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Abstract

Pattern Formation in the Weakly Nonlinear and Singularlgti?bed Regimes of the

Brusselator Model

Justin Cheng Tzou

This thesis is in two parts. The first part is an analytical ancherical study of patterns
near a codimension two Turing Hopf point of the one dimerai&@russelator model. For the
superdiffusive variant, we derive amplitude equationscdemg slow time evolution of the
Turing and Hopf modes. The main qualitative differencegftbe regular diffusion analog are
the presence of a second long spatial scale owing to nonratimblehavior near the minimum
of the Hopf stability curve, and that the evolution of the Hopmde is governed by an integro-
differential equation. In a numerical study farther in tl@ninear regime, we use a modified
Fourier spectral method to compute spatiotemporal pattend compare to those found in the
regular diffusion model. In both cases, we find a large nunatbesolutions characterized by
the coexistence of stationary stripes and low wavenumhepaeally oscillating “cells,” the
shapes of which depend on superdiffusion exponents. Foretipgar diffusion model, we

employ the AUTO package to continue such Turing-Hopf sohgiin parameter space. We



find that the solutions are organized on snaking branchesctiesized by a series of saddle-
node bifurcations, analogous to those found for statioparging solutions. Observations in
wavelength variation, location of snaking region, andatiomn of front depinning, are explained
in terms of the amplitude equations. In the second part sfttiesis, we study pulse patterns
in a singularly perturbed regime of the regular diffusiondalwith prescribed boundary feed.
We find that the boundary feed breaks the symmetric spaciregoilibrium pulse patterns.
A differential-algebraic system of equations (DAE) is &ted, governing asymptotically slow
translations of quasi-equilibrium pulse patterns. Cidtéor slow translational instabilities are
determined from a stability analysis of the DAE. Fast amopli instabilities, characterized by
pulse collapse events or synchronous and asynchronoulatisos, are studied by analyzing a
nonlocal eigenvalue problem. These results are relatekl toate slow translations, whereby

it is found that the latter may dynamically trigger fast atstities in an initially stable pulse

pattern.
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CHAPTER 1

Interaction of Turing and Hopf Modes in the Superdiffusive Model Near a

Codimension Two Bifurcation Point

In this chapter, spatiotemporal patterns near a codimessituring-Hopf point of the one
dimensional superdiffusive Brusselator model are analyz€he superdiffusive Brusselator
model differs from its regular counterpart in that the Lajda operator of the regular model
is replaced by~ /9 [€]*, 1 < o < 2, an integro-differential operator that reflects the noaloc
behavior of superdiffusion. The order of the operatqlis a measure of the rate of superdiffu-
sion, which, in general, can be different for each of the twmponents. A weakly nonlinear
analysis is used to derive two coupled amplitude equatiessribing the slow time evolution
of the Turing and Hopf modes. We seek special solutions othglitude equations, namely a
pure Turing solution, a pure Hopf solution, and a mixed manlaten, and analyze their sta-
bility to long-wave perturbations. We find that the stakittiteria of all three solutions depend
greatly on the rates of superdiffusion of the two compondntaddition, the stability properties
of the solutions to the anomalous diffusion model are d#ffefrom those of the regular diffu-
sion model. Numerical computations in a large spatial damasing Fourier spectral methods
in space and second order predictor-corrector method i@ éira used to confirm the analysis
and also to find solutions not predicted by the weakly noaliraalysis, in the fully nonlinear
regime. Specifically, we find a large number of steady statepes consisting of a localized

region or regions of stationary stripes in a backgroundmoétperiodic cellular motion, as well
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as patterns with a localized region or regions of time pécicdlls in a background of station-
ary stripes. Each such pattern lies on a branch of such en#ytis stable and corresponds to a
different initial condition. The patterns correspond te ffhenomenon of pinning of the front
between the stripes and the time periodic cellular motiorhil®in some cases it is difficult
to isolate the effect of the diffusion exponents, we find ab#aristics in the spatiotemporal

patterns for anomalous diffusion that we have not founddgufar (Fickian) diffusion.

1.1. Introduction

Studies of anomalous diffusion have recently been appgarithe literature as more pro-
cesses have been observed to exhibit behavior that canragdoeibed by regular (Fickian)
diffusion. These processes can often be described by muadblsubdiffusion or superdif-
fusion, where, under a random walk description, the meaarsgdisplacement of a particle
scales agz?(t)) ~ t7, with 0 < v < 1 for subdiffusion, and < v < 2 for superdiffusion,
rather than linearly in time. Subdiffusion has been obskimemany applications, including
charge carrier transport in amorphous semiconductors,nastbar magnetic resonance dif-
fusometry in percolative and porous systems, while suffasitbn has been observed in e.g.,
transport in heterogeneous rocks, quantum optics, antksimglecule spectroscop¥1]. We
consider an especially interesting case of superdiffysiewny flights, which is characterized by
a jump length distribution having infinite moments. On thecroacopic scale, Lévy flights are
described by a diffusion equation where the second ordéiasparivative is replaced by a frac-

tional derivativeD® /0 |£]%, 1 < a < 2, defined as a non-local integro-differential operadi

The definition of the operatdi® /0 |£|*, and its action in Fourier space, is given/a§|[
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a a —1 o al .
JONEl" = 2 cos(am/2) [_OOD5 te DO"] '

NP S A A ()
~DEl6) = 15—y | e

o« oy L 0 [ ¢n)
£Dm¢(§)=ma—€2/§ de,

and

F10%u(§)/01¢]"](k) = —[k|*F [u(©)](F), (1.1)

wherel < a < 2 and.#[] denotes the Fourier transform. A description of superdiffu
sion as well as subdiffusion in the context of continuousetirmndom walks with power-law-
distributions for jump lengths and waiting times is giverj&d].

Previous works on reaction-superdiffusion equations lteréved and studied amplitude
equations near a Hopf¥] bifurcation with general reaction dynamics, where it wiasvsn that
the Benjamin-Feir stability criterion is unchanged frongukar diffusion, while the Eckhaus
stability boundary depended on the superdiffusive expbnEar two dimensions, amplitude
equations near the Turing bifurcation point of the supéudife Brusselator model were de-
rived in [38]. It was shown that, contrary to regular diffusion, the hg®oeous state could be
unstable to a Turing mode even if the activator diffusedgiagtan the inhibitor. Conversely, it
was shown inT5] that in the case of a general reaction-subdiffusion equdtiat, in the limit
of short wave perturbations, the homogeneous state is alataple when the subdiffusion of
the inhibitor is slower than that of the activator. A genaion of this criteria was derived
in [76] for the case where the diffusion and reaction terms wersudidject to different rates of

subdiffusion. For a different type of coupling between taacand subdiffusion terms studied
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in [111], subdiffusion of the inhibitor was shown to delay the orsfeturing instability, while
subdiffusion of the activator was shown to have a destahgieffect. The incorporation of
reaction terms into subdiffusive systems has been the &uddfjenany studies since the findings
of [93]. Subsequent studies may be found38,[41,/64,89 and references therein.

In this chapter, we investigate the effects of superditfngin the interactions between Hopf
and Turing instabilities of the Brusselator model by deryvamplitude equations and studying
instabilities of their solutions to long-wave perturbato thus leading to the identification of
the parameter values at which new solutions may bifurcateil&8 studies near a codimension
two Turing-Hopf point (C2THP) of the regular Brusselatoraebhave been done i@%], [117.
We also discuss the results of numerical computations ih thwt weakly and fully nonlinear
regimes. In this chapter, we consider both the regular apdrgliffusive one dimensional Brus-
selator model and identify characteristics of spatioteralppatterns obtained near the C2THP
that are unique to each. In the anomalous case, we consels chequal diffusion exponents,
unequal but close diffusion exponents, and where one dffuis regular while the other is

anomalous.

1.2. The model, the basic solution, and its linear stability

We consider the Brusselator model, long a paradigm for neali analysis, given by

of o of :
aT_Dfa|§|a+E (B+1)f+ fg, T>0, £EeR, (1.2a)
¢
99 _p 99 \pr_2y w0, £cR. (1.2b)

or ol
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The diffusion coefficientd, D, the activator input raté&’, and the control parametét, are
positive quantities. The equilibrium (basic) state of tystem is(f,g) = (F, B/E) for all
values of the parameters.

Rescaling[(1.2a) an@ (1.2b) usifig= E + u.u, g = B/E + v, 7 = t, and¢ = /,x, where

uy = (Dy/DJ/*) /2, v, = 1/u., andl, = Dy*, the Brusselator system becomes

0 0~ B
Ov 0% B
2 = — — — Bu—Q*— =u*—2Quv —u*v, t>0, reR. 1.3b

wheren = ,/D?/“/Dg > 0, QQ = En > 0, andz andt represent the rescaled spatial and
temporal variables, respectively. The equilibrium stateaw atu = v = 0.

To determine the stability of the critical point, we consitiee normal mode solution, ob-
taining the dispersion relation between the growth rasand the wave numbér > 0, n?0? +
Mo+ M,y = 0, whereM; = Q*+k°—n*(B—1-k*),andM, = BQ*+ (K’ +Q*)(1+k“—B).

Hopf bifurcation occurs ifd/; = 0 and M, > 0, which yields two pure imaginary eigen-
values. M, = 0 corresponds td3 = k“/n* + k% + 1 + @Q?/n?, which has a minimum,
BY =14 Q?/n? atk = 0. The basic state is stable (unstable) fox BY" (B > B{). In
the unstable case, a spatially homogeneous oscillatorgmimerges. Fdr = 0 andB = B,
the eigenvaluer = iQQ/n = iw, wherew is the frequency of the oscillatory mode, while

¢l = (1,Qn?/(Q+in)) andec = (1, (in — Q)/(Qn*))" are the left and right eigenvectors,

respectively.
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Turing instability occurs whed/, = 0 and M; > 0, which yieldsB = (Q* + k”)(1 +

k) /kP. It has a single minimurtk,,., BS), given parametrically by

T 14 (1=s)2]

SZ

- 1/a
1+(1—-9)z’

Q2 kcr =z 5

wheres = a/f. Since( is real, we find that < z < 0 if 1/2 < s < 1, and0 < z <
1/(s —1)if 1 < s < 2. The corresponding left and right eigenvectors of the zegerevalue
are, respectively’ = (1, szn?/(1+ 2)) anda = (z/*, -1 — z)T. For the Turing instability, a
time-independent spatially periodic pattern may emerdbk gpatial wave numbér = k...

Turing and Hopf instability thresholds coincide at the CPIhereB = B = B =

B.,, which occurs whem = 7. = \/szl/S/(z + s+ 1). Thus, as the control parametBris
increased beyong,.., a Turing mode and a Hopf mode simultaneously bifurcate fiteerbasic
state, giving rise to terms of the formac’*=* andCce™! in (u,v)". We note thatB..., Q, 1.,

and the activator input raté; = Q)/7., are increasing functions offor all allowed values of.

1.3. Weakly nonlinear analysis

We analyze the system near the C2THP, i.e.plet 7. + €%, (0 < e < 1). If 5y > 0
(< 0), the Hopf (Turing) mode appears first as the paramBtey increased. We interpret this
as changing the parametgr keeping( constant. Thus, changing will only affect the Hopf
stability curve, not the Turing curve. Also, I& = B,, + ¢2u, wherey > 0 is a realO(1)
guantity. This leads to the presence of two time scales. Thgnal time scalet, appears
with oscillation frequencyy, while the slow time scal€]’ = €?t, accounts for the slow time
evolution of the Turing and Hopf modes. The three relevaatiapscales are, X; = ex, and

Xojo = e/*z, where the scaling foX,/, is chosen under the condition that< 3. If a > 3,
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the third spatial scale would instead Bg,;. While we consider both cases in Section 1.4, the
explicit expressions are far < j3.

With the relevant scales established, we allow for the jpdggiof both A andC to be func-
tions of the slow time scale as well as the two long spatidesca hen, since the Turing mode
may be a function of all three spatial scales and the Hopf naddaction of the two long spatial
scales, we require analogs of the chain rule to obtain egjmesfor how the operatar’ /9 |x|”
acts onu andv. While nothing in the linear stability analysis of Sectlo@ prevents the Hopf
mode from being a function of the two long spatial scalesyaduility conditions discussed be-
low in the weakly nonlinear analysis limit the Hopf mode degence taX, , only. Then, since
the expression obtained by applyiity d|z|” to a function of the form¥'(z, X, X;,,) does not
reduce to the expression obtained by applying the operatarftinction of the forntG( X5/, )
simply by lettingd/0x = 0/0X; = 0, we decompose the solutionsandv into sums of func-
tions of the formF (z, X, Xy/o,t,T) andG(Xy/,, t, T'). SinceF accounts for alk-dependent
terms, whether or not they depend &q and/orX, ., while G accounts for alk-independent
terms, this decomposition captures all possible termsdéuatarise in. andv. We utilize the

product rule[83 for 1 < v < 2,

() 5~ [ 7| i g

dlz]r 4 |z dai”’
7=0

to compute
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d'yF(l’,Xl,Xg/a) 8’7 + 87_1 p 3 + 62/a 8 +
dlz|" o)z Tolzp—t \“ax, 0X2/a
Yy =1 7 &

oo Flz, Xq, X 14
+ € 2 8|ZE|7_2 aXlz + ) (JI, 1, 2/04)7 ( )

where we have discarded terms smaller tiig®). The computation ofl"G(X5/,)/d|x|”

Y

requires a simpler version of the chain rule, which give&/d|z|" = ¢?/*d'G /d| X2/

where~ is eithera or .

Due to the fractional powers efin (1.4), we include fractional powers in the expansions of

u andv:
U Uy U2/ Uz
~ € e / + € +
v U1 V2/a V2
U142/ us
it/ i +é +.... (1.5)
Vi+2/a U3
We decompose; andv; as
(A) (©)
Ui ul (x,Xl,XQ/a,t,T) ’LLZ (X2/a7t7T)
= + , (1.6)
(% ’UZ‘(A)(valaXZ/OmtaT) 'UZ‘(C)(XZ/OmtaT)

where we associate the lettdrwith the Turing mode (thougbf.A) andvi(A) also account for

products of pure Turing and pure Hopf terms), and the Iéttesith the Hopf mode. Iiv > 4/3,
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we must also include a@(¢*/«) term in the expansion. Recalling the decompositioi.inl (1.6)

we substitute[(1]5) intd_(1.Ba) arid (11.3b), and find thaandv; satisfy

(4) (@)
0 u 0 u
= —DyZ — M, S Y =y V Yol =o, (1.7)
ot (A) ot (©)
Uq 1
where
1 0 aﬁja 0 B —1 Q?
DO = ; ‘@ = ; MO =
1 9° Ber Q>
0 = 0 Fap O
Thus
U1 i .
= A(X1, Xy/0T)ae™ " + C(Xy/a, T)ce™ + c.c.,
U1

wherec.c. denotes complex conjugate. We have allowed ohtp depend on both long scales.

