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Abstract

We consider vortex dynamics in the context of Bose-Einstein Condensates (BEC) with a rotating
trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation
(PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable
configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite
accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are
known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like
spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and
its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of
rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices
lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with
full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic
potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the
effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed
numerical simulations of the GP equation are used to confirm our analytical predictions.

1 Introduction

Theoretical and experimental studies on vortices in rotating Bose-Einstein Condensates (BEC) have attracted
great interest in the past 20 years, see, e.g. [1], the review [2] and the monographs [3, 4] where extensive
lists of references can be found. In most of the theoretical research, the Gross-Pitayevskii equation (GPE)
model has served to study the emergence and dynamics of vortices. As an approximation of the quantum
mechanical many-body problem at zero temperature, Gross-Pitaevskii theory was rigorously established in
[5] for the non-rotating case and in [6] for rotating systems.

One of the most interesting features observed experimentally is that when the angular speed gets larger,
vortices are spontaneously nucleating [2], since their presence minimizes the system’s free energy. As the
frequency of rotation is increased, the number of vortices increases and they eventually arrange themselves
in a hexagonal lattice-like pattern around the center of the condensate [7, 8]. It is natural to explore the
mechanism of this behavior mathematically. Under the framework of GP theory, the critical angular velocity
was rigorously computed in [9, 10] and the distribution of the first few vortices to appear in the condensate
was studied in [11]. Another striking observation in experiments is that the vortex lattice seems to be nearly
homogeneous even when the matter density profile of the condensate imposed by the trap is not homogeneous
[12, 13]. The relation between the matter density and the vortex density has been formulated in [14, 15].
However, Ref. [16] argues that the vortex distribution is strongly inhomogeneous close to the critical speed
for vortex nucleation and gradually homogenizes when the rotation speed is increased. The study of both
such vortex lattices and also of small scale vortex clusters [17, 18], thus, remains an active topic of both
theoretical and experimental investigation.

In this paper, we use asymptotic techniques following [19] to derive a novel set of equations which describe
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the distribution of vortex lattices in rotating BEC 1. The equations we derive are valid for both the isotropic
and the anisotropic case. We then use the new equations to study the following important limits:

• Many-vortex limit, isotropic trap: This is the limit where vortex crystals are observed. By taking
a continuum limit of the effective equations of motion, we consider the equilibrium of the effective
density of the vortex crystals, as well as the size of the lattice. In addition, this computation yields an
asymptotic estimate for the maximum number of vortices that can form stable lattice configurations,
as a function of rotation speed. This is illustrated in Figure 1.

• High anisotropy many-vortex regime: When the anisotropy is sufficiently high, the vortices tend
to align along the longer axis of the trap; see Figure 5. This constitutes the energetically favorable
configuration. In this limit, we compute the one-dimensional density of the resulting vortex configura-
tion by using techniques involving the Chebyshev polynomials. As in the isotropic case, this leads to
an expression relating the maximum number of vortices in a stable configuration and other problem
parameters such as the anisotropy and the rotation rate.

We validate our results by a direct comparison of the reduced particle ODEs with the full numerical
solution. The PDE system is simulated using the finite-element package FlexPDE6 [22]. FlexPDE6 uses
adaptive mesh in space, and adaptive time stepping. This is particularly useful for computing vortex solutions
which are localized in space. In our computations we used up to 40000 nodes with global error tolerances
up to 10−4. To validate the numerics we verified that doubling mesh size and error tolerances did not affect
the overall results.

Our starting point is the Gross-Pitaevskii (GP) equation with an inhomogeneous rotating trap in two
dimensions given by

(γ − κi)wt = ∆w +
1

ε2

(
V (x)− |w|2

)
w + iΩ (x2wx1

− x1wx2
) . (1a)

The parameter ε is assumed to be small, which corresponds to the large chemical potential (also known
as semiclassical [4]) limit. Ω is the rotation rate, and V (x) is the trap potential. We consider the general
anisotropic parabolic potential 2 V (x),

V (x) = 1− x2
1 − b2x2

2 (1b)

The parameter b represents the strength of the anisotropy, with the isotropic trap limit corresponding to
b = 1. Here, we use the notation V = 1 − Ṽ where Ṽ represents the customary confining parabolic trap.
Finally, the ratio γ/κ represents the finite temperature effects; see the relevant discussion in [23, 24]. For
the purposes of numerical simulations, we mostly work in the the overdamped regime γ/κ→∞, sometimes
referred to as imaginary time integration [24, 25]. While the equilibrium vortex lattice state is independent
of γ, numerical simulations are easier to perform in the overdamped regime. I.e., Our aim from the point
of view of numerical computations is to converge to these vortex-filled equilibrium states (shared between
the conservative and the dissipative variant of the model), hence we use an unrealistically large value of γ
to expedite this convergence.

Let us now summarize the main findings of this paper.

1. Reduced equations for vortex motion. In §2 and §2.2 we extend the asymptotic methods first
developed in [19] to the case of a rotating trap. The presence of the inhomogeneous trap introduces

1Admittedly, there are numerous other techniques that enable the derivation of such vortex equations, including the use of
conservation laws [20], as well as of variational principles [21]. Here, we focus on the asymptotic techniques of [19].

2Note that it is easy to extend to the result to the more general case: V (x) = 1− b21x2
1 − b22x2

2. In fact, we could just rescale

t̂ = t
b21
, x̂1 = b1x1, x̂2 = b1x2 and define b = b2

b1
, ε̂ = b1ε, Ω̂ = Ω

b21
so that the PDE (1) becomes:

(γ − κi)wt̂ = ∆w +
1

ε̂2

(
1− x̂2

1 − b2x̂2
2 − |w|2

)
w + iΩ̂

(
x̂2wx̂1 − x̂1wx̂2

)
.
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Figure 1: (a) Maximum number of vortices as a function of Ω. “PDE” denotes the full PDE simulation of (1)
in the overdamped regime (κ = 0, γ = 1). We start with Ω = 125 and an initial configuration of 80 vortices.
Then Ω is decreased very slowly in time according to the formula Ω = 125−10−4t (indicated by a red arrow).
Other parameters are b = 1, ε = 0.01. We count the number of vortices at each value of Ω, and this is what
is plotted. “ODE” denotes the simulation of the reduced ODE system (2), with the same parameters as the
PDE. See remarks following Eq. (53) for further details of PDE/ODE simulations. Snapshots show steady
states of the PDE for several values of Ω. (b) Comparison to previous results. “PDE” and “ODE” are the
same as in (a). “Continuum” refers to Eq. (4). “Aftalion/Du” is the Eq. (54) originally derived in [26].
Finally, “Continuum2” represents Eq. (56) first derived in [27].

several complications, most notably the inhomogeneous density background on top of which the vortices
evolve (and interact). The end result that we obtain through this analysis is the following system for
the motion of N vortices whose positions are given by ξj , j = 1 . . . N :

γ log (1/ε) ξjt + κξ⊥jt =

(
− 2Ω

1 + b2
+

2 log (1/ε)

V (ξj)

)(
1 0
0 b2

)
ξj + 2

∑
k 6=j

(ξj − ξk)

|ξj − ξk|2
V (ξj)

V (ξk)
. (2)

Here and below, we use the notation (a, b)
⊥

= (−b, a).

