Curved interfaces in perturbed Allen-Cahn system

Theodore Kolokolnikov

Joint work with

David Iron John Rumsey Juncheng Wei

Introduction

We consider the perturbed Allen-Cahn equation:

$$
\begin{cases}u_{t}=\varepsilon^{2} \Delta u+f(u)+\varepsilon g(u), & x \in \Omega \subset \mathbb{R}^{2}, \tag{PAC}\\ \partial_{n} u=0, & x \in \partial \Omega .\end{cases}
$$

Here, Ω is a smooth two-dimensional domain and $f(u)$ is a smooth function having the following properties:

- f has three roots $u_{-}<u_{0}<u_{+}$with $f^{\prime}\left(u_{ \pm}\right)<0$
- $\int_{u_{-}}^{u_{+}} f(u) d u=0$
and $g(u)$ is any smooth function function with $\int_{u_{-}}^{u_{+}} g(u) d u \neq 0$.

Some known results

Standard form:
$\begin{cases}u_{t}=\varepsilon^{2} \Delta u-2(u-\varepsilon a)\left(u^{2}-1\right), & x \in \Omega \subset \mathbb{R}^{2} \\ \partial_{n} u=0, & x \in \partial \Omega\end{cases}$
Standard A-C corresponds to $a=0$:

- In 1-D, the steady state is given by $u= \pm \tanh (x / \varepsilon)$.
- In 2-D, the profile is 1 -dimensional in some direction; the zero set $u=0$ is a straight line, intersects boundary transversally.
- Such straight interface is stable (unstable) provided it is a local min (max) of the distance function. [Kowalczyk, 05]
- Time dependent solution evolves by mean curvature law until the interface merges with the boundary or becomes straight. [RSK, 89]

Effect of perturbation: numerics

Effect of perturbation: asymptotics

Let $U_{0}(z)$ be a solution to

$$
U_{0}^{\prime \prime}(z)+f\left(U_{0}\right)=0, \quad U \rightarrow u_{ \pm} \text {as } z \rightarrow \pm \infty .
$$

and define

$$
\begin{equation*}
\hat{R}=-\frac{\int_{-\infty}^{\infty} U_{0}^{\prime 2}(z) d z}{\int_{u_{-}}^{u_{-}} g(u) d u} \tag{1}
\end{equation*}
$$

Suppose that there exists a circle of radius \hat{R} which intersects $\partial \Omega$ orthogonally, and let p be its center. Then in the limit $\varepsilon \rightarrow 0$ we have

$$
\begin{equation*}
u(x) \sim U_{0}\left(\frac{\hat{R}-|p-x|}{\varepsilon}\right), \quad \varepsilon \rightarrow 0 \tag{2}
\end{equation*}
$$

any solution to (PAC) of the form (2) must satisfy (1).

Derivation for cone-shaped domain

- Solution is radially symmetric:

$$
\varepsilon^{2} u_{r r}+\frac{1}{r} u_{r}+f(u)+\varepsilon g(u)=0
$$

- Solvability condition determines radius

Main stability result

Consider an interface at an equilibrium whose radius is \hat{R}. Let ℓ be its length let κ_{+}, κ_{-}be the curvatures of the boundary at the points which intersect the interface. Consider the stability problem associated with (PAC),

$$
\left\{\begin{array}{l}
\lambda \phi=\varepsilon^{2} \Delta \phi+f^{\prime}(u) \phi+\varepsilon g^{\prime}(u) \phi, \quad x \in \Omega \tag{EP}\\
\partial_{n} \phi=0, \quad x \in \partial \Omega .
\end{array}\right.
$$

In the limit $\varepsilon \rightarrow 0$, we have $\lambda=\varepsilon^{2} \lambda_{0}$ where λ_{0} satisfies

$$
\begin{equation*}
\lambda_{0}=\frac{1}{\hat{R}}-\mu^{2} \quad \text { where } \quad \tan (\ell \mu)=-\frac{\mu\left(\kappa_{+}+\kappa_{-}\right)}{\mu^{2}-\kappa_{+} \kappa_{-}} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\arctan \left(\frac{-\kappa_{+}}{\mu}\right)+\arctan \left(\frac{-\kappa_{+}}{\mu}\right)=\ell \mu \tag{4}
\end{equation*}
$$

Example

(a)

(b)

(c)

- $u_{t}=\varepsilon^{2} \Delta u-2(u-\varepsilon a)(u-1)(u+1) ; \quad a=0.55, \quad \varepsilon=0.06$; $\kappa_{-}=-1.25, \quad \kappa_{+}=-0.667, \quad l=0.6486$.
- $\hat{R}_{\text {theory }}=1 /(2 a)=0.9091 ; \hat{R}_{\text {numerical }}=0.9066$
- $\lambda_{\text {theory }}=0.00506 . \lambda_{\text {numerical }}=0.00504$.

