place the holes to minimize this lifetime [i.e. catch the
fish, cool the nuclear reactor...]?
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e The expected lifetime is proportional to 1/ where A is the smallest eigenvalue of the
problem:

Au + Au = Oinside Q\2,; uw = 0o0n 99,; d,u = 0 on O
where €, = UZJL Q..

e [K-Ward-Titcombe, 2005]: The smallest eigenvalue is given by
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e For a unit disk:
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e The optimum trap placement is at the minimum of p(z1, ... zy)



Disk domain, N holes

We need to minimize
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Gradient flow is uniform swarm model plus two extra terms
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Particleson aring: x. = re™™27/N' The min occurs when
= -
1 —r2N 2N

Note that r — 1/\/§ as N — oco; the optimal ring divides the unit disk into two equal
areas.

Particles on 2,3,... m rings: Similar results are derived with complicated but numerically
useful formulas.



Constrained optimization on up to 3 rings
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Full optimization of K traps

6 (-1.526) 7 (-1.8871) 8 (-2.2538) 9 (-2.6104) 10 (-2.976)

11 (-3.3562) 12 (-3.7593) 13 (-4.1552) 14 (-4.5683) 15 (-4.975)

16 (-5.3914) 17 (-5.8051) 18 (-6.2245) 19 (-6.6731) 20 (-7.1071)

21 (-7.5489) 22 (~7.985) 23 (-8.4207) 24 (-8.8693) 25 (-9.3178)




Comparison
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10, -2.96861, -2.976

15, -4.97285, -4.97502




Conclusion

e \We looked at three very different problems: vortex dynamics; spike dynamics and first
mean-passage time

e All three problems reduce to nonlocal particle aggregation model with Newtonial
repulsion

e In the limit of large number of particles, the steady state approaches a uniform
distribution.

e Spectral equivalence of aggregation and vortex model shows stability

These papers are available for download from my website:
http://www.mathstat.dal.ca/ tkolokol

Thank you! Any questions?
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