If we had assumed that also depended on both long scalék¢) and O(e”) terms would
need to be included if(1.5). In this case, solvability ctinds atO(¢'**) andO(e! ™) would
require that” be independent ak;. These are the solvability conditions mentioned above that
dictate that the Hopf mode can only be a functionXaf,,. To see this, we apply the fractional

operator to a function of the ford (X, X, ):
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dH(X1, Xo/0) < o N

¢ T -
d|z| 01Xy | 0| Xq1 |77t 0Xy)0

I-2+4/a Yy —1) o? %
2 0| X2 8X22/a

+ T )H(Xl,xz/a). (1.8)

The presence of a@(¢?) term in [1.8) would require that we include terms@fe®), O(e”),
O(e'*?), andO(e'*#) in the expansion of; in (LE), among terms of other orders. The right

hand side of th& (¢! **) equation would then contain a secular-producing term

1 aaC 6iwt
X[

0
which is not orthogonal te, and thus the solvability condition is not met. A similar kaition
of the solvability condition is also seen@te'*”), and also in the case of= 3. To avoid this,
we do not allowC' to depend onXj;.

The O(¢2/*) equation is the same as th¥¢) equation, withu,, andu,, satisfying the
same homogeneous equationiasandv;. Thus we may take,,, = vy, = 0 without loss of
generality (the same applies foy/, andv,/,).

While the left hand side of th@(¢?) equation is the same as that[in {1.7), its right hand side
contains secular-producing terms proportionatito®. However, the solvability condition is

satisfied (the secular-producing terms are orthogonal)tovhich leads to the solution
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(75) . . .
:A2p28622kmm+C2p2t622wt+Achez¢L+

V2

AC*pre'®® + | A|?pos + |C|*Por + pse™™ + c.c.

where¢; = k..x + wt andor = k..x — wt.

TheO('+%/*) equation, like th&) (e?) equation, contains secular-producing terms orthogo-

nal toa'. However, whileu; /, andv;.,/, are non-zero, they do not enter th¢e*) equation.
Upon solving for the vectorp.,, p2:, €tc., and applying the solvability condition@te®), we
obtain, upon rescaling, the amplitude equations

0A 0?A

oA _ oA 2 2
3T A+8X12+CA|A| + 1 A|C)7, (1.9a)

oC 0*C

ar pC + (a1 + ias) m + (=1Bi] +i62) CIC)? + (81 +id,) C|AJ?, (1.9b)

where( = +1, depending on the values af 3, andz, while vy, a1, as, (1, B2, 1, andd,, are
real functions oftv, 3, andz. The coefficienp, while also real, is a function af, 5, andz, as

well asp andn,. Finally, it can be shown that; > 0.

We restrictz to the intervall such thatt = —1, i.e., there exists nonlinear saturation of the

Turing mode. We also note that (119a) ahd (1..9b) were derivelr the necessary condition

thatC' be independent ak;. Since [[1.9b) contains terms involving bothandC', | A| must be

spatially homogeneous. Thuis, (1.9a) dnd (1.9b) descrilyeaomplitudesA whose dependence
on X; takes the forme™(*1) for a real function:. SinceA can depend on bot; and X,/,,

there are no restrictions on the way in whictcan depend 0X5), .
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Lastly, the techniques used here resemble those used foedhtar diffusion Brusselator
model. There are, however, important differences, onegbtiat two long spatial scales are
present instead of the single long scalein the regular model. Secondly, the expansions of
andv include fractional orders of, whereas only integer powers were required in the regular
model. Thirdly, the rules of differentiation require thiagtsolution be decomposed into separate
functions that depend differently on the relevant variablehe resulting form of the amplitude
equations are also different in that the equationfas now an integro-differential equation. A

shorter version of this section is presenteddg]

1.4. Solutions of the amplitude equations and their long-wae instabilities

In this section, we seek special solutiondof (IL.9a) Andj1 rtamely a pure Turing solution,
a pure Hopf solution, and a mixed mode solution. We then sthdyinstabilities of these
solutions to long-wave perturbations. We first consideptire Turing solution, given bg¢' = 0
andA = AetKaX1 with A = (1 — K2)Y/2. To study its stability, we linearize around it using
A= (A+a(X,,T))ek4%1, andC = ¢(Xy,a, T). The resulting linearized equations decouple,
so we analyze each separately. A long-wave perturbatidn, 7') yields the familiar Eckhaus
stability criterion

1

1K 4| < 7 (1.10)

If (L.10) is not satisfied, the perturbation grows, chandhegspatial frequency of the solution.
A long-wave perturbation(X,,,, 7') with wave numbek < 1 results in the dispersion relation
o =p—on|k|® + A26, +i| — an|k|* + A26,|, whose real part must be negative for long-wave

stability. If the real part is positive, the perturbatiogs, changing the spatial structure of the
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solution and also introducing a time-oscillatory compdnérhe long-wave stability criterion
is p+ A2, < 0. If §; < 0, long-wave perturbations of the Hopf amplitude decay fbpat 0,
or even ifp > 0 as long ag remains sufficiently small. 15; > 0, long-wave perturbations of
the Hopf amplitude can grow even fpr< 0, as long a$ is sufficiently close to O.

For the regular diffusion moded; > 0 for z < 0.26, or equivalentlyy. < 0.34, meaning
that the inhibitor §) diffuses significantly faster than the activatgj.(In the anomalous model,
we obtain an analogous result i@rand3, since these two parameters have a greater impact on
the rate of diffusion than do the diffusion coefficients. bmntrast to the regular model, can
be positive even itv < [, that is, if the inhibitor diffuses more slowly than the a&ator. For
a < 1.65, 0, < 0forall z € I, meaning that sufficiently fast diffusion of the activatoakes
it impossible for long-wave perturbations of the Hopf modegtow if p < 0. This behavior is
not seen in the regular model.

Next, we consider the pure Hopf solution, given By= 0 andC' = CeiKcXz/a T yith
C = ((p— ar|Ke|®)/|6:)2 andQ = —au|Ko|™ + 5.C2. We note that, since the quantity
p—ai|Kc|* must be positivey must be positive for the pure Hopf solution to exist. Longreva
perturbations of the forra”+#X2/o yield two growth rates, one of which is negative, the other

of which has the expansion for smallo = a,k + a»k* + O(k?), where

(a1 fe + as|f]) [ Kol

a1 = —1
|61 ’

and

afa = 1) (afs — aq|B]) n o’ai (B} + B5)|Kel®
2|5 2|3, [3C? ‘

a9 =
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Requiringay < 0 for stability leads to the generalized Eckhaus criterion,

el < 5 (1.12)

where

67631 (ﬁ% + 522)
(a = D[Bi](]Bi] — afz) -

Thus, if (1.11) is not satisfied, both the spatial and temimtractures of the solution are altered

R=1+

as a long-wave perturbation grows with amplitude oscillatt a frequency different frofi.
As in the regular diffusion case, the magnitudedt greater than unity for all € 7. However,
if o < 3, unlike the regular diffusion case is positive only forz sufficiently small. Beyond
this interval,R becomes negative so that (1.11) is never satisfied, in wiaish the pure Hopf
solution must be long-wave unstable. Restrictintp sufficiently small values for whicl®
is positive implies thatB,.., @, n., and E, must all be sufficiently small. For example,
must be less than 0.62, and thus, while the rate of diffusion is dominated by théudibn
exponentsy and 3, 7. still impacts whether or not the Hopf mode can be long-waeblst
Note, however, thag. is not a strict comparison between the diffusion coeffigént and D,
as these parameters do not even have the same units. Thatixebehavior of? in thea > 3
case is the same as for regular diffusion, whBre- 1 for all = € I, suggesting that faster
diffusion of the activator versus the inhibitor may conirti to instability of the pure Hopf
solution.

Finally we consider the mixed mode solution, givendy= AetfXaX1 ¢ = CeiloXz/atiT

with
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N A
o <p—a1|f<c\a+51 (1 —K@)W

i (wz (0 — | Kel*) + 16, (1 - Ki))”z

A
whereA = |31| — 1901, andQ = —as|Ko|* + 3,C? + 6, A2. Of course, we must restridt 4
andK ¢ so thatd andC are real. Linearizind (1.9a) and (119b) around this mixedesplution

with small perturbations (X5, 7") andc(Xs,., T') results in the coupled equations

g_; = (1~ K3)a — A0 +20) + 45 [AC (¢ +¢) +aC?] (1.12)
and
dc . _ a1 0c
57 = ~iQe+pe+ (o + i) (—\Kc\ ¢ +ia|Kcl| 8X2/a+

ala—1 ., 0%c
(2 )|Kc|a2

+ En

) + (—|B1] +iB)C*(c" + 2¢)+
+(6) +62) |AC (a* + a) + c,fﬁ] . (1.13)

Egs. [1.1R) and(1.13) contain terms involving batand¢, and so, for consistency, we re-
quirea to depend only orX, . We consider two types of perturbations: spatially homegeis
perturbations of a spatially dependent solutiéi (K~ # 0), and long-wave perturbations of
a spatially homogeneous solutioR { = K- = 0). For the first case, the resulting dispersion
relation yields two zero eigenvalues and 2 negative eigeasaas long a&\ > 0, with one

of the eigenvalues turning positiveX < 0. If A < 0, the solution decays to either a pure
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Turing or pure Hopf mode, depending on the initial condisifl], changing the temporal and
spatial structures of the solution. Thus, a necessary (affidisent) condition for stability of
the spatially dependent mixed mode solution to homogenperiarbations i\ > 0. As in
the regular case, there are valuesvaind 5 for which stability is possible for both sufficiently
large and small values af These occur fofa, 3) pairs that are nede, 2). Sufficiently small
(large) z refers to an interval of that ranges from the smallest (largest¥ [ to some larger
(smaller)z € I. For («a, 3) pairs wherex is sufficiently large, it is possible that > 0 only
for = sufficiently small. More specifically, for all sudla, 3) pairs, stability is possible only if
n. < 0.42. Similarly, for all («, 3) for which stability is only possible for sufficiently large

stability is possible only if). 2

~

0.65. For someg«, 3) pairs with 5 sufficiently small, stability
is impossible.

For the spatially homogeneous solution, takiig = Ko = 0, (1.12) remains the same,
while the derivative term iri(1.13) is replaced &Yc/0| X,,,|*. Upon inserting long-wave per-
turbations of the forme®”+#*X2/ the resulting dispersion relation yields two zero eigémes
and one negative eigenvalue as longdas- 0, while the fourth eigenvalue has the expansion

for smallk, o ~ a,|k|*, where

(2 +1hady) — oA
(y = A .

Thus, long-wave stability of the spatially homogeneousitsoh requiresh > 0 anda,, < 0. If
either one of these conditions is not satisfied, a long-wpaéia pattern appears, breaking the
spatial homogeneity. Like the regular diffusion case,ahexist(«, 3) pairs such that stability
is possible only for sufficiently large. More specifically, for all sucli, 5) pairs, long-wave

stability of the spatially homogeneous mixed mode soluggossible only if;). = 0.65. These

~Y
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occur fora sufficiently close tg3, but only fora > 3. As in the pure Hopf stability analysis,
it appears that the. > 3 case more closely resembles regular diffusion in termsaddilgty
properties. Forn < (§ with o and/ sufficiently large, stability is possible only fersufficiently
small. For all sucli«, ) pairs,n. < 0.37. For both mixed mode solutions,and 3 determine

whether or not there exist values of parameters, sugh, &sr which stability is possible, as for

many(«, 3) pairs, stability is impossible.

In summary, the evolution equatioms (1.9a) dnd ([1.9b) apgiealar to their regular diffu-
sion counterparts, but differ both in the behavior of thaefficients, as well as their overall
form, as [(1.9b) reflects non-local effects. As a result, tAbibty criteria differ greatly from
those of regular diffusion. In the stability analysis of thee Turing solution, there exigt, 3)
such that long-wave perturbations of the Hopf mode cannmvgr p < 0 for any value of
z. This is contrary to the regular diffusion case, for whiclbwth is possible if the inhibitor
diffuses sufficiently faster than the activator. Furtheg,faund that there existy, 3) for which
long-wave perturbations of the Hopf mode can growox 0 even if the inhibitor diffuses
more slowly than the activator. We also found that,dot: 3, there exist values of € I such
that stability of the pure Hopf solution is impossible, vehibr o > /3, stability criteria remains
qualitatively similar. Finally, for the mixed mode, theneis («, 3) pairs sufficiently close to
(2, 2) for which stability requirements are similar to those ofuteg diffusion. Away from this

regime, these requirements can either change or stabidijysimply not be possible.

1.5. Numerical results

The system[(1.3a) and_(1]3b) was solved on the intérvalz < L with periodic bound-

ary conditions using Fourier spectral methods in space a®tand order predictor-corrector
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method in time. The diffusion terms were treated implicéthd differentiation in spectral space
was computed using (1.1). The reaction terms were compatptyisical space before being
transformed into Fourier space, where all time-stepping pexformed. A numerical method
for solving superdiffusive problems with Neumann and k&t boundary conditions is given
in [24], requiring subtraction of terms that lead to singulastet the boundaries. Another
approach to treat superdiffusion on a finite domain is givef®8], where a modified integro-
differential operator is introduced, requiring reflecteensions of functions outside the do-
main. This operator was numerically shown to yield desegisbperties such as the obeying of
the first and second laws of thermodynamics, and presenvatt&ymmetry around the midpoint
of the domain.

We computed solutions in two regimes: near the stabilitgghold to confirm the analysis in
Sectior 1.4, and far in the nonlinear regime to find solutiooispredicted by weakly nonlinear
analysis. When confirming the stability analysis of Sectioh, a system lengtlh was em-
ployed so that the chosen initial conditions would be peciofio determine long-wave stability
of the solutions described in Sectiion]1.4, we set as thalmitinditions the respective solution
plus a small long-wave perturbation. The Fourier spectréinh® initial condition thus con-
tained a non-zero amplitude associated with the first oraletisn, and comparatively smaller
amplitudes associated with the long-wave perturbatiohs.plarameter. was set to be a®(1)
guantity, as wagy,. In the cases for which the solution was long-wave stabkeFburier am-
plitude of the first order solution remained constant to imith O(€?) of the initial (predicted)
amplitude, while the amplitudes of the long-wave pertudret decayed. In cases for which
the solution was long-wave unstable, the amplitude of tisé dirder solution remained near its

initial value for a time ofO(1/¢?) before beginning to decay. The amplitude of the long-wave
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perturbation saw a slow initial decay that lasted for a tirh€¢l /¢*) before growing to the

same order of magnitude as the amplitude of the first ordetisal In this way, we were able

to confirm results[(1.10) an@ (1]11). Specifically, if the eaumber of the pure Turing mode
lies within the Eckhaus stable region, a pure Turing sotutioth that wavenumber is found
numerically, while if the spatial wavenumber of the Hopfusdated solution lies within the

generalized Eckhaus stable region, the Hopf bifurcatadtisol with that wavenumber is found
numerically, thus confirming the results of the weakly noaér analysis. As a further corrob-
oration of the weakly nonlinear analysis, in Fig. 1 we coneghe oscillation frequency of the
Hopf solution computed numerically to that predicted by Wesakly nonlinear analysis, as a
function of the bifurcation parametgr We see that for smajl (weakly nonlinear case) there

is excellent agreement between the two.