We draw the reader’s attention to the term
V (ξj)
V (ξk) which modifies the “classical” Helmholtz-type vortex-

to-vortex interaction of the form ξ⊥jt =
∑
k 6=j

(ξj−ξk)
|ξj−ξk|2 . Equation (2) reduces to the “classical” case (of

Hamiltonian point vortex motion) when V = 1, γ = 0 and Ω = 0, corresponding to a constant trap, no
rotation, and no damping. To our knowledge, this is the first time that this additional term has been
proposed and it incorporates in a fundamental way the role of the potential (and also of the anisotropy
when the latter is present) towards screening the inter-vortex interaction. In [27], the same equation

as (2) but without the term
V (ξj)
V (ξk) was used to describe vortex dynamics in BEC. We show that our

modified equation (2) agrees with full numerical simulations of the original GPE (1a) much better,
particularly in the case of multiple vortices; relevant examples will be considered in Figs. 1, 2.

The remaining results in the paper follow from the analysis of the reduced equation (2).

2. Large-N vortex lattice density and radius for isotropic potential. Here, we extend the methods
reported in [27] to derive the continuum limit density for the steady state of (2). In §3 we show that
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in the large-N limit, the radius a of the vortex lattice is related to Ω, N , ε via the formula

N ∼ 1

ν

((
−1− 1

2
Ων

)
ln(1− a2) + 2− 2(1− a2)−1

)
, N � 1 (3)

where ν = 1/ log (1/ε) . See Figure 2, where the asymptotic radius a given by solving (3) is shown in
dashed curve, and a good agreement with full numerics is observed.

3. Maximal admissible number of vortices. As we show in §3, an immediate consequence of (3) is
the existence of a fold-point bifurcation which results in the disappearence of some of the vortices as
Ω is decreased, as illustrated in figure 1. Stated differently, for a fixed Ω, there is a maximum Nmax

such that N -vortex lattice exists if and only if N ≤ Nmax where

Nmax =
1

ν

{
(Ων + 2)

(
1

2
ln(Ων + 2)− ln(2)− 1

2

)
+ 2

}
. (4)

Figure 1 illustrates this result.

4. Stability of two vortices in the anisotropic case. In §4 we study the stability of a two-vortex
steady state with respect to the above mentioned ODE dynamics. By symmetry, there are two equilib-
rium states: the two vortices lying on major or minor axis. However, the equilibrium along the minor
axis is unstable [28, 29]. Furthermore, a two vortex-state on the major axis becomes unstable as Ω is
decreased due to a fold point bifurcation. We compute this bifurcation and compare this to numerics.
In paper [26] a similar threshold was computed for the anisotropic case from the energy point of view;
this was also featured in the work of [17] for the isotropic case, connecting the ODEs with the GP PDE
and also experimental results.

5. High anisotropy, large N limit (§5). Sufficiently high anisotropy “pushes” all the vortices to
align along the major axis (see figure 5, as well as [30]; for some case examples with opposite charges
see [28]). In the dual limit of high anisotropy and large N, the steady state becomes essentially
one-dimensional and we compute the effective one-dimensional density using techniques involving the
Chebychev polynomials. As in the radially symmetric case, the vortex “lattice” has a radius a which,
in the case b� 1, is implicitly given via equation

N ∼ 1

ν

(
Ων

1 + b2
a2

2
√

1− a2
− (a2 − 2)2

ν(1− a2)
3
2

+ 1

)
. (5)

6 Maximal admissible number of vortices, high anisotropy (§5). Finally, as in the radially
symmetric anisotropic case, we compute Nmax,1d, the maximum number of vortices admissible for a
given Ω when the anisotropy is sufficiently high to align all vortices along the major axis. It is obatined
by maximizing (5) which yields

Nmax,1d =
1

ν

(
1 + 3−3/2

(
Ων

1 + b2
− 4

)√
1 + 2

Ων

1 + b2

)
, b� 1 (6)

There have been two approaches to the dynamics of vortices in a trapped condensate. The first approach
relies on the fact that GP equation is the Euler-Lagrange equation for the time-dependent Lagrangian
functional under variation of the wave function. If one is interested in an effective description for the
evolution of the vortex centers and how it varies upon variation of one or more parameters, the resulting
Lagrangian functional can be used together with a multi-vortex ansatz to provide approximate Lagrangian
equations of motion [1, 31, 26, 32]. Another approach is to study GP equation itself, which is the approach we
take herein. Due to the presence of two length scales: the size of vortex core and the inter-vortex distance,
it is possible to employ the method of matched asymptotics [19, 33, 34, 35, 36]. This also leads to the
derivation of dynamical equations for the evolution of the vortex centers.
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Figure 2: Comparison of the steady state of PDE and ODE simulations. ‘∗’ denotes the steady state of the
ODE system (2) whereas ‘o’ is from the PDE system (1). The parameters are chosen as: γ = 1, κ = 0 , b =
1, ε = 0.025 and Ω = 29.51 for 3 to 7 vortices and Ω = 36.89 for 8 to 10 vortices. The dashed line represents
the radius prediction a from (3).

2 Vortex dynamics

We now derive vortex dynamics for (1a), following closely the exposition of [19]. We start by deriving the
dynamics of a single vortex, then expand our calculations to multiple vortices.

2.1 Single vortex

Suppose that the vortex center is located at ξ = (ζ, η) ∈ R2. Following [19], we decompose the solution into
the outer region O(ε) away from the vortex center, and the inner region near the vortex center. We will then
use matched asymptotics to match the two regions which will yield the equation of motion.