Instability on a cone domain

Radially symmetric case:

- Expand

$$
\begin{gathered}
\phi=\Phi_{0}(z)+\varepsilon \Phi_{0}+\cdots \\
r=\hat{R}+\varepsilon z
\end{gathered}
$$

- Apply solvability condition
- End result:

$$
\lambda_{0}=\frac{1}{\hat{R}^{2}}>0 .
$$

- Interface is unstable on a cone [or any convex domain]

Geometric eigenvalue problem

... Equivalently, $\lambda=\varepsilon^{2} \lambda_{0}$ where λ_{0} satisfies

$$
\left\{\begin{array}{c}
w^{\prime \prime}+\left(\lambda_{0}-\hat{R}^{-2}\right) w=0 \tag{GEP}\\
w^{\prime}(-\ell / 2)+\kappa_{-} w(-\ell / 2)=0 \\
w^{\prime}(\ell / 2)+\kappa_{+} w(\ell / 2)=0
\end{array}\right.
$$

- The standard AC model corresponds straight interface, $\hat{R}^{-1}=0$. In this case (GEP) is the same as the formula derived by Kowalczyk (2005).
- In the case $\hat{R}^{-1}=0$, stability threshold $\lambda_{0}=0$ occurs when $l+\kappa_{+}^{-1}+\kappa_{+}^{-1}=0$. Geometrically, the circles tangent to the boundaries are concentric.
- QUESTION: What is the threshold in general case $\left(\hat{R}^{-1} \neq 0\right)$?

Geometric criterion for stability

Stability $\Longleftrightarrow R^{\prime}(s)<0$ whenever $R=\hat{R}$
Example: If $\hat{R}=1$ then curve c represents the location of a stable interface, whereas curves a and e correspond to unstable interfaces.

Derivation of Geometric Criterion

- $R=\frac{\mathcal{R}_{+}\left(1-\cos \theta_{+}\right)+h_{+}}{\sin \theta_{+}}$.
- $R^{\prime}=0 \Longleftrightarrow \arctan \left(\frac{R}{\mathcal{R}_{ \pm}}\right)=\theta_{ \pm}$
- $\theta_{+}=\ell_{+} / R, \theta_{-}=\ell_{-} / R$ and $\ell=\ell_{+}+\ell_{-}$
- $R^{\prime}=\Longleftrightarrow \lambda_{0}=0$
- For a cone domain, $\lambda_{0}=1 / \hat{R}^{2}>0$.
- By continuity, $\lambda_{0}>0$ whenever $R^{\prime}>0$.

Open question: Stability of tractrix

- In general, we have

$$
R \frac{d \theta}{d s}=p_{1}^{\prime} \sin \theta-p_{2}^{\prime} \cos \theta .
$$

where p, θ, R are functions of s, and the boundary of the domain is given by $p+R(\cos \theta, \sin \theta)$.

- If R is constant then every circle that intersects the boundary orthogonally has the same radius. The resulting curve is a tractrix given by

$$
x=\hat{R}(-t+\tanh (t)), \quad y=\hat{R} \operatorname{sech}(t) .
$$

- $\lambda_{0}=0, \lambda=O\left(\varepsilon^{3}\right)$? Open question: Determine stability.

Open question: Corner junctions

$$
R_{1}=h / \sin \theta, \quad R_{2}=R_{1}+d, \quad R_{3}=h+d \sin \theta
$$

If we "smooth out" the corners and start with an interface at the left...

- If $\hat{R}>R_{1}$ then interface stops at left corner
- If $R_{1}>\hat{R}>R_{3}$ then interface stops at right corner
- If $\hat{R}<\min \left(R_{1}, R_{3}\right)$ then interface propagates and dies.

Open question: Corner junctions

Example: $h=0.2, d=0.5, \theta=\pi / 6$; then

$$
R_{1}=0.6, R_{2}=0.9, R_{3}=0.45
$$

- Take $\hat{R}=0.65$; interface stops at first corner
- Take $\hat{R}=0.5$; interface stops at second corner
- Take $\hat{R}=0.4$; interface goes through
- Open question: compute λ_{0} for corner interface...