235

——numerical result
- - -weakly nonlinear prediction

Hopf frequency

1.95
0

500 1000 1500 2000 2500 3000
n

Figure 1.1. Comparison of weakly nonlinear prediction and numericsililts of the fre-
quency of spatially homogeneous oscillations as a funaifahe bifurcation parameter
1. The parameters are= 1.4, 6 = 1.5, z = 1.6, andn, = 1.
Results that involved components of both the Turing and Hopéles were too computa-
tionally intensive to check. In particular, results partag to long-wave stability of the mixed

mode were numerically inconclusive, as it appeared thata gtable mixed mode exists only

for ¢ too small to feasibly compute a steady state solution. Hewet/was observed that if
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A < 0, a solution that started out with both a Turing and Hopf moeleagted to either a pure
Turing or pure Hopf solution, depending on the values of ti@meters. I\ > 0, both modes
remained present for the entire length of the computatiooygh the respective amplitudes
were not constant, indicating that the steady state wasabbf a pure mixed mode.

In the sections below, we discuss results of computatiotis wiof O(1/¢*) so that the
system is in the fully nonlinear regime. To reach what wasmeined to be a steady state, the
system was evolved over5 x 10* units of time. To verify that the time period was sufficiently
long, for some results, we compared solutions obtainedmear.5 x 10* with those obtained
neart = 3 x 10" to ensure that the solutions obtained were in fact in stetadg.sn such cases,
no qualitative differences were observed between theisakifit the two times. The Fourier
spectrum of the steady state solutions were also monitoreddure that the amplitudes in the
tail of the spectrum did not exce€{ 10~?) of that of magnitudes of the most dominant modes,
thus indicating that aliasing was not significant for the pomational results presented here. In

all space-time plots presented, the spatial varialslens horizontally while time runs vertically.

1.5.1. The fully nonlinear regime with equal diffusion expments

Taking i to be of O(1/€%), we computed solutions not predicted by the weakly nontiaeal-
ysis, in the fully nonlinear regime of the regular and supgarsive Brusselator models. The
parameter), was still kept as a® (1) quantity so that the system remained near the C2THP.
We consider onlyx = £ in this subsection. The following subsection below disegsthe

« # [ case. Figurds 1.7-1.11 show space-time plots of plots ofu(z) at particular instants

of time, in steady states with = j, starting from random initial conditions and setting the

parameters?y = 1, n, = 1, andL = 500 while varyingz. Since it appears that different
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initial conditions evolve to different steady states (@Q][for regular diffusion), we computed
steady states from different random initial conditionsdach set of parameters. Thus, for each
(a, ) = (1.1,1.1), (1.5, 1.5) and(2, 2), we computed steady states withanging from0.2 to

3 in increments of).2. The parameters, ¢ andn, were kept constant. For each, 3, z) pa-
rameter set, we computed steady states from the same sedoinanitial conditions (i.e., the
random initial conditions were generated in such a way they tvere reproducible, and thus
could be used again). Note that/ifis lowered significantly, many of the steady state patterns
disappear.

For z small (~ 0.2), setting(«,3) = (1.1,1.1), (1.5,1.5) and (2, 2), we found that all
initial conditions employed resulted in a steady state isbimg) only of stationary stripes (a pure
Turing steady state), with the dominant wave number he& /(27), depending on the initial
conditions. Forz = 0.4, we find that th€1.1, 1.1) case still yielded a pure Turing solution for
all initial conditions tested. Thél.5, 1.5) case yielded some pure Hopf steady states (spatially
homogeneous oscillations) and some pure Turing stategndep on the initial conditions,
while the (2, 2) case yielded a pure Hopf solution for all initial conditiorf®r z = 0.6, both
the (1.5,1.5) and(2, 2) cases yielded pure Hopf steady states of the same frequehiby,the
(1.1,1.1) case yielded both pure Turing and pure Hopf steady stategndiéng on the initial
conditions. Thus, anomalous diffusion with equal diffusexponents delays the development
of Hopf behavior (in terms of increasing. Forz > 2, all three cases yielded pure Turing steady
states for all random initial conditions tested. A2 < 2z < 1.8, we found spatiotemporal
patterns for either one or both of tfi¢.5,1.5) and (2, 2) cases. For the values efand the
random initial conditions tested, we did not find any spatigporal patterns for the.1,1.1)

case.
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In the descriptions below, we will use the term “spot” to dena local maximum ofi. We
will say that a spot is created when such a maximum forms, laatcet spot is annihilated when
the maximum disappears. We will also say that two spots tlogdggate away from each other
are counter propagating, and that two spots that propagat&d each other are oppositely
propagating. In a system with periodic boundary conditidthese definitions might appear to
be confusing, as spots which are created as counter prapggan theoretically, after rotating
through a full period, become oppositely propagating. Heawethis does not occur in our
computations because the spots are prevented from goitigeallay around the full period by
the presence of obstacles, e.g., regions of stationapestihich halt the motion of the spots
by absorbing them. These spots account for the time-osojaegions in the spatiotemporal
patterns described below, which, in addition, often alsa&io stripe-like regions.

Figured 1.2(a) [ 1.2(k) show spatiotemporal patterns vetfular diffusion,B = 5.84 and
n = 0.612 for different random initial conditions. Figufe 1.2(a) si®breathing stripes em-
bedded in a time-oscillatory and nearly spatially homogesestructure. The stripes breathe
while the values of the minima and maxima also oscillaterreti The dynamical behavior of
this mode is illustrated in more detail in Figufes 1.B(a)utiaf1.3() where we plat versuse
for selected times near the first (lowest) horizontal stiipeigure[1.2(g). The apparently hori-
zontal stripes are in fact slightly U-shaped, as a spot istetknear: = 4.5 (spot A in Figures

1.3(a) and 1.3(b)), which splits into two spots that coupt@pagate toward opposite sides of

the stripes (spots B and C in Figlire 1.3(c)), after whiakecays until the start of the next event.
The rapid rise and gradual decay:oindicates temporal relaxation oscillations (illustratsd
a plot ofu atz = 4.5 in Figure[1.4). In the early stages of the decay, the outer @peither

side of the striped region is absorbed into the incoming fpigure[1.3(d)), while in the latter



35

(d) u(z,1)

Figure 1.2. Spatiotemporal patterns affor regular diffusion withz = 1.2, B = 5.84
andn = 0.612. The figures differ only in the random initial condition eropéd. Most
of the patterns for this parameter set have low spatial #Bqy and are mainly time-
oscillatory, with smaller intervals of stationary or bigiag stripes. Figure (c) shows
multiple propagating dislocations. Light colors indicatere positive values af, while
dark colors indicate less positive valueswofFigure (d) shows a small interval in time
of (c), corresponding to the time interval depicted in FegiL.6(d) tp 1.6(j). The space-
time plots ofv are essentially the same, except with the colors inverted.

stages of the decay (Figdre 1.3(e)), two new spots are foatht edge of the stripe region in
place of those previously absorbed.

Figure[1.2(0) has qualitative similarities to Figlire 1)Pitathat one spot splits into two
counter propagating spots. The U-type behavior is morequoced and clearly visible in
Figurg 1.2(0) than in Figufe 1.2{a). The way that the twospaeract with the boundary of the
stripes is, however, the same as in Figure 1]2(a). A sligferénce is that the spot creation site
is slightly closer to the right side of the stripes. As a reghle spot traveling toward the right

side of the stripes is annihilated before the one travelnthé left side. However, the main
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t=15002.8789 t=15003.3193 t=15003.4785
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Figure 1.3. Plots ofu(x) at specific instants of time illustrating the creation andian
hilation of spots in Figurg T.2(a). A spot (A) begins to fortrea~ 4.5 in (a), which
then grows ((b)) until it splits into two spots (B and C in (cJ)he two spots are annihi-
lated with the two spots straddling the striped region arzhgd(d)) before the process
repeats ((e)).

-1
15 1.5005 1.501 1.5015 1.502
t 4
x 10

Figure 1.4. Plot of u atx = 4.5 as a function of time, corresponding to the bottom four
stripes of Figur¢ T.2(R).
difference is that Figurg 1.2(b) also has inverted U-shameterns embedded in the stripes,
each of which corresponds to two spots created at the stig¢grow slowly and propagate

toward one another. The dynamical behavior of this modéustiated in Figures 1.5(a) - 1.5(e)
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where we plot: as a function of: for times near the lower part of Figure 1.3(b). These figures
are plotted only over the right end of the striped regionusieg on the inverted U structure
(r ~ 1.9tox ~ 2.15). Two spots are centered at~ 1.95 andx ~ 2.1 and are labeled B and
C, respectively. A spot in the middle (spot A in Figlire I.p@)pows at a rate faster than the
two oppositely propagating spots (Figiire 1.5(b)) and adls@ greater maximal value than the
two oppositely propagating spots (Figlire 1.5(c)), accognfor the bright spots at the peaks
of the inverted U’s in Figurgé 1.2(p). As the three spots decagether, the two outside spots
are eventually absorbed into the larger interior spot (Figu5(d)) as two new spots form in
their place (spots Band C in Figure[1.5(d) and Figurfe 1.5[e)). Just as the two spotsattea
annihilated at the stripes are out of phase, so too are thiéatisos of the two inverted U’s.
Figurd 1.2(d) shows four dislocations that propagate umifpin time, with three that prop-
agate to the left, and one that propagates to the right. Tdiek®cations are sites at which a
spot is born on one side and propagates away from it, and @ngplot generated at an adjacent
dislocation is annihilated on the other side. The four digtmns divide the system into four
regions and act as boundaries where spots are born andlatedhiThe dislocations appear to
propagate until meeting another dislocation, at which fpitia two appear to repel each other.
The speed of the dislocations (the inverse of the absolute v the slopes of the dislocations
shown in Figuré 1.2(¢)) appears to be constant in time anddhee for all dislocations. The
time at which a spot is created in one particular region ishmzloser to the time at which a
spot is created in the interval on the other side of its nedghBor example, at = 1.5 x 10*
in Figure[1.2(d), a spot creation event in the interval ceutetz ~ 2 will either be closely
preceded or followed by a spot creation event in the intereatered at: ~ 4.1. Figures 1.6(&)

-[L.6(f) indicate the intervals (labeled 1-4 in the figuresjl dlustrate the dynamical behavior
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Figure 1.5. Line plots describing details of the right inverted U of Fig{l.2(b) at
specific instants of time. A spot centeredaat~ 2.03 grows at a faster rate than the
two oppositely propagating spots centered:at 1.95 andz ~ 2.1 ((a) and (b)). In
(c), all three spots have achieved values close to theirmelxalue, with that of the
middle spot being much larger. The three spots then decajtteg appearing to merge
together into one structure ((d)), from which two new spoéskaorn to replace the two
outer spots ((e)).

within each interval. The figures represent the dynamioaligion of the pattern for times near
the lower part of Figurg 1.2(c). Figure 1.6(a) shows the tegians centered at ~ 2 (region
2) andx ~ 4.1 (region4) near the end of a decay process, just as a spot has formeslregilon
centered at: ~ 3 (region3). This spot then grows (Figufe 1.6(b)) and propagates tdettie
(Figurg 1.6(d)) just as a spot begins to form to the left of 2 in the region centered near~ 0
(region1). This spot grows and propagates to the left as the spot inn&jis annihilated and
the whole interval begins to decay (Figlire 1.6(d)). The gpot¢gion1 continues to propagate

to the left until it is annihilated near = 5 (Figure[1.6(€)). As interval$ and3 decay, spots
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begin to form in region® and4 (Figure[1.6(f)). The spot in regiod reaches its maximum
(Figure[1.6(g)) before the spot in regidrforms and propagates to the left (Fighre 1.5(h) and

[1.6(i)). Region® and4 then decay, and the process starts over again.

t=15000.8789 t=15001.0791 t=15001.2793

1 PR 4 1 EREE 4 1 ERPE
1 1 . 1 1 25 (\/]
P | | P | | 2 | ]
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(a) u(z, 15000.88) (b) u(z, 15001.08) (c) u(z, 15001.28)

t=15001.6191 t=15002.2393 t=15003.4785

(d) u(z,15001.62) (€) u(z,15002.24) (f) w(z,15003.48)

t=15003.8193 t=15004.0791 t=15004.2793

Xy

(9) u(z, 15003.82) (h) u(z, 15004.08) (i) u(z,15004.28)

Figure 1.6. Plots of u(z) at specific instants of time illustrating the structure of th
regions in Figuré T.2(F). Regior’sand4 are near the end of a decay cycle in (a) as a
spot in region 3 begins to form. The spot grows and propadatt® left ((b) and (c))

as a spot grows just to the left of = 2 in region1. The spot in regiornl grows and
propagates to the left before being annihilated at 5 ((d) and (e)). As region$ and3
decay ((f)), spots begin to form in regioBsand4 ((g) and (h)). The growth of regioh
occurs slightly before that of regiah and so it decays earlier ((i)).



40

With o = ¢ = 1.5 andz = 1.2, the only steady states found using the same initial condi-
tions as those used for the regular diffusion computaticer®whose of spatially homogeneous
oscillations.

Forz = 1.4, B = 6.76, andn = 0.642 (Figureq 1.7(a) | 1.7(f)), we found spatiotemporal
patterns for both thev, 5) = (1.5, 1.5) and(2, 2) cases. Figurgs 1.7{a) dnd 1.7(d) correspond to

the same initial conditions, only the diffusion coefficieuliffer («, 5) = (1.5,1.5) and(2, 2)
respectively), similarly for Figurds 1.7(b) and 1.7 (e) d&nglureq 1.7(¢) and 1.7{f).

1.5045 1.5045 1.5045
1504 1504 1504
15035, 15035 1.5035]
1.503, 1.503 1.503|
1.5025 1.5025 1.5025
1.502! 1.502! 1.502]
1.5015 1.5015 1.5015
1.501 1.501 1.501
1.5005 1.5005| 1.5005

0 1 2 3 4 5 6

(d) u(z,1) (€) u(z,1) (f) u(x,t)

Figure 1.7. Spatiotemporal patterns affor o = g = 1.5 ((a), (b), (c)) andv = 3 =2
((d), (e), (), withz = 1.4, B = 6.76, andn = 0.642. Each pair (a) and (d), (b) and
(e), and (c) and (f) are generated from the same set of rangitial conditions. As with
Figure[1.2, most of the patterns for this parameter set lmvepatial frequency and are
mainly time-oscillatory. The main difference is in the graee of the inverted U’s of the
regular diffusion figures versus the flat oscillatory staues of the anomalous figures.

Figure[1.7(d) resembles Figure 1.2(a) in that the apparéotizontal lines are slightly U-

shaped. The stripes for the anomalous case, however, doeaihb as do those in the regular
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diffusion case. Comparing Figures 1.7(a) and 1]7(d), wetsseor the regular diffusion case,

instead of there being a spot created away from the striggsspiits into two spots that are

annihilated on either side of the stripes (U-shape), twdsspoe generated on either side of
the stripes, which then oppositely propagate and are datedibetween the generation sites,
resulting in an inverted U-shape. In Figlire 1.7(d), thedegfit fires first, resulting in an annihi-

lation site that is closer to the right side of the stripesittathe left. Thus, for the anomalous
case, there is creation away from the stripes and annitmlati the stripes (U-shaped), while for
regular diffusion, there is creation at the stripes andlafation away from the stripes (inverted

U).

Figure[1.7(H) (anomalous) shows a single traveling digionahat propagates to the right.
Periodically, a spot is generated on the left side of theodaion, which then propagates until
it hits the right side of the dislocation. This steady statesimilar to but simpler than the
pattern in Figuré¢ T.2(F). There are three periods assaciwith this steady state: the time it
takes for a newly formed spot to travel from one side of théodeion to the other~ 1.08
time units), the time between two spot-creation events5(2092 time units), and the time
it takes for the dislocation to travel one length of the sys(e- 939.039 time units). None
of the ratios computed from these periods appear to be a simpibnal number. While all
results of the computation are necessarily rational, tijgests that in reality the periods are
incommensurate, a situation that can lead to chaos, butmueseem to do so in this case.
Figurg 1.7(d) is similar to Figufe 1.7{a), the only diffecerbeing the number of stripes. Figures
[M1.7(d) and 1.7(&) appear to be the same solution modulotarskiface.