In the outer region, outside the vortex core |x− ξ| � O(ε), we decompose the solution into phase φ and
amplitude u:

w = ueiφ. (7)

Substituting (7) into (1a) and separating the real and imaginary part, we then obtain:

γut + κuφt = (∆u− u|∇φ|2) +
1

ε2

(
V (x)− u2

)
u+ Ωuφθ (8)

−κut + γuφt = u∆φ+ 2∇u · ∇φ− Ωuθ. (9)

We then expand u and φ with respect to ε: u = u0 + εu1 + · · · and φ = φ0 + εφ1 + · · · . The leading order
equations yield

u0 =
√
V (x) (10a)

and

γφ0t = ∆φ0 +
1

2

∇V
V
·
(
2∇φ0 − Ωx⊥

)
. (10b)
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Assume that a vortex has charge +1, so that φ0 satisfies a point boundary condition

φ0 → arg (x− ξ) as x→ ξ. (11)

In order to match to the inner solution of the vortex inside the vortex core, we need to understand in more
detail the local behaviour of the outer solution away from the vortex points. We first decompose φ0 as

φ0 = S + φ̃0 (12)

where S is a regular solution (without any singularities) to

0 = ∆S +
1

2

∇V
V
·
(
2∇S − Ωx⊥

)
. (13)

For the elliptic trap (1b), its solution is given by

S(x) =
Ω

2

b2 − 1

1 + b2
x1x2. (14)

Notice that this contribution vanishes in the isotropic limit of b = 1. We change to the moving coordinate
x̃ = x− ξ(t) and denote by (r̃, θ̃) the polar coordinates in moving coordinate. Then (10b) becomes:

γ
(
φ̃0t − ξt · ∇φ̃0

)
= ∆φ̃0 +

∇V (ξ + x̃) · ∇φ̃0

V (ξ + x̃)
, (15)

or, to leading order,

0 ∼ ∆φ̃0 +

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· ∇φ̃0. (16)

where we have assumed that the time-dynamics are sufficiently slow that γφ̃0t can be discarded. In particular
this is the case near a stable equilibrium.

We now solve (16) iteratively near the singularity x̃ → 0. The leading-order solution must match the
point-boundary condition (11) which yields φ̃0 ∼ θ̃. Upon substituting φ̃0 ∼ θ̃ + φ01 we obtain

0 = ∆φ01 +

(
γξt +

∇V (ξ)

V (ξ)

)
·

(
x̃⊥

|x̃|2
+∇φ01

)
. (17)

The term ∇φ01 is of smaller order than the other terms. Formal expansion then yields

φ01 =
1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃.

Finally, at the next iteration we let φ̃0 ∼ θ̃+ φ01 + φ02. This yields φ02 ∼ K · x̃ where the vector K depends
on the vortex locations and will be determined later via asymptotic matching. In summary, we obtain

φ0(x̃, t) = S + θ̃ +
1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃+K · x̃+O(r̃2 log r̃) (18)

We now Taylor expand the outer solution as x→ ξ. We have

eiφ0 = ei(θ̃+S(ξ))
(

1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃+K · x̃

)
+O(r̃2 log r̃);

u0 =
√
V (ξ) +

∇V (ξ) · x̃
2
√
V (ξ)

+O(r̃2);
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This yields the following singularity behaviour for w as x→ ξ:

w(x̃, t) = ei(θ̃+S(ξ))

(√
V (ξ) +

∇V (ξ) · x̃
2
√
V (ξ)

)(
1 +

i

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· x̃+ i(K +∇S) · x̃

)
+O(r̃2 log r̃)+O(ε)

(19)
Next we consider the inner region, let

y =
x− ξ
ε

and expand w = W0(y) + εW1(y) + · · · . In order to match each order of ε, W0, W1 must satisfy:

0 = ∆yW0 + V (ξ)W0 − |W0|2W0 (20)(
−(γ − κi)ξt + iΩξ⊥

)
· ∇yW0 − 2∇V (ξ) · yW0 = ∆yW1 + V (ξ)W1 − |W0|2W1 −W0

(
W0W1 +W1W0

)
(21)

We scale out V (ξ) by changing variables

z =
√
V (ξ)y; W0(y) =

√
V (ξ)U0(z), W1(y) = U1(z)

assuming that ξ is slowly varying (so that it can be considered constant along the scale of variation of y), in
which case U0, U1 satisfies:

0 = ∆zU0 + U0 − |U0|2U0 (22)(
−(γ − κi)ξt + iΩξ⊥

)
· ∇zU0 −

∇V (ξ) · z
V (ξ)

U0 = ∆yU1 + U1 − |U0|2U1 − U0

(
U0U1 + U1U0

)
. (23)

We look for a vortex solution of U0 in the form of U0(z) = f0(R)ei(θ+S(ξ)), where R, θ denote the polar
coordinates of z = Reiθ. Then (22) reduces to

f ′′0 +
1

R
f ′0 −

1

R2
f0 + f0(1− f2

0 ) = 0 (24)

with the boundary condition:
f0(0) = 0, f0(+∞) = 1. (25)

The solution to (24, 25) is well known to be unique [37]. The large R expansion shows that f0 satisfies

1− f2
0 − 1/R2 = O(1/R4), R→∞. (26)

Let U1 = f1(R, θ, t)ei(θ+S(ξ)). In terms of f1, (23) becomes:(
−(γ − κi)ξt + iΩξ⊥

)
·(f ′0∇zR+ if0∇zθ)−

∇V (ξ) · z
V (ξ)

f0 = ∆zf1+2i (∇zf1 · ∇zθ)−
1

R2
f1+f1(1−2f2

0 )−f2
0 f1

(27)
We then decompose further f1 = A(R) cos θ +B(R) sin θ and separate real and imaginary parts:

A = Ar + iAi, B = Br + iBi

to obtain the following equations for Ar, Ai, Br, Bi:

−Vx1
(ξ)R

V (ξ)
f0 − γζtf ′0 −

Ωζ + κηt
R

f0 = A′′r +
1

R
A′r + (1− 3f2

0 −
2

R2
)Ar −

2Bi
R2

(28)

−Vx2
(ξ)R

V (ξ)
f0 − γηtf ′0 −

Ωη − κζt
R

f0 = B′′r +
1

R
B′r + (1− 3f2

0 −
2

R2
)Br +

2Ai
R2

(29)

−γηtf0

R
− Ωηf ′0 + κζtf

′
0 = A′′i +

1

R
Ai + (1− f2

0 −
2

R2
)Ai +

2Br
R2

(30)

γζtf0

R
+ Ωζf ′0 + κηtf

′
0 = B′′i +

1

R
Bi + (1− f2

0 −
2

R2
)Bi +

2Ar
R2

. (31)
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We are concerned about the behaviour of the solutions of these equations at infinity. As R→∞, we have:

−Vx1
(ξ)R

V (ξ)

(
1− 1

R2

)
− Ωζ + κηt

R
= A′′r +

1

R
A′r + (−2 +

1

R2
)Ar −

2Bi
R2

+O
(

1

R3

)
(32)

−Vx2
(ξ)R

V (ξ)

(
1− 1

R2

)
− Ωη − κζt

R
= B′′r +

1

R
B′r + (−2 +

1

R2
)Br +

2Ai
R2

+O
(

1

R3

)
(33)

−γηt
R

= A′′i +
1

R
A′i −

1

R2
Ai +

2Br
R2

+O
(

1

R3

)
(34)

γζt
R

= B′′i +
1

R
B′i −

1

R2
Bi −

2Ar
R2

+O
(

1

R3

)
. (35)

By expressing the solutions in a power series of R and logR for large R, we obtain

Ar =
Vx1(ξ)R

2V (ξ)
−
(
γζt
2

+
Vx1(ξ)

2V (ξ)

)
logR

R
+O(

1

R
) (36a)

Br =
Vx2(ξ)R

2V (ξ)
+

(
−γηt

2
− Vx2(ξ)

2V (ξ)

)
logR

R
+O(

1

R
) (36b)

Ai =

(
−γηt

2
− Vx2(ξ)

2V (ξ)

)
R logR− 1

2
ΩηR+

κζtR

2
+O(logR) (36c)

Bi =

(
γζt
2

+
Vx1

(ξ)

2V (ξ)

)
R logR+

1

2
ΩζR+

κηtR

2
+O(logR) (36d)

Putting these together, we get for R� 1,

U1(z, t) = eiθ+S(ξ)

[
∇V (ξ)z

2V (ξ)
+
i

2
(logR)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· z +

i

2
Ωξ⊥ · z +

κξt
2
· z
]
. (37)

Therefore, as R→∞, the asymptotic behaviour of the inner solution is given by:

W0+εW1 = eiθ+iS(ξ)

(√
V (ξ)f0(R) + ε

[
∇V (ξ)z

2V (ξ)
+
i

2
(logR)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
· z +

i

2
Ωξ⊥ · z +

κξt
2
· z
])

.

(38)
To match (38) with (19), we recall that x̃ = εz√

V (ξ)
, r̃ = εR√

V (ξ)
. Asymptotic matching then yields

i

2
Ωξ⊥ +

κξt
2
∼ i(K +∇S) +

i

2
(log

ε√
V

)

(
γξ⊥t +

∇⊥V (ξ)

V (ξ)

)
or

γξ⊥t − κνξt ∼ ν
(
−Ωξ⊥ + 2∇S + 2K

)
− ∇

⊥V (ξ)

V (ξ)
. (39)

where ν = 1

log
(√

V (ξ)/(ε)
) ∼ 1

log(1/ε) . The quantity K will be determined in §2.2 below through asymptotic

matching, and incorporates multi-vortex interactions. In the case of a single vortex, we will show that K is
bounded and thus asymptotically small compared to the other terms. In addition we recall from (14, 1b)

that ∇S = Ω
2
b2−1
1+b2 (η, ζ) and ∇

⊥V (ξ)
V (ξ) =

2(b2η,−ζ)
1−ζ2−b2η2 so that (39) simplifies to

γξ⊥t − κνξt =

(
−2Ων

1 + b2
+

2

1− ζ2 − b2η2

)(
−b2η, ζ

)
(40)

or equivalently,

γξt + κνξ⊥t =

(
−2Ων

1 + b2
+

2

1− ζ2 − b2η2

)(
1 0
0 b2

)
ξ (41)
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An immediate corrollary of (41) is that a single vortex at the center ξ = 0 is stable if and only if Ω > Ω1

where

Ω1 =
1 + b2

ν
. (42)

As a consequence, no stable votices exist below the critical rotation rate Ω < Ω1. The exact same critical
rate was previously derived in [26] using energy methods, as well as, e.g., discussed in [38] in the context of
bifurcation theory. Asymptotically, this agrees with the numerical simulations of the full PDE system (1);
however, there are nontrivial corrections on this frequency that were addressed, e.g., in the work of [39].

2.2 Multiple vortices

We now look for approximate solution of (1a) with N vortices in the location ξj , j = 1..N , where all of
the vortices bear the same charge +1. Proceeding in the same way as for a single vortex, we attempt to
study the dynamics of N such vortices. The inner solution W0 near the core of vortices is the same as for a
single vortex. In the outer region, φ̃0 still satisfies the equation (10b) but with N point boundary conditions
φ̃0 ∼ arg (x− ξj) as x→ ξj . The singularity analysis of the outer region near ξj is identical to the derivation
of (18) with the end result

φ̃0(x̃, t) ∼ θ̃ +
1

2
(log r̃)

(
γξ⊥t +

∇⊥V (ξj)

V (ξj)

)
· x̃+Kj · x̃ (43)

where x̃ = x− ξj , r̃ = |x̃| with x̃→ 0. The multi-vortex analogue for (41) is

γξjt + κνξ⊥jt =

(
−2Ων

1 + b2
+

2

1− ξ2
j1 − b2ξ2

j2

)(
1 0
0 b2

)
ξj − ν2K⊥j . (44)

It remains to determine the constants Kj via asymptotic matching. In the outer region, φ̃0 satisfies 0 ∼
∆φ̃0 + ∇V (x)·∇φ̃0

V (x) or equivalently,

∇ ·
(
V (x)∇φ̃0

)
= 0, (45a)

with N point-boundary conditions

φ̃0 ∼ arg (x− ξj) as x→ ξj , j = 1 . . . N (45b)

In the derivation that follows, we will assume that the vortices are close to each other, separated by a
small distance of O(1/ log(1/ε)). Similar to a computation in [14], the leading-order solution to (45) is then
given by3

∇φ̃ ∼
∑
k

V (ξk)

V (x)
∇ arg (x− ξk) .

Letting x→ ξj we then obtain

∇φ̃ ∼ ∇θ̃ +
∑
k 6=j

V (ξk)

V (ξj)
∇ arg (ξk − ξj) .

Matching with (43) then yields

Kj =
∑
k 6=j

V (ξk)

V (ξj)
∇ arg (ξk − ξj) = −

∑
k 6=j

V (ξk)

V (ξj)

(ξj − ξk)⊥

|ξj − ξk|2
.