In Figure[1.7(f), unlike in Figurg 1.7(d), all spots appeafite simultaneously. The small

inverted U’'s embedded in the stripes are similar to thosedon Figurd 1.2(B). The dynamical
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behavior of one of the larger inverted U’s centered at 3.2 of Figure[1.7(f) is illustrated in
more detail in Figureg 1.8(a) - 1.8[d), wheres plotted against for a restrictedr interval.
They correspond to the inverted U that occurs betweenl.5005 x 10* andt = 1.501 x 10
Figure[1.8(d) shows the formation of two spots A and B. Theyppagate and grow (Figure

[1.8(b)) before meeting and annihilating in the middle witil® new spots are formed in their

place (Figureg 1.8(c) afd 1.8(d)). The new spots are lat¥ledd B in Figure[1.8(d).

t=15004.8789 t=15005.2793

35 35
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Figure 1.8. Line plots describing details of the spatiotemporal cefiteeed atr ~ 3.2
in Figure[L.7(f). Two spots are created at the stripes ((@))ch then co-propagate and
grow ((b)) before meeting and annihilating in the middle ivlivo new spots are formed
in their place ((c) and (d)).
Figureg 1.9(a)[- 1.9(k) show spatiotemporal patterns gfisior multiple localized structures
in a sea of stripesfar = 3 = 1.5,z = 1.6, B = 7.76 andn = 0.67. Figurg[1.9(d) is a close-up

of Figure[1.9(d). Using the same initial conditions, onlgt&tnary stripes were found for the

case of regular diffusion.
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Figure 1.9. Spatiotemporal patterns affor anomalous diffusion witle = 3 = 1.5,
z = 1.6, B ="7.76 andn = 0.67. The figures differ only in initial condition. Compared

to Figured 1.2()-1.2(c) and Figuies 1.V(&) - 1} 7(f), tHegaes show a more Turing-

dominant structure in which time-oscillatory structures embedded. (d) is a close-up
of the spatiotemporal cell of (c). Depending on the initiahditions, the spatiotemporal
cells can occur in any size, number, and with any relativeispa

The predominant structures seen for this parameter sdi@sgjtiare-shaped spatiotemporal
cells that take on the shape of an inverted U with a flat apeigiwie did not find for regular
diffusion. It appears that, depending on the initial coiodi, these cells can occur in different
sizes and numbers, and can have any relative spacing bethharan Some square cells behave
in a similar fashion as the inverted U’s of Fig{ire 1.7 (f) iath small spot arises rapidly between
two slowly growing and oppositely propagating spots, wiaohsubsequently absorbed into the
interior spot. However, there are some significant diffeesmsdescribed below. For some square
cells this is a spatially symmetric process that resultséoracentrated bright spot at the apex.

Other square cells can exhibit either symmetric or sligalymmetric behavior. In either case,
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the interior spot is much wider and is less localized thahdhtne inverted U’s in Figurg 1.2(p),
accounting for the absence of a bright spot at the apex.

Figured T.10(3)-1.70(d) illustrate the detailed dynarofdhe symmetric square cell shown

in Figure[1.9(d) (closeup in Figufe 1.9(d)). These figures @otted only over a restricted

x interval corresponding to the extent of the square cell. iarior spot (spot A in Figures

[M.10(a) and IT.70(b)) grows in the middle of two oppositelggagating spots (spots B and C
in Figureq 1.70(&) arid 1.10{b)). Spot A then splits into twariter propagating spots (spots D

and E in Figuré 1.10(k)), which merge with spots B and C (Fegud0(c))). The solution over
the entire interval then decays as two new spots form at the efithe square cells to replace
spots B and C (spots’Bind C in Figure[1.10(d)). The process then repeats periodiclhe
primary difference between these patterns and the invéiedound with regular diffusion,
e.g., Figuré 1.2(b), is that the interior spot splits into tapidly counter propagating spots over
such a rapid timescale that the apex appears flat and theahtéithe cell appears to “fire” as
one (essentially flat) unit.

In an asymmetric square cell, (e.g., the cell centered at5.3 in Figure[1.9(d)), either a
spot forms closer to one of the oppositely propagating spotsne of the oppositely propagat-
ing spots itself grows and propagates more quickly. The ahyosof this square cell exhibiting

the latter scenario is illustrated in Figufes 1.1]{(a)-d}1A growing spot (spot B in Figure

[MI.11(a) and 1.171(b)) propagates toward the more slowly igipwspot (spot A). The two spots

then merge leading to an asymmetric structure (Figure d)jL1(
We next consider the effect of deterministic initial conmtits. Figure§ 1.12(h)- 1.12{g) are

generated using = cosmz andv = sinmax for variousm as initial conditions. All other

parameters are the same for all of the figures and are the sathe parameters employed in
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Figure 1.10. Line plots describing details of the symmetric spatioterapoell of Fig-
ure[1.9(d) at specific instants of time. A spot is created itwben two oppositely
propagating spots ((a) and (b), which splits into two couptepagating spots that are
annihilated with the oppositely propagating spots (c). Tvew spots are formed to
replace the two oppositely propagating spots (d).

Figured 1.9(d)-1.9(). Fon. = 1,..., 10, in cases when we found spatiotemporal cells (when
m=1,2,3,4,5,8,9), aside from the two cells in the = 1 case (Figurg 1.12(a)), the number
of square cells was equal ta. The square cells were all uniformly spaced, symmetric and
of the same size. Fon = 6,7, 10, we found stationary stripes. Fetr > 10 we have only
computed form = 60 andm = 180 which yielded pure Hopf (horizontal stripes) and pure
Turing (stationary vertical stripes), respectively.

The individual square cells are similar to the symmetricasgicells obtained for random
initial conditions, e.g., Figure 1.9(c). The primary effe€ the deterministic initial conditions

is that the steady state involves uniformly spaced and esjgatl square cells. The effect of



46

t=15002.9395 1=15003.1592

48 5 52 5.4 56 5.8 48 5 52 5.4 56 5.8
X

(@) u(z, 15002.94) (b) u(x,15003.16)

t=15003.2188 t = 15003.3594

4 A B 4

4.8 5 5.2 5.4 5.6 5.8 4.8 5 5.2 5.4 5.6 5.8
x x

() u(z, 15003.22) (d) u(x, 15003.36)

Figure 1.11. Line plots describing details of an asymmetric spatioterapcell of Fig-
ure[1.9(d) centered at~ 5.3 at specific instants of time. Spot B grows and propagates
more quickly than spot A ((b) and (c)) so that the spots mergda@cation closer to spot

A ((d)).

sinusoidal initial data for regular diffusion was similasg in most cases we obtained cells equal
in number tom. In some cases, we obtained identical evenly spaced celtsatbre either
symmetric or asymmetric, depending on the valuenof In other cases, the cells differed in
size,were not evenly spaced, and differed in number frentor certain values af:, we also
obtained breathing stripes. In all cases, the apex of d# bald a marked inverted U shape, in
contrast to the cells with flat apexes obtained in the anonsatase.

In summary, for all threéx, 3) pairs, stationary stripe patterns were observed for small
followed by mainly spatially homogeneous oscillationsr{bontal stripes) for larget. In the

case of(a, §) = (1.1,1.1), the steady states returned to stationary stripeswaas increased.
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Figure 1.12. Spatiotemporal patterns affor anomalous diffusion witly = g = 1.5,

z = 1.6, B ="7.76 andn = 0.67. Initial conditions wera: = cos mx, v = sin mx with
@m=1,0b)m=2,(c)m=3,d)m =4, (eym =5, (ffm =8, and (g)m = 9.
With the exception of (a), the number of spatiotemporalscsliequal tan and all cells

in each figure are of the same size and spaced evenly, andsgiflate in phase. For
m = 1, the number of cells i8n = 2, and while the cells are spaced evenly, they are
not equal in size and oscillate out of phase.

In the case ofa, 3) = (1.5,1.5) and (2, 2), steady states with spatiotemporal patterns were
observed as was increased before the steady states returned to maatilyretry stripes.
Spatiotemporal patterns were observed wWith5) = (2,2) for = = 1.2 and 1.4, while
for (a, B) = (1.5,1.5), they were observed for = 1.4, 1.6, and1.8 (thez = 1.8 case yielded
nothing that had not been seen with- 1.4 andz = 1.6 and is not shown). For both regular and
anomalous diffusion there seem to be a large number of stadely states, as in virtually all
cases different initial conditions gave different steatlifes. In both cases, asas increased,
the steady states became more stripe-dominated, whiled@ame:, regular diffusion yielded

more stripe-dominated steady states.
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In general, patterns obtained with regular diffusion wemendiverse, as breathing stripes
(Figure[1.2(d)), inverted U’s with a pronounced peak (Féglir2(b)), multiple traveling dis-
locations (Figur¢ 1.2(t)), and inverted U’s (Figlire 1.Jj(d¥re not observed for anomalous
diffusion. For anomalous diffusion, the predominant pategppears to be that of spatiotempo-
ral cells in the shape of inverted U’s with a square apex, eltée in a mainly Turing structure
of vertical stripes. This is something that we did not findhwiégular diffusion. With ran-
dom initial data, the cells occur in different sizes and narsband stable steady states with
essentially any inter-cell spacing and number of cells appessible.

For sinusoidal initial conditions with wave number only steady states with symmetric
and uniformly spaced cells (with flat apexes) were found hwit= O(1) the resulting steady
state had exacthy: cells with the exceptions described above. For larger gabfie:, only pure
Turing and pure Hopf steady states were found. In the casegodar diffusion, breaks in the
symmetry of the steady states were observed, as describgd,and the number of cells was

not always equal ten.

1.5.2. The fully nonlinear regime with unequal diffusion eyponents

We next consider the case+# (. In this cases is no longer equal to 1 so that for the same
value of z the values ofB.. andr. are slightly different from thex = (5 case. Since we do
not change the values of and,, both B andn change as a result of the unequal diffusion
exponents. To keep these parameters from changing wouldreejtering how far the system
is into the nonlinear regime as well as its closeness to thHEHP2 and this could result in a

significant qualitative change in the patterns not attabié to unequal diffusion exponents.
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We first keptG = 1.5 while settingn to 1.4 and then td .6. For eachy, we computed steady
states starting from three sets of initial conditions: tame random initial conditions used in
Sectiof 1,511, the same sinusoidal initial conditions tiise8ectiod 1.5.11, and the steady states
computed from random initial conditions with = 5 = 1.5 andz = 1.6. In this last case,
we took the solutions(z) andv(x) att = 1.5 x 10* and set them as initial conditions for
computations with the sameand differentu.

Fora = 1.6, 8 = 1.5,andz = 1.6 (B = 8.57, n = 0.672), the only steady states we
found were stationary stripes. In contrast, for= 1.4, 5 = 1.5 we did find spatiotemporal

patterns. Figurels 1.13[a) - 1.13(c) show steady stateshi®rcase obtained from the same
initial conditions employed in Figurés 1.9(d) - 1.9(c). trig[1.13(d) is a closeup of the solution

shown in Figur¢ T.T3(L).
There are two primary differences between Figlires 1.13(a)3(c) (unequal diffusion ex-

ponents) and Figurés 1.9(a) - 1.9(c) (equal diffusion erpts). In the former case regions

of vertical stripes (Turing type modes) are very much reduwzempared to the equal diffusion

exponent case. For the unequal diffusion case, the solappears to be dominated by nearly
spatially homogeneous regions that oscillate in time, (Hepf type regions). The second dif-
ference is that in contrast to the very slight U-shaped apfxethea = 5 case solutions with
(e, B) = (1.4,1.5) have a very marked inverted U-shaped apex, similar to themeis Figures
[1.7(d) {1.7(f) for(c, 5) = (2,2).

A similar difference was observed when the initial condigavere set as sinusoidal func-

tions. Figuref T.14(p] - 1.14(j) show more Hopf-dominateddy states than do Figufes 1.1P(a)
-[£.12(g), which correspond to steady states with 3 = 1.5. Further, unlike thev = 5 = 1.5
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(d) u(z,t)

Figure 1.13. Spatiotemporal patterns affor anomalous diffusion witly = 1.4, 5 =
1.5, z = 1.6, B = 7.11 andn = 0.66. The figures differ only in initial condition.
The same random initial conditions were used in Fighiresa]l 9L.9(c), and match up
according to letter label. In comparison to Figures 1]9(&)%{c), these show a more
Hopf-dominant set of steady states. Figure (d) is a closef tipearight spatiotemporal
cell of (c). The cells in (a) - (d) also exhibit a noticeabledrted U shape, compared
to those of Figuref 1.9(a) - 1.9(d), which exhibit a verydig-shape. (a) and (b) are
similar but differ in the number of stripes.

case, spatiotemporal patterns were obtained for sinusnitial conditions of all wave numbers
m=1,...,10.
As in the case with equal diffusion exponents, the= 1 case (Figuré 1.14(a)) appears to

be an exception. Fon = 2,3, 4 (Figure§ 1.14(®) [- T.14(d)), we seepairs of cells so that the

total number of cells i2m. This is in contrast to the: = 1 case for which there is only one
square cell. This is also in contrast to the case of equalgidgh exponents, where generally the
number of square cells was, not2m. This suggests that the cells split@s « increases from

zero. Them = 2 case is also an exception in that there are cells of uneqzelisat oscillate
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Figure 1.14. Spatiotemporal patterns affor anomalous diffusion witln = 1.4, 5 =
1.5,z = 1.6, B =7.11 andn = 0.66. Initial conditions were;, = cos mz, v = sinmx
with(@m =1,(b)m =2,(c)m =3, (d)ym =4,(€)m =5 m=6,Q@m=7,
(hym =38, (i) m = 9, and (j)m = 10. Unlike in Figurg 1.12(a), the: = 1 case ((a))
contains only one spatiotemporal cell. (b) - (d) containgaf cells equal in number to
m. In (b), the two smaller cells oscillate in phase with eadiregtas do the two larger
cells. All cells in all other figures are of equal size and ltest& in phase. In (e) - (j), the
trend is the same as in the case of equal diffusion exponenlsi the number of cells
is equal tomn.

with a phase difference. In all other cases, the cells areadilesize and oscillate in phase. In

Figured 1.14(é)[- 1.14{j) we do not find cell splitting and thuenber of cells equals:, similar

to thea = (3 case.
When we used the steady state solutions found in Figurea)t[®(9(c) as initial conditions

for the (a, 5) = (1.4,1.5) runs, there were cases when the steady state became mang Turi
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dominated and the spatiotemporal cells attain a more iegtdstshape (e.g. Figure 1.15(a)) and
cases when the difference was only in the shape of the celiskegures 1.15(b) arjd 1.15|c)).

Note that Figur¢ 1.I5() is a continuation of Figure 1]9(ah\a different value foky, Figure
[L.15(b) of Figuré 1.9(b), and Figure 1.15(c) of Figlure T}9(c

4 4
x10 x10

(@) u(z,t) (b) u(z,1) (©) u(z,t)

Figure 1.15. Steady states with = 1.4, § = 1.5 using as initial conditions the steady
states computed with = 3 = 1.5 (Figureg 1.9(3) F T.9(k), respectively). The only
difference between (b) afd 1.9(b) and (c) and 1}9(c) is tiatells of (b) and (c) have
a more rounded apex. Going from Figlire 1.9(a) to (a), we s&e ith addition to the
more rounded cells, the number of cells has decreasedingeddmore Turing-dominant
solution.

For the(a, ) = (1.6,1.5) case, while we obtained only pure Turing steady states with
z = 1.6, we found spatiotemporal patterns with= 1.4 (B = 7.35 andn = 0.649) when

starting with the same random initial conditions used tgfmut. Compared to the= 1.4 runs

with equal diffusion exponents, Figures 1.16(&) - 1.16f@ve more Turing-dominant steady

states.

The predominant feature in Figuifes 1.16(a) - 1.16(c) is tkegnce of spatiotemporal cells

with a U-shaped apex, which are described in Sedtion]1.5tky Thdicate that a spot, born
away from the stripes, splits into two counter propagatipgts, which are then annihilated at

the stripes. The difference between the cells of Figure§(a}1[1.16(d) and those described

in Section 1.5l is that, in the former, the two spots on eithée of the cell do not grow as
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Figure 1.16. Spatiotemporal patterns affor anomalous diffusion witlx = 1.6, 5 =
1.5, z = 1.4, B = 7.35 andn = 0.649. The figures differ only in initial condition. The

two smaller cells of (a) resemble the inverted U’s of Figuf&f)l. The cells in (b) are alll
qualitatively similar, while there are two immediately acknt asymmetric cells in (c).

large as they do in the latter, which is why the U-shape is nmclke noticeable in the former.
The two smaller cells in Figufe 1.16|a) are similar to thelsmeerted U’s of Figurd 1.7(f) and
oscillate in phase. The cells of Figyre 1.16(b) are qualist similar, while in Figure 1.16(¢),
we see an asymmetric spatiotemporal cell immediately adjato a U-shaped cell, which is
also asymmetric in that the left spot decays slightly mooevkt than does the right.

When we set one of the diffusion exponents equa (eegular diffusion) and the other to
a value less tha (anomalous diffusion), most of the patterns that we founteveemparable
to those described above. However, for, 5) = (2,1.4), andz = 14 (B = 874, n =
0.708), starting with random initial conditions, we found a stgadiate consisting entirely of

spatiotemporal spots (Figures 1.17(a) and 1.17(b)). Eifferandom initial conditions yielded

gualitatively very similar steady states, the only diffeze being the size of the individual spots.
While the pattern of spots may be due in part to the much larglere of B, from the limited
number of computations that we performed, we did not find amyla steady states for the

same or comparable valuesBfunder regular diffusion. Note a similar spot pattern wastbu
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by De Wit et al. for regular diffusion in22] with B = 10.3, closer to the weakly nonlinear

regime and farther from the C2THP.
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Figure 1.17. Spatiotemporal patterns af for anomalous diffusion witha, 5) =
(2,1.4), z = 1.4, B = 874, andn = 0.708. (b) shows a closeup of the bottom
portion of (a).

The dynamics of the spots of Figufes 1.1J(a) fand 1.17(b)ustibted in Figureg 1.18(a)
- [X.18(d), which depict half of a period (approximately 2tarof time) and correspond to the

lower half of Figuré T.17(b). The dark spots in Figyres 12} ahd 1.17(B) are due to the global
minima ofu in Figureg 1.18(&)[- 1.18(d), while the lightest regionsdare to the traveling pulse

that appears to be traveling at a constant or near constaatispeen centered at~ 4.8 in
Figure[1.18(3),x ~ 0.6 in Figure[1.18(0),x ~ 2.7 in Figure[1.18(d) and back to ~ 4.8
in Figure[1.18(d). The valleys accounting for the black sprtange in width, which can be

seen in Figures 1.17(a) ahd T.77(b), as a spot is very nareawthe beginning and end of its

duration, and wider during the middle. Locations at whicheys exist turn into locations of
peaks when the pulse arrives. Once the pulse passes, thgsvedappear, but with a shift in
space relative to their previous locations, which can barbleseen in Figurg 1.17(a). The result

in the space-time plot is that one row of spots runs diaggnaiid a row is displaced by one
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spot’s width relative to a neighboring row. Over one fullipdr(approximately 4 units of time),
the valleys return to the same locations.

In summary, it appeared that tfie, 3) = (1.4, 1.5) steady states with = 1.6 were more
Hopf-dominant than the cases with, 5) = (1.5,1.5). In the case of the continuation runs,
however, this trend was not seen. In the caséof’) = (1.6, 1.5) with = = 1.4, the steady
states appeared to be more Turing-dominant than the sarsevitin(a, 3) = (1.5,1.5). This
trend seems more consistent, as pure Turing steady statesouwad forz = 1.6 for all initial
conditions mentioned above. Further, the spatiotempetkd,avhich appear to have a flat apex
in the («, #) = (1.5, 1.5) case, take on an inverted U shape in the3) = (1.4, 1.5) case and
a U-shape in théa, ) = (1.6,1.5) case. In the case when one component undergoes regular
diffusion and the other anomalous, we found a series of adjaalleys that periodically turn
into peaks when a traveling pulse arrives, accounting ferddwrk spots and their arrangement
in Figure[1.17(3). Similar structures were found for regdiéusion in [22].

Since in all of these caseB,andn change as described above it is difficult to infer whether

these differences are due solely to the difference in ddfuexponents.

1.6. Discussion

Using weakly nonlinear analysis, we derived a pair of cod@enplitude equations that
describe the evolution of the Turing and Hopf modes over g kime scale near a C2THP of
the superdiffusive Brusselator model. The amplitude egnathave a similar form to those of
the regular model, but differ in three regards: the two spaterivatives in the pair of equa-
tions are with respect to two different length scales, theaéign describing the evolution of

the Hopf mode contains an integro-differential operatdriclv reflects the non-local effect of
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anomalous diffusion, and finally, the coefficients of the &mge equations differ from those

of the regular amplitude equations. The latter two diffeesncontribute to the differences in

the long wave stability criteria of the special solutionjei are described in Sectibn11.4. Two

of these criteria were confirmed with numerical computagionthe weakly nonlinear regime,

while criteria involving both the Turing and Hopf modes wéaneonclusive due to numerical

difficulties arising from smalt.
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Figure 1.18. Line plots describing details of the spots of Figures T a[1.17(0)
at specific instants of time. The global minima, account far dark spots in Figures

[LI7(@) and TI7(h).

In computations in the fully nonlinear regime, one of the dwant spatiotemporal structures

that we found under anomalous diffusion were the squarpeshgpatiotemporal cells with ei-

ther a flat apexd = (3), an inverted U shaped apex (< (), or a U-shaped apexx(> ().
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Qualitatively similar structures were found under reguldiiusion with a similar range in val-
ues ofz, though the square and flat cells embedded in a mainly Tutingtsre was something
that we did not find under regular diffusion. There was alsbaber that we found under
regular diffusion that we did not find with anomalous diffusj such as breathing stripes and
multiple traveling dislocations that appear to repel eatieio With equal diffusion exponents,
it appeared that the effect of anomalous diffusion was tayd#le onset of Hopf-type behavior
in terms of increasing, and also to inhibit spatiotemporal pattern formation, as geen when
we found only pure Turing and pure Hopf solutions with= 3 = 1.1. The main effect of un-
equal but close diffusion exponents appeared to be to Akeappex shape of the spatiotemporal
cells from the case of equal diffusion exponents. When offiesitbn was regular and the other
anomalous, we found spatiotemporal spots correspondivgliieys whose sizes and positions
changed periodically, similar to structures presente@#h [More generally, we found a large
number of steady state patterns consisting of a localizgidmeor regions of stationary stripes
in a background of time periodic cellular motion, as well dscalized region or regions of time
periodic cells in a background of stationary stripes. Eaahgattern lies on a branch of such
solutions, is stable and corresponds to a different inttmadition. The patterns correspond to
the phenomenon of pinning of the front between the stripdgtamtime periodic cellular struc-
ture. The different branches live in a region called the pigmegion in which such solution
branches snake back and forth. The idea of pinning was atlgisuggested by Pomeza&d],
who referred to pinning as locking. The idea has been coreidend extended by a number of
researchers, including Knobloch and coauthi@y4(,[12], who considered localized stationary
patterns in a background of a stationary, spatially unifetate, as well as in a background of

small amplitude traveling waves, Bensimon et. 8], vho considered localized traveling rolls
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(stripes) in a background of a stationary, spatially umfatate, and Malomed et. @9, who
considered localized hexagonal patterns in a backgrousthtibnary stripes. These scenarios
involve a subcritical bifurcation leading to bistabilitgtiveen the basic state and the bifurcated
state after the latter turns around to become stable. Irasthibour study involves bistability
between two stable supercritical branches which existaeadimension two bifurcation point.
We note that many of these patterns disappear when thd.sifehe domain is considerably
reduced. In the next chapter, we analyze in detail solutshgbiting Turing-Hopf coexistence
near the C2THP when both branches are stable and bifurgagecsitically from the homoge-
neous state. These solutions are qualitatively similandsé in this chapter (e.g., Figure 1.12).
However, while only stable solutions may be computed by itme-evolution method of this
chapter, we employ the method of continuation to computk siatble and unstable solutions in

the next chapter. In this way, we obtain the snaking streadithe entire branch of solutions.
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CHAPTER 2

Homoclinic Snaking Near a Codimension Two Turing-Hopf Bifurcation

Point

In this chapter, spatiotemporal Turing-Hopf pinning siwos near the codimension two
Turing-Hopf point of the one dimensional Brusselator matel studied. Both the Turing and
Hopf bifurcations are supercritical and stable. The pigrsolutions exhibit coexistence of
stationary stripes of near critical wavelength and timeqaic oscillations near the charac-
teristic Hopf frequency. Such solutions of this nonvaaatl problem are in contrast to the
stationary pinning solutions found in the subcritical Tigriregime for the variational Swift-
Hohenberg equations, characterized by a spatially perjgatitern embedded in a spatially ho-
mogeneous background state. Numerical continuation weg tgssolve periodic boundary
value problems in time for the Fourier amplitudes of the igpatporal Turing-Hopf pinning
solutions. The solution branches are organized in a sefrigedolle-node bifurcations similar to
the known snaking structures of stationary pinning sohgio/Ne find two intertwined pairs of
such branches, one with a defect in the middle of the stripgbn, and one without. Solutions
on one branch of one pair differ from those on the other bréaydor phase shift in the spatially
periodic region, i.e., locations of local minima of solutgon one branch correspond to loca-
tions of maxima of solutions on the other branch. These bresmare connected to branches
exhibiting collapsed snaking behavior, where the snakaggon collapses to almost a single

value in the bifurcation parameter. Solutions along vagiparts of the branches are described
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in detail. Time dependent depinning dynamics outside thielsanodes are illustrated, and a
time scale for the depinning transitions is numericallyabbshed. Wavelength variation within
the snaking region is discussed, and reasons for the ariate given in the context of ampli-
tude equations. Finally, we compare the pinning region éoMlaxwell line found numerically
by time evolving the amplitude equations. This chapter sedaon joint work with Yi-Ping
Ma of the Department of Geophysical Sciences at the Uniyes§iChicago and Department of

Engineering Sciences and Applied Mathematics at Northemedtniversity.

2.1. Introduction

Localized stationary solutions of reaction-diffusion teyss characterized by the coexis-
tence of a flat, i.e., stationary (time independent), sfpati@mogeneous state with a spatially
periodic state have recently been the subject of much asalys the context of variational
systems, a stationary front between two stationary statespected when both states possess
equal free energy. The point (or curve) in parameter spasdiah the free energies are equal
is referred to as a Maxwell point (curve). When the coexisteis between two flat states, a
perturbation from the Maxwell point results in a time depamidnvasion of the energetically
favored state into the other. 188, Pomeau explains that when the coexistence is between
a flat and spatially periodic state, there is a broadeningp@Maxwell point. Thus, within a
finite-width region in parameter space around the Maxweihip@ continuum of such solu-
tions exist. The broadening of the Maxwell point may be ex@d by the fact that the energy
difference must be sufficiently large in order to displace ttont connecting the coexisting
states by one wavelength of the periodic pattern. Equitglesisplacement of the front only

occurs sufficiently far from the Maxwell point. This effecsibeen referred to (e.g1{] and
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references therein) as the pinning of the spatially pecifdint. By assembling two such fronts
back-to-back, one can construct stationary solutions icé finite region of spatially periodic
states is embedded in a background of flat state. Such swwdie known as spatially localized
states in other contexts (cbH)), but in this chapter we refer to them as pinning solutiorse
pinning phenomenon is explained in detail @8].

The (variational) 2—3 and 3-5 Swift-Hohenberg equationsafoeal scalar field:(x,t),
which exhibit quadratic—cubic, and cubic—quintic nonéiniges, respectively, have been stud-
ied extensively to illustrate the phenomenon of pinning.skaf these studies have focused on
the subcritical Turing regime where there is bistabilityvibeen the flat and spatially periodic
states. In[1Q] for the 2—3 Swift-Hohenberg equation on an unbounded dopaacontinuum of
pinning solutions was shown to exist on branches that “shia&ek and forth in the bifurcation
diagram forming a series of saddle-node bifurcations. Asligted in [Bg], the snaking region
was found to straddle the Maxwell point. Solutions on thesathes are even in space and
thus preserve the spatial reversibility symmetry— —x, v — u) of the 2—3 Swift-Hohenberg
equation. The snaking region consists of two intertwineshbhes, with solutions on one branch
having a local maximum in the central part of the spatiallsiguic region, and solutions on the
other branch having a local minimum. Solutions at diffefgoints along one branch differ in
the width of the spatially periodic region. In particulagversal through two saddle-nodes or
equivalently one back and forth cycle on the snaking bramehesponds to two wavelengths
of the spatially periodic state being added or subtractdeaedges of the spatially periodic
region. In addition to the two snaking branches of symmesicitions, a series of pitchfork
bifurcations near the saddle-nodes on these branches aterd fo be connected through a se-

ries of rungs (or ladders) of asymmetric solutions. Therertifurcation diagram of stationary
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pinning solutions was therefore dubbed snakes-and-lad@autside the snaking region, a de-
pinning transition was shown to occur in which wavelengtlesaneither nucleated or destroyed
at the edges of the spatially periodic region. The speedmihdéeng was calculated analytically
and confirmed numerically. The conservation of a spatial HHaman was shown to select the
wavelength of the spatially periodic state within the sngkiegion, and the wavelength varia-
tion across the snaking region was qualitatively explaiveeskd on the free energy variation of
the flat and spatially periodic states. Studies of statipparning solutions whose analogs are
not addressed in this chapter include the effects of finitealo lengths on snaking. @], it
was shown that snaking branches in a spatially periodic doteaminate on branches of spa-
tially periodic states whose wavenumber depends on the idderagth. It was also determined
that these termination points corresponded to the Eckimestiakiility boundary. In42], it was
found that non-periodic and non-Neumann boundary condit@iminated entirely spatially pe-
riodic states of the Swift-Hohenberg equation, replaciveg with states with defects at or near
the boundary. In this case, instead of terminating on shapariodic branches, the snaking
branches either exit the snaking region and develop intodes of large amplitude patterns,
or they may turn back toward small amplitude and terminatghadr primary bifurcation points
on the flat state. Ing], a multiple scale analysis was used to derive an envelopatien for
pinning solutions of the non-symmetric generalized Swifthenberg equation. More recently,
the entire snakes-and-ladders bifurcation diagram, dictuin particular the width of the pin-
ning region, was analytically determined through a muttgxtale analysis beyond all algebraic
orders for the 2—3 Swift Hohenberg equation near the onsatitodriticality (cf. [L4]). For the
3-5 Swift-Hohenberg equation, the additional up-down sytmynz — x,u — —u) admits