3The full solution to (45) is ∇φ̃ =
∑
k
V (ξk)
V (x)

∇ arg (x− ξk) + ∇⊥ψ
V (x)

where ψ is chosen in such a way as to satisfy the

solvability condition to make φ̃ a true gradient. In particular, ∇⊥ψ
V (x)

is zero when V is constant. More generally, ψ satisfies

∇ ·
(

∇ψ
V (x)

)
=
∑
k∇

(
V (ξk)
V (x)

)
· ∇⊥ arg (x− ξk). In what follows, we assume that the vortices are close to each other in which

case the term ∇ arg (x− ξk) dominates and ψ provides a higher-order contribution which we can ignore.

9



This yields the final result, which we summarize as follows:

γξjt + νκξ⊥jt ∼

(
− 2νΩ

1 + b2
+

2

1− ξ2
j1 − b2ξ2

j2

)(
1 0
0 b2

)
ξj + 2

∑
k 6=j

ν(ξj − ξk)

|ξj − ξk|2
V (ξj)

V (ξk)
. (46)

This concludes the derivation of formula (2), which is the starting point for all the subsequent results of this
paper. The fundamental element of novelty in our dynamical equations lies in the treatment of the interaction
terms, as both the anisotropic and the dissipative cases have been recently considered in a similar vein from
the viewpoint of effective particle dynamics; see, e.g., [29] and [40] for respective examples. In what follows,
we will proceed to analyze the resulting systems for N = 2, as well as for general N number of vortices for
both isotropic and anisotropic traps, comparing the conclusions to those stemming from direct numerical
simulations.

3 Multi-vortex lattice density, isotropic trap.

We start by considering isotropic parabolic potential (b = 1) in the regime where the number of vortices N is
large. As demonstrated in experiments [7, 41], in this case the vortices settle to a hexagonal “crystal lattice”
configurations such as shown in Figure 1. Our goal is to estimate the asymptotic density of the resulting
lattice using techniques similar to those of [27]. As a direct consequence, this computation will also yield
the maximum allowed number Nmax of vortices as a function of system parameters.

We start with the ODE system (2) that describes the evolution of multiple vortex centers. Since we
are interested in the fundamental (stable equilibrium) states ξj (t) → ξj , we only consider the overdamped
regime (i.e. imaginary time integration) γ → ∞. Equivalently, by rescaling the time, in the case of the
isotropic potential (b = 1) the system (46) may be written as

ξjτ =

(
−νΩ +

2

1− |ξj |2

)
ξj + 2ν(1− |ξj |2)

∑
k 6=j

ξk − ξj
|ξk − ξj |2

1

1− |ξk|2
. (47)

Being interested in the limit of large N (in which case a near “continuum of vortices” emerges) and following
[27], we coarse-grain the system. This is done by defining a particle density according to:

ρ(x) =
∑

δ(x− ξk). (48)

Equation (47) can then be written as ξjτ = v(ξj) where the velocity v is given by

v(x) =

(
−νΩ +

2

1− |x|2

)
x+ 2ν(1− |x|2)

∫
R2

x− y
|x− y|2

1

1− |y|2
ρ(y)dy. (49a)

In the continuum limit N →∞, this equation is coupled to the conservation of mass,

ρτ (x, τ) +∇x · (v(x)ρ(x, τ)) = 0 (49b)

Together, (49) describe the vortex density evolution in the limit N → ∞ for the overdamped regime (47).
Similarly to the analysis of [27], it can be found that the resulting steady state density ρ is compactly
supported. Assuming that the density is radial, it is possible to compute the steady state ρ (x, t) = ρ (|x|)
and its radial support explicitly using techniques from [27], as we now show. Assume that the density is
supported on a disk of radius a, so that ρ(r) = 0 for r > a and ρ(r) > 0 for 0 ≤ r < a. A key identity is∫

R2

x− y
|x− y|2

g(|y|)dy = x
2π

r2

∫ r

0

g(s)sds, (50)

which holds for any integrable function g(r).
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Figure 3: Number of vortices N as a function the vortex lattice radius a. Note the appearence of a maximum
Nmax corresponding to the maximum admissible number of vortices.
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Applying (50) to (49a) then yields

v(x) =

(
−νΩ +

2

1− r2
+

4πν(1− r2)

r2

∫ r

0

1

1− s2
ρ(s)sds

)
x. (51)

Inside the support r < a, we set v = 0. Upon differentiating with respect to r we obtain

ρ(r) =
1

4πν

(
− 2Ωνr

(1− r2)
− 4

1− r2
+

8

(1− r2)2

)
. (52)

Note from (48) that the total mass is N . Since we assumed that the density is supported on |x| < a, this
leads to an additional constraint

2π

∫ a

0

ρ(s)sds = N. (53)

Combining (52) and (53), we obtain an explicit relationship between the support radius a and N , which is
given by Eq. (3).

A typical graph of N versus a is shown in Figure 3. Note that this graph attains the maximum which

we compute by setting ∂N/∂a = 0. This maximum Nmax is attained at a =
√

Ων−2√
Ων+2

and has an explicit

expression given by Eq. (4).
Formula (4) is one of the main results of this paper: it gives the maximum admissible number of vortices

for a given rotation rate Ω. Figure 1 compares this formula (see solid curve in figure 1(b)) with both the full
PDE simulations as well as the simulation of ODEs (2), from which this formula is derived.

To generate the curve “ODE”, we simulated the ODE system (2), starting with Ω = 125 and N = 80.
A simple forward Euler method was found to be sufficient and was used with the stepsize dt = 0.01. We
very gradually decreased Ω until such time that one of the particles escaped the trap (i.e. |xj | ≥ 1 for some
j). When this occured, we decreased N by one, and recorded the corresponding Ω. The points where N
drops corresponds to the “disappearence” of vortices, and are indicated by step discontinuties of the curve
“ODE” in the figure. For the PDE, we simulated (1) using FlexPDE inside a disk of radius 1.3 with Dirichlet
boundary conditions: w(x) = 0 when |x| = 1.3. Since the solution decays rapidly outside the trap |x| > 1,
this radius was sufficient to discard any boundary effects (we also validated that by increasing the domain
radius and ensuring that that did not affect the solution). We used the winding number of w around the
contour |x| = R, where R is the radius chosen in such a way that |u| < 10−4 for all x ≥ R, to compute
the number of vortices for any given snapshot. The steps in the graph correspond to values of Ω where the
winding number is decreased. For both PDE and ODE computations, we made sure that Ω was decreasing
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much slower than any transient dynamics, so that the system is in a quasi steady state, except at the points
where the vortices “disappear”.