two additional snaking branches of odd solutions (&fl, 3]). In contrast to the 2-3 case,
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traversal through four saddle-nodes on one snaking branaguired to add two wavelengths
at the edges of the spatially periodic region in the 3-5 Shdhenberg equation (cf9]).
Another explanation for the existence of stationary pignéolutions has been given in
terms of reversible spatial dynamics (see eltf,[17,[18,[67], or [27-30] for spike patterns in
singularly perturbed reaction-diffusion systems). Irstiiamework, the locations in the com-
plex plane of the spatial eigenvalues (in the case of flaes)air spatial Floquet multipliers
(in the case of spatially periodic states), along with spaéversibility are the key components
responsible for the existence of pinning solutions. Thetrmomplete account to date of the
snakes-and-ladders bifurcation diagram from this petsgecan be found in4], which for-
mulated a set of hypotheses about the connecting orbit leatte flat and spatially periodic
states that guarantees snaking. Whereas the free-enesgypdien is limited only to pinning
solutions of variational systems, the spatial dynamiasniéa&ork extends the theory of pinning
to a much broader class of systems. In particular, a cubittiqusinzburg-Landau equation can
be derived as a truncated normal form near weakly subdrifiéng bifurcations, and its solu-
tions yield insights into the location of the pinning regiarboth variational and nonvariational
systems. While no true snaking is possible in this equatios td phase rotation symmetry
of the spatial dynamical system, branches emanating frokhdtes bifurcation points exhibit-
ing snake-like behavior (termed “protosnaking”) were fdunrear the nonvariational analog of
the Maxwell point (cf. BQ]). Stationary pinning solutions organized along snakirgnbhes
have indeed been observed in many nonvariational system§39), two snaking branches
were computed for the Lugiato-Lefever equation; in additibwas shown that there are other
pinning solutions found by directly computing the invatiamanifolds to the flat and spatially

periodic states. A study of a nonvariational extension ef 35 Swift-Hohenberg equation
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in [43] stressed that asymmetric pinning solutions on the ladaler&xpected to travel in non-
variational systems. Irg[7], the forced complex Ginzburg-Landau equations were shimwvn
exhibit a different growth mechanism by which periodic stuwes were nucleated or destroyed
in the middle of the spatially periodic region as opposedheoddges. In this case the codimen-
sion two point marking the onset of snaking corresponds ¢ostmultaneous occurrence of a
(codimension-one) heteroclinic orbit between two ineglant flat states and a (codimension-
one) supercritical Turing bifurcation on one of them. Heti@enature of the bistability between
flat and spatially periodic states in this study differs fribva aforementioned studies that mainly
focused on subcritical Turing bifurcations.

Nonvariational systems allow for temporal oscillation$jeh have not been considered in
the context of snaking structures of pinning solutions. artipular, pinning solutions charac-
terized by a coexistence of Turing and Hopf states have blesereed in[22] in the vicinity of
a codimension two Turing-Hopf point (C2THP) of the (nonaéinnal) Brusselator model (see
e.g., [79/85/10Q and the references therein), where both the Turing and Biégfcations were
supercritical and stable. The Brusselator model, desayibisimplified autocatalytic reaction,

has long been a paradigm of nonlinear analysis and is given by

Uy = Dugy + E — (B + 1)u + vu?, r € R, t>0; (2.1a)

Uy = Upy + Bu — vu?, r € R, t >0, (2.1b)

subject to appropriate initial and boundary conditionsteé\ithat, unlike the Swift-Hohenberg
equations, the spatial dynamics [of (2.1) are not Hamilimn&patiotemporal patterns near the

Brusselator C2THP have also been computed for the supesthiéfvariant ofi(2]1) if96]. Both
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of these studies were restricted to using only time evahugzhniques to compute the pinning
solutions, which only yielded a very narrow view of all pdgsiTuring-Hopf pinning solutions,
since only stable solutions can be computed with a standtidliboundary value problem
(IBVP) code. Furthermore, the manner in which these sahgtiare organized on solution
branches is difficult to ascertain. In this chapter, we us@@U26] to solve boundary value
problems in time for th@, . . ., N spatial Fourier amplitudes of the solutiomandwv to (Z.1) for
appropriately largeV, under the assumption of spatial periodicity (thé&/, ..., —1 modes are
also accounted for since we only consider real solutiomshik way, we obtain both stable and
unstable solution branches, and the structure of theseleans readily obtained. Solutions on
these branches resemble stationary pinning solutiong vatt the flat state replaced by Hopf-
like temporal oscillations. The respective growth ratethef Turing and Hopf modes near the
C2THP assume the roles of the free energies of the coexsttes in variational systems, with
larger growth rates implying greater dominance. While theadity of growth rates is not the
analogous Maxwell condition, the “physical” roles of th@gth rates and the free energies in
the respective systems are analogous. We remark that spaeeolutions presented in this
chapter involve interfaces between regions in space tledtais in time, and regions that are
spatially periodic and stationary in time. Such interfacasnot be assigned to any of the four
classes of defects solutions proposeddf] [for time-periodic solutions of reaction-diffusion
systems, as the defects discussed generically serve dadete between only traveling waves
of nonzero speed.

This chapter is organized as follows. JB.2, we briefly review the derivation of the ampli-
tude equations near the C2THP [of {(2.1) and give condition$dicing-Hopf bistability. These

results are used to facilitate a search in parameter spadeifimg-Hopf pinning solutions. In
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§2.3.1, we describe the equations used to compute the pisoingons using the method of
continuation in AUTO. We then present i2.3.2 the snaking branches on which the pinning
solutions exist and discuss their relationship to the puneng and pure Hopf branches. We
describe the solutions found on these branches and how #ngyas the solution branch is tra-
versed. In§2.3.3, we illustrate the process by which solutions depienwparameters are set
a distance) outside of the snaking region, and give a numerical estimitee scaling of the
depinning speed with respectdoWe give a qualitative explanation for the direction of depi
ning based on the relative dominance of the Turing and HopfesoIn§2.3.4, we illustrate the
dependence of the wavelength of the spatially periodiesiatthe parameters of the Brusse-
lator model. In§2.3.3, we offer an explanation for the observed dependentteiframework

of properties of the amplitude equations derived2id. We then conclude and discuss open

problems ing2.4.

2.2. Turing-Hopf Bistability

In this section, we briefly outline the derivation of the exan equations for the amplitudes
of the Turing and Hopf modes near the C2THP. For a detailelysisaseel$3], or [96] for the
superdiffusive variant of Brusselator model. S&&(Q for a review of normal form theory near
the codimension two point, an@%] and [3§] for a weakly nonlinear analysis of Turing patterns
of the regular and superdiffusive Brusselator models indwoensions. Stability results from
analysis of the amplitude equations will yield the regimeTafing-Hopf bistability in which
pinning behavior is possible, as it is in this regime of Mdity that the pure Turing and pure

Hopf modes may coexist in physical space.
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The system{2]1) has one spatially homogeneous steady(stat€é = (E, B/E)". Here,
T denotes the transpose. Asis increased pasBy = 1 + E?, the basic state loses stability
through a Hopf bifurcation yielding spatially homogenetermporal oscillations of frequency
w. = E. As Bis increased padb; = (1 + E+/D)?, a steady state Turing bifurcation occurs,
yielding a stationary spatially periodic pattern with icd wavenumbet, = [E/(v/1 + E2 —
1)]*/2. When the Hopf and Turing bifurcations occur simultanegust., whenBy; = By, the
point in parameter space is referred to as a codimension tiwag-Hopf point. This condition
is satisfied wherD = D, = [(v/1 + E2 — 1)/E]?. To analyze the slow time evolution of the
two modes near the C2THP, we Bt= By + ¢ andD = D, + €2p, where) < ¢ < 1 andy
andp are bothO(1). Whenp > 0 (p < 0), the Hopf (Turing) bifurcation is the first to occur as
B is increased. Introducing the slow time sc@le= ¢t and the long spatial scal€ = ex and
perturbing the steady state by, v)" = (£, B/E)" + ea A(X, T)e** + ecC(X, T)e™ !t +c.c.,
wherea = ((E? +k?)/By,1)", ¢ = (=E(E +1i)/By,1)", andA(X, T) andC(X, T') are the
complex amplitudes of the Turing and Hopf modes, respdgtitlee amplitude equations are

readily calculated as

Ar = CAxx +7A — glAPA = M[CPA, (2.2a)

Cr = (k, +iK;)Cxx +vC — (B, + i) |C)*C — (8, + i6;)| A|*C . (2.2b)

The constants if(2.2) are given in the appendix. All cortstan(Z.2) are real and, with the
exception of» and~, only functions of the parametét. The coefficient is given byv = /2,
while v is a function ofy, p, and E. The conditions for supercriticality of the Turing and

Hopf bifurcations argy > 0 and3, > 0, where the latter condition is always satisfied for the
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Brusselator model. A value of for which the former is satisfied i& = 1.4, which is the
value used in all computations presented herein. For thiewaf £ andp > 0, the bifurcation
scenario is given in Figure 9(g) d&§]. The pure Turing mode stabilizes wher(and thus the
amplitude of the pure Turing mode) is sufficiently large tpptess growth of the Hopf mode.
This value ofu can be readily computed from a linear stability analysi®o2). These weakly

nonlinear results were used in the initial search for a pigmegion in parameter space.

2.3. Snaking Structure and Pinning Solutions

In this section, we first introduce the numerical procedateg used to compute the pinning
solutions. Both time evolution of the PDE systdm [2.1) anaticmation for a system of ODEs
(given ing2.3.1), gotten by representing the solutions by a finite remolb Fourier modes, are
employed. We then present the main results regarding tisteexdie of a robust region in pa-
rameter space in which stationary striped structures amel pieriodic oscillations coexist in the
same spatial domain. Such solutions vary continuously thighparameters of (2.1) and lie on
snaking branches, each of which is characterized by a sdrsegldle-node bifurcations similar
in appearance to the well known snaking structures fountligiess of stationary pinning solu-
tions. Two intertwined pairs of such solution branches am to exist. The main difference
between solutions on these two pairs of branches is that erpaim, a defect is present at the
center of the striped region, and on the other pair, no defdsts. Solutions on one branch of
one pair differ from those on the other branch by phase shift in the spatially periodic region,
i.e., locations of local minima (maxima) of solutions on dmmanch correspond to locations of

maxima (minima) of solutions on the other branch. We diseussre these branches bifurcate,
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and describe the differences between solutions on diffgrarts of each branch. For the non-
defect pair of solutions, we discuss the depinning tramsidind wavelength selection. Lastly,

we relate the results back to properties of the amplitudatsans.

2.3.1. Numerical Methods

We employ two approaches to numerically determine the ¢afiivn branches and the structure
and stability of the solutions on those branches. In thedpgtroach we solve the IBVP for the
PDE system[(2]1) and evolve the initial conditions to theargual steady states. To determine
the structure and stability of the solution branches, weleynpUTO, a continuation package
which follows solutions along the various branches andrdetees their stability. The IBVP
solver was used to 1) perform parameter searches to deteth@rparameters for pinning, and
2) provide appropriate initial guesses to be used in the Add@putations. AUTO was then
used to compute all the solution branches that we found atedrdme their stability.

We now describe the process by which we employed time ewnlut compute pinning
solutions. To locate the region in parameter space wherengns possible, we first solved the
IBVP system[(2.11) withZ = 1.4 using a Fourier spectral method in space and a semi-implicit
second order two step predictor-corrector method in timlee diffusion terms of[(2]1) were
treated implicitly while the reaction terms were treateplitly. The latter were first computed
in physical space before being transformed into Fouriecspeahere all time stepping was

performed. The initial conditions far andv were set as
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(uw,v)" = (E,B/E)" + eRe[ac™"0(z) + c(1 — 0(z))] ,
(2.3)
O(x)=H(x+0/2) — H(x —{/2); (<L,
on a domain of lengtli. subject to periodic boundary conditions, whéfér) is the Heaviside
step function. Thus, the initial conditioh (2.3) containpwae Turing mode on the interval
[—¢/2,¢/2] and a pure Hopf mode dn-L /2, —¢/2) U (¢/2, L/2]. Theu component of[(ZI3) is
depicted in Figurg 2.1(g). Note that the basic stateisfu = £ = 1.4.

Fixing £ = 1.4 and setting: (equivalently,B) sufficiently large as determined 2.2 so
that the pure Turing mode is stable, we varig@quivalently,D) until (2.1) yielded a time peri-
odic solution marked by the coexistence of Turing and Hopdlesoon the same spatial domain.
The large time behavior of such a solution is depicted in thece-time plot in Figurg 2.1(b),
which shows a nearly stationary striped region embeddedackground of low wavenumber
Hopf-like oscillations. Note that the locations of the niéees between the Turing and Hopf
regions remain constant in time. In all space-time plote, gpatial variable: is plotted on
the horizontal axis, the temporal varialslés plotted on the vertical axis, and dark (light) re-
gions indicate larger (smaller) values«fz, t). Space-time plots of(x,t) simply appear as
black-and-white inverted plots af, and are thus not included.

Most of the solutions shown in this section resemble anvaten time of Figuré 2.1(B) con-
sisting of one complete cycle of the oscillatory region. lgaus to the well studied problems
in homoclinic snaking of stationary solutionl, (2.1) adnah infinite multiplicity of solutions
similar to Figurg 2.1(B) that differ in the width of the steigh region. While Figurg 2.1(b) ap-

pears to be time periodic, all solutions that we have contplyemeans of time evolution have
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(a) typical initial condition foru (b) large time spatiotemporal behavior«of

Figure 2.1. (a) Line plot of a typical initial condition of; for L ~ 137.37, £ = 1.4,
e =0.1, p = 25, andp = 0.178 (equivalently,B = 3.21, D ~ 0.2666). (b) Space-time
plot of u for large time starting from the initial condition in (a). g and Hopf modes
coexist on the same spatial domain in a time periodic saiutio

exhibited a slight aperiodicity, possibly due to the diffiece between the oscillation frequen-
cies of the pure Hopf mode and the mixed mode between Hopf anddgl However, time
periodic solutions do exist and can be found using AUTO, Wiwas the main tool in obtaining
the results reported in this chapter.

One of the main capabilities of AUTO is the computation andticwation of limit cycles
of systems of ordinary differential equations. To explbistcapability, we used AUTO to solve

the time periodic BVP

1 diy, ork\? . R X
TE:_D — uk+F(u,v)k, Uk(o):uk(1)> k=0,...,N, (2.4a)

1 dvy,

2
T% = — (ﬂ) @k—l—é(u,v)k, f)k(()) :f)k(l), k‘ZO,...,N, (24b)
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where f, denotes the amplitude of theth mode of thg N +1)-mode Fourier transform of .

In 2.4), F(u,v) andG(u, v) are the reaction terms on the right-hand side§ of [2.1a)248),
respectively, and’ is the period of the solution as determined by AUTO. As in theetstepping
code, the reaction terms were computed first in physicalespafore being transformed into
Fourier space. This formulation allowed use of the basimelds of the time evolution code
described above, exploiting the fact that the IBVP solveeatly computes the right-hand side
of (2.4). The initial guess used to initialize the AUTO cortgtions was the Fourier modes of
u(x,t) andv(x,t) taken between the times < t < t;, whereu(—L/2,ty) andu(—L/2,t;)
are both local maxima; in Figufe Z.I|b), this condition esponds to all slices in time between
two consecutive horizontal black stripes, or between ongptete oscillation of the Hopf mode.
Here,u(z,t) andv(z, t) are solutions computed by time evolution. While, as notedipusly,
u(z, tp) is not identical tou(x,t,), the aperiodicity is not so severe that AUTO is unable to
converge onto a time periodic solution from the initial gaielideed, the solutions that AUTO
computes are exactly periodic in time. We suspect that snoh periodic solutions td (2.1)
exist, though with an extremely small domain of attraction.

We make the following observations. First, in the examplEigure[Z.1 withL ~ 137.37,
results of the bifurcation diagram and solutions foand v hardly changed as the number of
Fourier modes was increased fraw = 128 to N = 256. Comparing two corresponding
saddle-nodes in the snaking region, the value)oét the saddle-nodes differed in the two
resolutions by less than004%. Thus,N = 128 was used in the computations. The length
was chosen so that exactly 36 wavelengths of a pure Turingisolwith wavenumbek = k.
would fitin the domain. However, as we will show below, onlnwgavelengths are present when

the solution is continued to a near-pure Turing state. S#&carpinning region in parameter
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space further into the nonlinear regime was documente@2h [This regime was found to

exhibit highly relaxational temporal oscillations thajuéred a higher temporal resolution in
AUTO to resolve. This was not conducive to this study, as tialmer of modes required to
resolve the spatial variation already led to time-inteesiomputations. Further, results from
AUTO indicate that solutions of the more nonlinear parametgime may not be connected
through the familiar snaking structure that will be presenin the next section for the weakly
nonlinear regime. Lastly, the norm used as the measure addhgions and plotted on the

y-axis of the bifurcation diagrams below is given by

Lor = | [ S (k) + i3(o)] ot (2.5)

The norm[(2.5) is close to but not exactly equivalent to fhespace-time norm, differing by a
factor of two under the square root fbr# 0. Also, since only even solutions are considered,

u(t) ando(t) are real for alk andt.

2.3.2. Main Results

The complete bifurcation diagram of all solutions found l@wn in Figure 2.2, where the
diffusivity D is treated as the bifurcation parameter and plotted on thedmal axis, and the
norm (2.5) as the measure of the solutions plotted on thécaeexis. Heavy (light) segments
indicate stable (unstable) solution branches. Representsolutions from each branch are
shown in the figures below. We begin with a broad overview chdaranch and discuss how
they are located with respect to each other. We then desaitiebranch, and the corresponding

solutions, in detail. We note that all branches and theintgmis, stationary and time periodic,
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were computed by AUTO; different options were used to difddéTO to compute each type of

solution.
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Figure 2.2. Complete bifurcation diagram faB = 3.21, £ = 1.4, L ~ 137.37. The

bottom two branche®; and BT(FD ) are the stationary pure Turing and defect branches,

respectively. The top brancBy is the pure Hopf branch. The main snaking region

on the left consists of two pairs of intertwined branchi&s, and Bp,, andB](DDO) and

B}?. Connected to these branches in the manner describe ireEdbiare two distinct
branchesB-, and B¢s exhibiting collapsed snaking behavior. The inset is a nfagni
tion of the main snaking region inside the rectangle.

Figure[2.2 includes two pure Turing branchgsg, (local maximum at: = 0) and Bz, (local
minimum atz = 0), indistinguishable by the measufgr. These two branches arise from
the rotational invariance of the solutions bf(2.2a). Intjgatar, A = \/(y — Ck2)/geik=+9)
(Ik| < +/7/¢) is a solution to[(2.2a) for any whenC' = 0. However, within [21L), the

phases = 0, 7 are the only ones that preserve the spatial reversibilityrsgtry. The stability
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transition on the pure Turing branches occurs at a Hopf ¢étiimn point atD ~ 0.28471. An
analysis of[(2Z.R2) (not presented here as it is straightfadyvaredicts that, withk?> = 0.01 and

p = 25, the transition occurs @ ~ 0.28531, a difference of approximately x 10~*. The
point of stability transition also corresponds to the kghtron point of the mixed mode. For
clarity, we have plotted only a portion of the two pure Turbm@gnches, and chosen not to plot
the (unstable) mixed-mode branch. The pure Hopf branchotddrby B, corresponds to the
time periodic solution td(2.2b) witd = 0. The period of oscillations on the pure Hopf branch
isT ~ 4.6623.

The two Turing-Hopf pinning branchdsy, and Bp,. are connected through a saddle-node
bifurcation near the stability transition of the pure Tgrioranches. At this saddle-node point,
the solution resembles solutions along the pure TuringdhvesB, and By, with a small
amplitude oscillation in time of periodl ~ 4.4179. As is the case with all solutions described
below, the period of oscillations is close to but not equahi period of the pure Hopf oscil-
lations. The space-time plot of the solution foat the saddle-node, along with two line plots
of two particular slices in time, are shown in Figlire]2.3. Wthe length of the domain is
able to accommodate exactty Turing wavelengths of critical wavenumbkr= k., only 35
are present in Figufe 2.3. Hence among the discrete bandrefTuing solutions, each with
a slightly different wavenumber allowed by the length of tleenain, we have shown in Figure
[2.2 only the two pure Turing branches for which there &Favavelengths corresponding to
the same number as seen in Figurd 2.3. This pattern can bendbdve Eckhaus stable by
analyzing[(2.Za) withC' = 0.

The branches$3p, and Bp, continue towards decreasing values/ofbefore beginning a

snaking process in which the two branches intertwine. Irstieking region, the solutions on
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(a) space-time solution far (b) time slice at = 0 (c) time slice at =~ 2.1586

Figure 2.3. Space-time plot of, at the saddle-node bifurcation point of the two Turing-
Hopf pinning branche$3py and Bp,. The solution resembles a pure Turing solution
with a small amplitude temporal oscillation of peri@d~ 4.4179 in the shape of the
spatial envelope. The oscillations of the envelope canfeerad from (b) (time slice of
(a) att = 0) and (c) (time slice of (a) at =~ 2.1586). The parameters arB = 3.21,

E =14, L = 13737, andD = 0.2843. There are a total a35 Turing wavelengths
present.

these branches resemble that of one temporal period oféfBdb). Because thk, norm

of the pure Hopf branch is larger than that of the pure Turirenbh, solutions higher up on
the Turing-Hopf pinning brancheBp, and Bp, have a narrower striped region (i.e., fewer
stripes) than those on the lower branches. Analogous toitiection between thé, and
Br. branches, the two pinning branches are distinguished lyisns onBp, having a local
maximum at the center of the striped (Turing) region, anditsmhs on Bp, having a local
minimum. The upward sloping segments in the snaking regierstable; all other solutions
along the two branches are unstable.

Another pair of intertwined pinning brancheB}Do) and B}(fzr), is also characterized by
striped regions embedded in a background of Hopf-like admhs. However, solutions on
these two branches exhibit a defect in the central part o$tityged region. All solutions along
these two branches are unstable. In the same way that thehes#i,, and Bp,. begin near a

Hopf bifurcation point on the stationary pure Turing bra,rtct:ieB](DDo) andB}ffr) branches begin
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near a Hopf bifurcation point on a pair of stationary defe’arichesB}[O)) andBi(p’?r) (indistin-
guishable byL,r). The space-time solution far at the bottom of theB!?) branch is shown

in Figure[2.4(d), while Figurds 2.4{b) and 2.4(c) are linetpbfu at two instants of time, in-

dicating a slight temporal oscillation in the form of the 8plhenvelope. Figurels 2.4(d) and
show time slices of the solution at the bottom of Bi@) branch, characterized by a
local minimum, instead of a local maximum, at the center ef defect, centered at = 0.
Within the spatial envelop&p wavelengths are present. The stationary defect solutinriseo
B(T’f)) and B(T?T) branches were described analytically/@Y][in the framework of[(2.2a) near a
supercritical Turing bifurcation. As in the case of two lrhes of pure Turing solutions, the
stationary defect solutions have either a local minimum aximum at the center of the defect.

Finally, to the right of the four snaking branches of pinnsgutions are two separate
branchesB., and B¢, that exhibit properties similar to collapsed snaking (6f7][for sta-
tionary collapsed snaking), where the snaking region pe#a to almost a single value in the
bifurcation parameter. Solutions on these two branchesisbof two regions in space of ap-
proximately antiphase pure Hopf-like oscillations sepadeby striped Turing-like structures.
Solutions at different locations on each branch differ imiblative width of the two regions. A
schematic of the connections between all branches disgtissbown in Figuré 2]5.

All solutions on the branches described are even abet). We have not been able to find
any solutions that are odd. By time evolviiig (2.1) initielizwith particular initial conditions,
we attempted to compute odd solutions in which two Hopf negigeparated by a striped region
oscillate antiphase. However, due to the apparent presémesak coupling of the Hopf regions
through the striped region, the initially antiphase oatitins synchronize over time. We were

also unable to compute asymmetric solutions that, in thigostry pinning solutions of the
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Figure 2.4. Solutions at the bottom of thB}(fS) anng) branches. The oscillations of

the spatial envelop€l{~ 4.4167) can be inferred from (b) (time slice of (a) @& 0)
and (c) (time slice of (a) at~ 2.1991) for theB}fé) branch. Time-slices for thB}?

branch are shown in (d) and (€) & 4.4166). The parameters a8 = 3.21, £ = 1.4,

L =137.37, andD = 0.28544. Within the spatial envelop8p wavelengths are present.
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Swift-Hohenberg equations (see e.d.l|[and [14]), make up the “rungs” that connect two
intertwined snaking branches. Such solutions can be aaristt by “gluing” together parts of
solutions on one branch. However, when considering timagiersolutions, as we do here,
each component must have the same temporal period, whicgnergly not the case. As a
result, AUTO will not be able to converge to a time periodituson. This is a fundamental
difficulty with the present model, not encountered in pregictudies of stationary pinning

regimes.
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Figure 2.5. Schematic bifurcation diagram of Figure]2.2 illustratingnoections be-
tween branches. The dashed boxes represent snaking re§iarissegments indicate
the existence of branches of stable solutions.

We now discuss each pair of branches in detail starting Wéhwo pure Turing branches. In

Figure[2.6, we show the solutions at the point of the stafiilitnsition where a Hopf bifurcation
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occurs, marked by a solid circle in Figure 2.6(a), on the thas B, and Br,. The four
pinning branches are also visible in Figlire 2.6(a); in palér, the saddle-node point from
which the Bpy and Bp, branches bifurcate can be seen to be located near the afutienesl
Hopf bifurcation point on the pure Turing branches. Mukiplopf bifurcation points occur on
the Bry and Bz, branches; the one marked by the solid circle located at #imlisy transition
point is the one that occurs at the smallest valu®of he corresponding (stationary) solutions
for v are plotted in Figure 2.6(p), which has a local maximum at 0 (Bro) and Figuré 2.6(¢),
which has a local minimum at = 0 (Br,). For clarity, only the intervak: € [—20,20] is
shown. The entire domain contai$s wavelengths.

As stated above, the two Turing-Hopf pinning brancligg and Bp,. bifurcate from the
saddle-node point located near the stability transitiomtpof the two pure Turing branches

Bro and Br,.. In Figured 2.7(B) and 2.7(c), we show one space-time soldtr « from the

lower part of each branch to illustrate how the solutions twa iranches differ from that of

the saddle-node shown in Figyre Z.B(a). Similarities betwEigureg 2.7(b) and 2.7[c) are

immediate when spatial and temporal periodicity of the eg@ne plots are considered. This

similarity is apparent when comparing Figdire 2.J7(c) to FejR.7(d), the latter of which has
been periodically shifted in both space and time from Fi{u#b). The center of the striped
region occurs at = 0 (or, by periodicity, the leftmost point in space of Figir@(®}). In
Figure[2.7(d), the center of the striped region is a localimar (dark stripe) while in Figure
[2.7(c), it is a local minimum (white stripe). These two salas differ slightly both in the
temporal period and the wavelength of the striped regiore mlechanism(s) that affect these
two guantities is an open problem. Experiments involvirgtime evolution of[(2]1) suggest

that the selection of the wavelength of the striped regiondspendent of initial conditions.
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Figure 2.6. Closeup of stability transition point (indicated by soligcte) on the pure
Turing branches (a) and the corresponding solutions fon B (b) andBr,. (c). The
pure Turing branches are indistinguishable by the meabure The parameters are
B=321,FE=14,L~137.37, andD ~ 0.2847.

Snaking higher up th&p, and Bp, branches, the spatial extent of the striped region is re-
duced through a series of saddle-node bifurcations. Inreig8, we show the solutions at two
saddle-nodes in the snaking region of #Bg, indicated in Figur¢ 2.8(R) (thB}DO) and B}?
branches have been removed for clarity). We note in Fig@&@J}that, while the saddle-nodes
exhibit an approximate “lining-up property” (cf34]) where saddle-nodes occur at approxi-
mately the same value of the bifurcation parameter, we gbsenonmonotonic convergence

of saddle-nodes in the parameter a departure from previous results on stationary snaking
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(c) solution on branctisp, with D =~ 0.26673 (d) same as (b), flipped imand shifted irt

Figure 2.7. Solutions on the lower part of the Turing-Hopf pinning braesBp, (b)
and Bp, (c). The temporal periods are, respectivilyz 4.6450 andT' ~ 4.6452. In
(d), we show a periodically (temporally and spatially) skdf plot of (b), illustrating the
similarity between (b) and (c). The parameters8re- 3.21, ' = 1.4, L. ~ 137.37.

branches. The solution at the lower saddle-node, showrgir&i2.8(H), is Turing-dominated
while the one at the higher saddle-node, Fidure 2.8(c), isfldominated, consistent with the
fact that in Figuré 2]2, the stationary Turing branches liagesmallest values df,» and the
pure Hopf branch the largest. The periods of the solutioss differ slightly, with that of the
solution higher on the branch closer to the period of the plopf solution. While the number

of stripes is difficult to quantify due to temporal oscilatis and the interaction between Turing
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and Hopf regions, the process by which solutions gain or gdspes can be clearly seen by

comparing solutions at particular points in time.
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(a) closeup of non-defect pinning branches
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(b) solution on low saddle-node @&fp,. (c) solution on high saddle-node 8f

Figure 2.8. Progression of solutions along the snaking region (a) of2hg branch. In
(b), the striped region occupies the majority of the spalttahain, while in (c), the time
oscillatory region is dominant. The temporal periods ofgbkitions ard” ~ 4.6573 (b)
andT = 4.6597 (c). The parameters are = 3.21, £ = 1.4, L ~ 137.37, D ~ 0.26685
(b) andD =~ 0.26682 (c).