We remark that the expression (4) for Nmax is an asymptotic result, in the dual limit ε→ 0 and N � 1.
In other words, it is an approximation to the true upper bound and should not be considered as an upper
bound itself. In particular the crossings of “continuum” and “PDE” curves in Figure 1(b) does not contradict
our results: we only claim that the curves “continuum” and “PDE” asymptote to each other for large N .
On the other hand, there is a limit to the validity of the asymptotic results: if there are too many vortices,
their inter-vortex distance decreases and asymptotics eventually start to fail. In practice, this imposes a
restriction of how big Ω can be until the asymptotics start to fail.

It should be noted here as regards ν that its logarithmic factor involves log(1/ε), while in connection with
the numerical work [39], a more accurate factor of log(A/ε) has been proposed, yielding improved agreement
with the precession frequency.

It is worthwhile to also mention that Aftalion and Du [26] derived a different formula for the threshold
Nmax but using the variational framework; see formula (3.4) in [26]. In our notation, this formula can be
rewritten as

Nmax,Aftalion/Du = 1 +

(
Ω− 2

ν

)
1

log (2/ν)
. (54)

It is also shown in Figure 1. Unlike our formula (54) is linear in Ω and while reasonably accurate for a small
number of vortices, it becomes progressively less acurate for large Ω.

Finally, let us mention that a similar computation was done in [27] for a simplified version of the vortex
equations of motion that did not incorporate the trap density in vortex-to-vortex interactions suggested in
[17], namely

zjτ =

(
−νΩ +

2

1− |zj |2

)
zj + 2ν

∑
k 6=j

zk − zj
|zk − zj |2

. (55)

For this simplified system, a similar analysis (see [27], section 4) yields the formula

Nmax ,CKK =
1

ν

(√
Ων

2
− 1

)2

. (56)

In fact, formulas (4) and (56) both agree near Ων = 2 as can be seen by expanding in Taylor series around
Ων = 2; in this regime, νNmax is small, the radius a is also small and both formulas yield νNmax =
1
16 (Ων − 2)

2
+ O((Ων − 2)

3
) with a ∼

√
Ων − 2 + o(

√
Ων − 2). However the two deviate significantly for

larger values of N.

4 Two vortices, anisotropic trap

Let us now investigate in some more detail the case of two vortices in an anisotropic trap (b 6= 1). In the
isotropic case (b = 1), a basic steady state configuration consists of two antipodal vortices along any line
through the center due to the rotational invariance of the model. It should be highlighted, however, that the
work of [17, 18] revealed that this configuration is only stable within a range of distances of the antipodal
pair from the origin. Beyond a critical threshold, the energetically favored state becomes an asymmetric one.
On the other hand, even for the antipodal states, the introduction of the anisotropy breaks the rotational
symmetry, leading to two possible steady states: either vortex centers lie on the x-axis or on the y-axis. Both
configurations may be admissible as steady states. However the stability analysis below will show that only
the configuration with two vortices along the longest axis of the ellipse x2 + by2 = 1 is stable, the other
configuration being unstable. This is in line with earlier works in the case of oppositely charged vortices;
see, e.g., [28].
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First, consider two votices in a stable configuration along the x-axis, with coordinates ξ1 = (r, 0) and
ξ2 = (−r, 0) . Upon substituting into the equation of motion (2) we obtain an algebraic equation for r,(

− νΩ

1 + b2
+

1

1− r2

)
r +

ν

2r
= 0. (57)

This equation is quadratic in r2, and admits two positive solutions r± with r− < r+, provided that Ω > Ω2

where

Ω2 =
1

ν

1 + b2

2

(√
2 +
√
ν
)2

. (58)

There is a fold point at Ω = Ω2 and the solution disappears when Ω < Ω2. This was already observed in
the work of [17] in the case of an isotropic trap. Note that to leading order in ν, Ω2 ∼

(
1 + b2

)
/ν, which

agrees with the stability threshold for a single spike Ω1, see (42). We also remark that the same formula
for Ω2 holds for two vortices along the y−axis. This can be seen as follows: assume that the equilibrium is
at (0,±r̂) . By rescaling r̂ = r/b, we find that r then satisfies (57), so that the fold point Ω2 is the same
whether the vortices are along x− or y− axis.

In the pioneering work [26], Aftalion and Du derived a slightly different formula for Ω2, using a related
energy method, see formula (22) there. Written in our notation, the formula in [26] reads:

Ω2,Aftalion/Du =
1 + b2

ν
+

1 + b2

2
log

(
1 + b2

ν

)
. (59)

While both formulae have the same leading-order behaviour in ν, they have very different (and large) cor-
rection terms. Figure 4(a) shows a direct comparison between (58), (59) and the full numerical simulations
of the PDE (1). Formula (58) appears to be a significant improvement over (59).

For Ω > Ω2, the only potentially stable solution is the one corresponding to r− as can be seen by
considering perturbations along the x−axis. However this does not tell the whole story: a solution may
exist and be stable along the x-axis, but be unstable with respect to the full spectrum of two-dimensional
perturbations. To describe the full stability, as in section 3, we will – for simplicity – consider the overdamed
system κ = 0, γ = 1 (it can be shown that stability properties are independent of κ as long as γ > 0). The
full equations then become

dx1

dt
=

(
−2Ω̂ +

2

1− x2
1 − b2y2

1

)
x1 +

2ν(x1 − x2)

(x1 − x2)2 + (y1 − y2)2

1− x2
1 − b2y2

1

1− x2
2 − b2y2

2

dy1

dt
=

(
−2Ω̂ +

2

1− x2
1 − b2y2

1

)
b2y1 +

2ν(y1 − y2)

(x1 − x2)2 + (y1 − y2)2

1− x2
1 − b2y2

1

1− x2
2 − b2y2

2

dx2

dt
=

(
−2Ω̂ +

2

1− x2
2 − b2y2

2

)
x2 +

2ν(x2 − x1)

(x1 − x2)2 + (y1 − y2)2

1− x2
2 − b2y2

2

1− x2
1 − b2y2

1

(60)

dy2

dt
=

(
−2Ω̂ +

2

1− x2
2 − b2y2

2

)
b2y2 +

2ν(y2 − y1)

(x1 − x2)2 + (y1 − y2)2

1− x2
2 − b2y2

2

1− x2
1 − b2y2

1

where we defined

Ω̂ :=
νΩ

1 + b2
. (61)

Linearizing around the equilibrium x1 = r, x2 = −r, y1 = y2 = 0, we obtain the following Jacobian matrix,
M1 0 M3 0
0 M2 0 M4

M3 0 M1 0
0 M4 0 M2
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Figure 4: (a) Ω2 (the critical rotation rate beyond which dipole solutions can be identified in an anisotropic
trap) as a function of anisotropy parameter b : comparison of full numerics and asymptotics. Dots are
obtained from the full numerical computations of the PDE (1). The solid line denotes the asymptotic formula
(58). The dashed line is the formula (59) derived in [26]. Parameter values are γ = 1, κ = 0, ε = 0.025. (b)
Two-vortex trajectory. Parameter values are ε = 0.025, Ω = 22.133 and b = 0.9535. Initial conditions consist
of two vortices along x-axis. The arrows indicate the direction of motion. At first, the vortices approach a
saddle point along the x-axis (indicated by green-black dots). But eventually the two vortices settle along
the y−axis (indicated by black dots). Solid curve shows vortex centers from the full PDE simulation of (1)
with γ = 1, κ = 0. Dashed line shows the simulation of the reduced ODE (60).

where

M1 = −2Ω̂ +
2

1− r2
+

4r2

(1− r2)
2 −

ν

2r2
− 2ν

1− r2
, M2 = −2Ω̂b2 +

2b2

1− r2
+

ν

2r2

M3 =
ν

2r2
− 2ν

1− r2
, M4 = −2ν

r2

The eigenvalues of this matrix are easily computed as M1 ±M3 and M2 ±M4 which yields,

λ1 = M1 +M3 = −2Ω̂ +
2

1− r2
+

4r2

(1− r2)
2 −

4ν

1− r2
λ2 = M1 −M3 = −2Ω̂ +

2

1− r2
+

4r2

(1− r2)
2 −

2ν

r2

λ3 = M2 +M4 = −2Ω̂b2 +
2b2

1− r2
, λ4 = M2 −M4 = −2Ω̂b2 +

2b2

1− r2
+

ν

r2
.

Using the relationships Ω̂ = ν
2r2 + 1

1−r2 and Ω > Ω2, basic algebra shows that λ1,2,3 ≤ 0. On the other hand,
λ4 becomes

λ4 = 2(−b2 + 1)
ν

r2

and goes through zero precisely at b = 1; it is stable for b > 1 and unstable for 0 < b < 1. The underlying
elliptic trap has the form x2 + b2y2 = 1. When b > 1, the x-axis is the major axis and the y-axis is the minor
axis of the ellipse; the opposite is true for b < 1. This shows that the two-vortex configuration is stable only
along the major axis.

Figure 4(b) illustrates this stability result. There, we took b = 0.9535, so that the trap is nearly circular
but with the extent of the condensate along the y−axis being slightly longer. So we expect a two-vortex
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Figure 5: Comparison of the steady state of PDE and ODE simulations for N = 2 . . . 7 vortices. ‘∗’ denotes
the steady state of the ODE system (2) whereas ‘o’ is from the PDE system (1). The parameters are chosen
as: γ = 1, κ = 0 , b = 1√

8
, ε = 0.025, Ω = 6.72 for two vortices and Ω = 7.21 for three to seven vortices.

The boundary of the elliptical trap x2 + b2y2 = 1 is also shown.

equilibrium to be unstable along the x−axis but stable along the y−axis. This is indeed what happens. We
ran the imaginary-time integration (κ = 0) for the full PDE (1), starting with initial conditions consisting
of two vortices along the x−axis. At first, the two vortices approach the unstable equilibrium along the
x-axis (although unstable, it is a saddle point and initial conditions are along its stable manifold). However
eventually, since this equilibrium is unstable, they travel towards a stable equilibrium along the y−axis.

5 Large N limit with strongly anisotropic trap

We now consider the strongly anisotropic parabolic potential case of small 4 b. Figure 5 illustrates this case
with b = 1√

8
. For sufficiently strong anisotropy, the vortices align along the major axis of the elliptic trap

(the y-axis in the case b → 0); see, e.g., also the work of [28] for oppositely charged vortices. Exactly how
strong depends on the number of vortices and the exact dependence is an open question that we leave for
future study. For now, we simply assume that the anisotropy is sufficiently strong for the full alignment
to occur, so that the steady state is effectively one-dimensional. In this case, the ODE system (2) reduces
motion purely along the y−axis, leading to the following dynamical system of N variables:

yjt =

(
−2Ω̂ +

2

1− b2y2
j

)
yj + 2ν

∑
k 6=j

1− b2y2
j

1− b2y2
k

yj − yk
|yj − yk|2

, (62a)

where

Ω̂ := ν
Ω

1 + b2
. (62b)

4Notice that for large b, the width of the ellipse x2 + b2y2 = 1 is of O(1/b). Since the size of the vortex core is of O(ε),
asymptotics require that b � O(1/ε) (otherwise the vortex size is comparable to the domain size, in which case asymptotics
break down). For this reason, we take the limit b → 0 (high anisotropy along the y-axis) rather than b → ∞ (high anisotropy
along the x-axis).
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(where for simplicity we took the overdamped limit γ = 1, κ = 0). Define zj = byj so that (62a) becomes

1

b2
zjt =

(
−2Ω̂ +

2

1− z2
j

)
zj + 2ν

∑
k 6=j

1− z2
j

1− z2
k

zj − zk
|zj − zk|2

.

We wish to compute the effective one-dimensional density of the resulting steady state in the continuum
limit N →∞ of this system. As in §3, we define the one-dimensional density to be

ρ(z) =
∑

δ(z − zj).

The steady-state density then satisfies(
−Ω̂ +

1

1− z2

)
z + ν

(
1− z2

)
−
∫ a

−a

1

y − z
1

1− y2
ρ(y)dy = 0 (63a)

where −
∫ a
−a denotes the Cauchy principal value integral. Here, a is the radius of the one-dimensional vortex

“lattice”. The solution to (63a) is subject to the additional mass constraint∫ a

−a
ρ(z)dz = N (63b)

Together, equations (63) are to be solved for both the density ρ(z) and the radius a.
A solution to (63) can be derived using techniques involving the Chebychev polynomials, as suggested

by [42], see Chapter 18 there (the Fourier–Chebyshev series). We start by recalling the following standard
identities between Chebyshev polynomials Un and Tn:

−
∫ 1

−1

√
1− y2Un−1(x)

y − x
dy = −πTn(x) (64a)

−
∫ 1

−1

Tn(x)

(y − x)
√

1− y2
dy = πUn−1(x) (64b)

−
∫ 1

−1

Tn(x)Tm(x)√
1− y2

dy =

 0 n 6= m
π n = m = 0
π/2 n = m 6= 0

(64c)

−
∫ 1

−1

Un(x)Um(x)
√

1− y2dy =

{
0 n 6= m
π/2 n = m = 0

. (64d)

Identity (64a) as well as the form of the integral equation (63a) motivates the following anzatz for the density
ρ :

ρ(z) = − 1

π

∞∑
i=1

ciUi−1(
z

a
)
(
1− z2

)√
1− z2

a2
. (65a)

Using (64d) in Eq. (63a) then yields the following expression for ci in terms of a :

ci =
2

π

∫ 1

−1

(
−Ω̂ +

1

1− a2y2

)
ay

ν (1− a2y2)
Ti(y)

1√
1− y2

dy. (65b)

Upon substituting (65a) into (63a) and using identities (64) we obtain∫ a

−a
ρ(z)dz = −a

2

(
c1(1− a2

4
)− a2

4
c3

)
= N (65c)
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Figure 6: (a) Steady state density of the ODE system (62), compared with the continuum limit (65),
where only eight terms of the series is used. Here, N = 40 and Ω̂ = 40 (b) Maximal admissible number
of vortices for the full PDE simulation of (1) versus the ODE system (62), versus the versus continuum
formula (66). Parameters are γ = 1, κ = 0, ε = 0.025, b = 1√

8
and Ω is slowly decreasing according to

the formula Ω = 10 − 10−4t. (c) Comparison of the ODE (62) and continuum limit formula (66) with
ODE motion restricted to the y-axis, for larger number of vortices. Same parameters as in (b), except that
Ω = 60− 10−4t.

Evaluating c1 and c3 using (65b) finally yields the following relationship between N and a,

N =
1

ν

(
Ω̂a2

2
√

1− a2
− (a2 − 2)2

ν(1− a2)
3
2

+ 1

)
. (65d)

Note that while the expression for the radius a is explicit, the density ρ (z) itself does not appear to have a
closed form solution, having an infinite-series representation (65a). However the coefficients ci in (65a) are
easy to compute numerically, while in practice the series representation converges very quickly. Figure 6(a)
shows a direct comparison between the analytical density (65a) and the steady state of (63) with N = 40,
verifying that the analytical prediction is in very good agreement with the numerical ODE result.

The function a→ N(a) has a unique maximum at a2 = 2
(

Ω̂− 1
)
/(2Ω̂ + 1), given by

Nmax,1d =
1

ν

(
1 + 3−3/2(Ω̂− 4)

√
1 + 2Ω̂

)
. (66)

This provides the asymptotic upper bound for the number of vortices that can be aligned along the x-
axis. This is the main result of this section, concluding the derivation of (6). Figure 6(c) shows the
comparison between the formula (66) and the ODE. Although it appears that the two curves diverge, their
ratio approaches 1 as Ω̂ is increased; a similar comparison but for small values of Ω is shown in Fig. 6(b).

6 Discussion

In this paper we derived a novel and more accurate set of ODEs (2) for vortex motion in BEC with an
(isotropic, as well as with an) anisotropic trap. These ODEs incorporate the effect of the trap inhomogenuity
on vortex-to-vortex interactions. In turn, the analysis of ODEs yields an accurate analytical formula for the
vortex lattice density, as well as the maximal admissible number of vortices Nmax as a function of rotation rate
Ω under two scenarios: isotropic trap with large N, and high-anisotropy regime with large N. Additionally,
we examined existence and stability of two vortices in an anisotropic trap; i.e., we focused both on the
fundamental building block of the inter-vortex interactions and the large N “vortex crystal” limit. For the
isotropic case, we used techniques from swarming literature [27, 43] to estimate the large-N vortex lattice
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Figure 7: Number of vortices as a function of very slowly increasing Ω : Ω = 10−2t. All other parameters are
as in Figure 1. The curve “PDE” is from PDE simulations whereas the curve “continuum” is the asymptotic
estimate (67).

density. In the case of high-anisotropy, we used Chebychev expansions to explicitly compute the critical
thresholds and analyze the vortex density.

It would be interesting to redo the analysis in [17] for the new ODE system (2). For example, it would
be relevant to identify in that context the asymmetric configurations of two vortices, as well as to extend
considerations beyond the case of two, i.e., to triplets of vortices, as well as beyond.

Our results improve upon known results in the literature in two ways. The reduced system of motion
(2) is more accurate than previously reported in e.g. [17, 27] (see [4] for a relevant discussion of earlier
models). As a consequence, we have obtained more accurate thresholds for existence and stability, especially
in the case of multiple vortices, but also in the case of two vortices within an anisotropic trap. Numerical
experiments show that these thresholds improve also upon those found in [26], for example.

It is interesting to note that that in addition to the upper bound Nmax, there is also a lower bound on the
number of vortices, Nmin, for a given rotation rate Ω. As Ω is sufficiently increased, vortices spontaneously
nucleate from the Thomas-Fermi boundary. In the case of an isotropic trap, a zero-vortex state becomes
unstable as Ω increases past Ω ∼ 2.561ε−2/3 – see [44, 45, 46] for derivation. This computation can be
extended to a single vortex at the center of degree N. In this case, one finds that the stability threshold is
Ω ∼ 2.53ε−2/3 + 2N. Solving for N , this in turn yields the formula

Nmin ∼
Ω

2
− 1.28ε−2/3. (67)

Speculatively, let us now make a very crude approximation, and näıvely assume that the entire vortex lattice
of N vortices can be approximated by a single vortex of degree N at the origin. This assumption is clearly
incorrect if the vortex lattice occupies the entire trap, but may be reasonable if we suppose that the entire
vortex lattice is clustered near the center and away from the Thomas-Fermi boundary. In any case, under
this very crude assumption, (67) provides an asymptotic approximation to the lower bound for existence of
N vortices as a function of Ω, so that Nmin < N < Nmax. Surprisingly, this actually works relatively well in
practice, at least for relatively small vortex numbers as Figure 7 illustrates. An open question is to extend
this bound to an anisotropic trap, as well as the situation where the vortex lattice is spread throughout the
trap, and cannot be easily reduced to a single N−degree vortex.

In conclusion, direct asymptotic reduction of the GPE, combined with coarse-graining techniques for
large number of vortices (and bifurcation analysis for small N vortex clusters) provide a powerful set of tools
that yields novel insights into a well-studied classical problem of Bose-Einstein Condensates.
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