In Figure[2Z.9 we show the process of the nucleation of a Turelly or stripe, as thép,
branch is traversed downwards. In particular, for a typsegjment of the snaking branch, we
illustrate the difference between solutions at three couthee saddle-nodes by plottingz, ¢,),
wheret, € [0, 7] is the instant in time when the center of the oscillatory sagn « attains a

local minimum in time. In Figuré 2.9(a), we indicate the #hisaddle-node points of interest
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as well as two intermediate points. In Figlire Z.9(b), theisoh at saddle-node point (b) has
a main Turing region containing 10 local maxima at whichas a value betweehand?2.5.

The main Turing region is bounded between two pairs of loaatima of lesser value. As the
branch is traversed downwards, the two pairs of local maxgnosv in amplitude, as seen in

Figure[2.9(d)[ 2.9(dl}, 2.9(e), while very little is changadhe main Turing region. Once the

saddle-node point (f) is reached (Figlire 2]9(f)), the laafehe pair of maxima has grown to
approximately equal height as the outer pair of maxima oftlaen Turing region. Thus, as the
branch was traversed from saddle-node point (b) througtilsatbde point (d) to saddle-node
point (f), the main Turing region gained one pair of maximeatveo Turing wavelengths.

We make some remarks regarding the process illustratedurdfP.9. First, the mechanism
of nucleation at the edge of the Turing region, including artigular the nucleation of two
Turing wavelengths for every two saddle-nodes, is the satiead reported for the 2—3 Swift-

Hohenberg equation if®]. Second, comparing Figurgs 2.9(b) &nd 2]9(f) revealsthiwatarger

the extent of the Turing region, the more the central stripgemble that of the pure Turing
stripes at the same value bf. This trend suggests that there is weak coupling betweetwhe
Turing-Hopf interfaces through the Turing region, and tin& coupling strength weakens the
greater the distance between the two Turing-Hopf intedadéird, all corresponding space-
time solutions of Figures 2.9(1)—2.9(f) have slightly difint temporal periods, given in the
caption of Figurd 2]9. Lastly, we observe the same nucleati@racteristics for the defect
pinning branches.
Solutions on theB(TDO) and B(T?T) branches are characterized by a spatially periodic pattern

contained within a spatially varying envelope. Solutiom\stb}[o)) (Bf(p?) have a local maxi-

mum (minimum) atc = 0. As indicated in Figurg 2.10(a), both stationary defechbhes are
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Figure 2.9. lllustration of the nucleation process that occurs at thgeeanf the Turing
region. In (a), the locations on thigp,. branch of the subsequent figures are indicated. In
the progression (b)—(f), the Turing region grows by a widthno wavelengths through
the increase in amplitude of a pair of local maxima at its edgehe temporal periods
of the solutions ar@” ~ 4.6597 (b), T" ~ 4.6597 (), T' ~ 4.6596 (d), T" ~ 4.6595 (e),

T ~ 4.6594 (f). The parameters atB = 3.21, F = 1.4, andL ~ 137.37.
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unstable. Multiple Hopf bifurcation points occur on the timanches; the one marked by the
solid circle is the one that occurs nearest the bifurcatmntwf the defect Turing-Hopf pinning
branchesB}DO) andB}(fr). The two solutions at the Hopf bifurcation points are showRigures

[2.10(b) andl 2.10(t). Like the space-time solution at therbétion points of theB}fO)) andBl(f?T)

branches in Figurie 2.45 wavelengths are present inside the spatial envelope.
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Figure 2.10. Closeup of the Hopf bifurcation point (indicated by solidcte) nearest
the saddle-node bifurcation pointBIfDlg) anngzr) on the stationary defect branches (a)
and the corresponding solutions feion B(Tg) (b) andB(T?r) (c). The stationary defect

branches are indistinguishable by the meadufe. The parameters arB = 3.21,
E =1.4,L ~137.37, andD ~ 0.28544.
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As seen in Figurg 2.10(a), the defect Turing-Hopf pinningrimhesB%) andB}fjr) begin
near a Hopf bifurcation on the stationary defect branoﬁg@ andBi(p?. The space-time so-
lution at the bifurcation point is shown in Figure 2.4(a). eT$imilarity between this solution
and the stationary defect solution at the Hopf bifurcatiompis immediate upon comparing
Figurd 2.4(0) to Figure 2.10(b) and Figlire Z.4(d) to Figui®X). In Figur¢ 2.111, we show two
typical defect Turing-Hopf pinning solutions at low and higaddle-node points on tlié}?
branch (Figuré 2.11(g)). Other solution branches have teranved for clarity. The defect can
be seen to be centered around= 0 in Figureq 2.71() and 2.11{c). As with the non-defect

pinning branche®p, and Bp,, solutions lower on the branch have a larger striped redian t
those higher on the branch. The manner in which Turing wagghes are nucleated on the
branches3p, and Bp,, also applies to solutions on the defect pinning branchesbtlars is not
shown. We remark that although stationary defect pinnirigt®ms have not been observed in
the Swift-Hohenberg equations, they have been found iniagieally forced Ginzburg-Landau
equation originally proposed ifY] and subsequently studied in detail it3. In this example
the two “hybrid” snakes formed by defect pinning solutiongxist in the same snaking region
as the two “primary” snakes formed by non-defect pinningisohs, precisely as in Figure 2.2.
Besides, it was theoretically predicted 63 that as the spatially periodic region of the pin-
ning solution becomes wider along the snaking branchedptfagions of the saddle-nodes on
the two hybrid snakes approach their limiting values from d¢ther direction and more slowly
compared to those on the two primary snakes, which agaireagvéh the upper portion of
Figure[2.2.

The collapsed snaking branch&s; and B¢, lie to the right of the four main snaking

branches described above. All solutions on the two branahesinstable. Thé&.; branch
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Figure 2.11. Progression of solutions along the snaking region (a) oﬁﬁ%) branch.
In (b), the striped region occupies the majority of the ggatbomain, while in (c), the
time oscillatory region is dominant. The temporal periodighe solutions arél’ =
4.6533 (b) andT ~ 4.6592 (c). The parameters aie¢ = 3.21, £ = 1.4, L ~ 137.37,
D ~ 0.26690 (b) andD = 0.26683 (c).

connects tdBp,, andBc, connects toB}?, both through a complex array of saddle-nodes that
will not be described here. A simplified schematic of theseneztions is shown in Figute 2.5.
In Figure[2.12(3), we show a closeup of the two collapsedisgairanches. As the branch is
traversed beginning from the top, the snaking region agp®acollapse to a single value i

in a back-and-forth manner before broadening out at thebwotiTwo typical solutions on the
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lower (Figurg 2.12(B)) and upper (Figure 2.12(c)) part @& B, branch are shown. The solu-

tions on the lower and upper part of the collapsed snakingadbes differ in the relative widths
of the mainly spatially homogeneous regions undergoingagimately antiphase temporally
periodic oscillations. This is in direct contrast to theulkeg snaking behavior discussed above
in which solutions on lower and upper parts of the brancledsd in the widths of the spatially
periodic region, i.e., the number of Turing stripes. The that in the latter case, stripes are
nucleated or destroyed as the branch is traversed, whileeiriadrmer case, only the widths
of predominantly spatially homogeneous structures aegeadt offers a simple explanation for

the fact that solutions such as those in Figlires 2.12(b) ali&{@ lie on a collapsed snaking

branch, while those in, e.g., Figure 2.8(b), lie on a snakirzgch with finite width. The differ-
ence between the solutions in Figre 2.12 and those on tiee athapsed snaking brand
will be illustrated below.

We make two remarks regarding Figlre 2.12. First, the tinuéllasory regions of space
in Figured 2.12(B) and 2.12{c) are flatter than those of ewiatdescribed above (e.g., Figure

[2.11(c)). Further, the frequency of these oscillationgaser to that of the pure Hopf frequency.
These characteristics suggest that there is very littlplooy between the time oscillatory re-
gions and the interfaces in between them. Second, the naatijyhase temporal oscillations

in Figureqd 2.12(B) and 2.12[c) are separated by spatiatifl@®ry structures, while the cor-

responding branches in Figure 2.12(a) snake back and fottteir approach to a single value
in the bifurcation parameter. A direct analog of this scenéor stationary solutions, where
two spatially homogeneous states are connected by spatsillatory fronts, is given ing7).
There, the spatially oscillatory fronts were explained ly $patial eigenvalues of the two spa-

tially homogeneous states. In this case, they form a quartee complex plane with nonzero
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Figure 2.12. Progression of solutions along the collapsed snaking ng@ipof theB1
branch. The solutions in (b) and (c) (locations on the bréndfcated in (a)) differ in
the ratio between the widths of the time oscillatory regiohse temporal periods of the
solutions arel’ ~ 4.66234 (b) andT =~ 4.66231 (c). The parameters ae = 3.21,
E =1.4,L~137.37, D ~ 0.27083 (b) andD ~ 0.27077 (c).

real and imaginary parts, with the nonzero imaginary pasponsible for the spatially oscil-
latory front. For stationary solutions, the differencevibetn regular snaking and collapsed
snhaking behavior has been understood as follows. Collagsaking solutions are explained
in [56] as the intersection of the two dimensional stable and biestaanifolds of two “sta-
tionary” (in space) states in a four-dimensional spatialaiyical system. This codimension

one intersection is the reason behind the collapsed snakincture of the solution branches; a
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slight perturbation in the value of the control parameteulddead to the breaking of the non-
robust intersection of the manifolds. In contrast, the sblsiaking region of regular snaking
solutions can be explained by a codimension zero intesebitween a two dimensional un-
stable manifold of a stationary (in space) state with a taliegensional center-stable manifold
of a periodic orbit in space, with spatial reversibility gaateeing the return orbit to the station-
ary state. Extension of this description to the present chtisme dependent snaking behavior
involves dimension counting in the style @] in the infinite dimensional phase spacelof(2.1),
and is left as future work.

In Figurd 2.13(H), we illustrate the difference between temparable solutions on thg-;
and Bc» branches, respectively. The solid curve shows the solut{on of Figure[2.12(h)
at the time where(0,¢) is a local maximum. The dashed curve shows the same slice of a
similar solution on the other collapsed snaking brahihh. The respective locations of the
two solutions are shown in Figufe 2.13(a). As has been théndi®n between thé and
7 regular snaking branches, points in space where solution3.9 attain a local maximum
(minimum) are approximately points where thoseRyy attain a local minimum (maximum).
This antiphase relationship between the two collapsedisgdkanches is not as exact as in the
regular snaking branches, perhaps due to the separatibe obtlapsed branches in parameter

space.

2.3.3. Depinning Transition

Within the regular snaking region described above, thetswols are time periodic and the rel-
ative widths of the striped and time oscillatory regions agmconstant in time. That is, the

Turing-Hopf front is pinned while the solution is inside theaking region. Outside the snaking



92

collapsed snaking time slices
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Figure 2.13. In (a), the bottom of theéB-; and B¢, branches are shown. In (b), two
slices of space-time solutions dB; (solid) andBso (dashed) are shown. Their lo-
cations on the respective branches are indicated in (a) iy decles. The spatially
periodic regions of the two solutions oscillate approxiehatantiphase with periods
T =~ 4.66234 (solid) andT ~ 4.66229 (dashed). The parameters ase = 3.21,
E=14,L=137.37andD ~ 0.27083 (solid) andD =~ 0.27185 (dashed).

region, the fronts are expected to depin, as was the cased@—3 Swift-Hohenberg equation

in [10]. The direction of depinning may be inferred from the weakbnlinear analysis. In
42.2, we found that whep > 0, or equivalentlyD > D., the Hopf bifurcation occurs first &3

is increased. This suggests that wheiis increased, the Hopf mode becomes more dominant
relative to the Turing mode. Thus, whéhis set to the right of the pinning region, the Hopf
region is expected to invade the striped region. Figurel Blistrates the depinning dynamics
that occur in this scenario. Figure 2.14(b) shows a space-filot ofu where the temporal
oscillations have been removed for clarity by only recogdiimes at which the center of the
time oscillatory region attained a local minimum in time. égected, the Hopf region (white)
invades the striped region. The time evolution[of|2.1) wasalized with one slice in time

of the space-time solution ef andv at a particular saddle-node as computed by AUTO. The
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parametetD was set aiD = D, + § with § > 0, whereD;, is the value at the particular saddle-
node marked by a solid circle in Figyre 2.14(a). Invasionhef $triped region was observed

when the process was repeated wittset to the left of the snaking region (Figlre 2.15).
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(c) evolution ofLog(t) (d) log-log plot of depinning time versus
Figure 2.14. Shown in (a) is a closeup of thBp, branch with the location of the
initial condition indicated by the solid circle. At the sdelshode,D = D, ~ 0.26683.
The evolution up the branch @tdistance outside the snaking region is depicted by
the vertical arrow. The space-time depiction of the sofutstarting from this initial
condition is shown in (b) fos = 1 x 10~°. Only the time slices at which the center
of the time oscillatory region is at a local minimum are irgd. The slow-fast-slow
evolution of Lyg(t) of the time slices of (b) is shown in (c) with timteon the horizontal
axis. The corresponding slow and fast regions are indidatéa). Thes—'/2 scaling of
the time of traversal between two saddle-nodes is showreitotiplog plot in (d). The
solid line is a least squares fit through the data points (gmiptles). The dashed line
has a slope of-1/2.
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The progression of the solution mirrors the depinning distary pinning solutions ird[Q].
Initialized in the neighborhood of a saddle-node, the smtuevolves in a manner so as to
approach the solution at the saddle-node either below iheifstriped state invades, or above
it, when the Hopf state invades. This progression can beraderom Figurd 218, as stripe-
dominated solutions populate the lower portions of the ¢inais in [10], we observe that the
rate of evolution is slow in the vicinity of a saddle-node;rigases away from the saddle-node,
and decreases again near the next saddle-node. This dtwldav progression past saddle-
nodes has also been observed in nonlinear pulse splittynmes (see e.g/30,59,82)). Figure
illustrates the slow-fast dynamics by tracking $patial normL,s(t) of each slice in

time of Figurg 2.14(B). Thé,s norm is defined as

1 L/2
Log(t) = Z/L/zuz(x,t) dx .

Note that, unlike thel,r norm in (2.5), L,s(¢) decreases as the width of the striped region

decreases. As seen in Figiire 2.1}4(c), the norm decreaseseip-tke progression in time, sug-
gesting a sequence of destruction events separated byrdtargals of relatively little change.
Because the saddle-nodes do not line up exactly, times sganteach saddle-node are not
uniformly distributed. We finally remark that the destroctievents do not continue until the
system reaches a pure Hopf state. This is due to the preséstabte branches that extend
beyond the snaking region to the right, which can be seengorgji2.14(a) as well as in Fig-
ure[2.2. However, the progression of a Turing-Hopf pinnialyigon down the left side of the
snaking region does evolve to a pure Turing state, seen uréf@ I5(0). This is suggested by
the snaking diagram shown in Figyre 2.15(a). A wavelengjhsaghent occurs at~ 2 x 10*
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in Figure[2.15(1) so that the final state, like the pure Tusolytions described if2.3.2, has
35 wavelengths.

Repeating the above procedure for variousve observe that the time of traversal from
one saddle-node to the next scales approximately 83, the same scaling found i) for
the 2—3 Swift-Hohenberg equation. This scaling was detethonly by the time to traverse
from the starting saddle-node, indicated in Figure 2.1#(a@he one immediately above it. We
numerically determined the time by calculating the differe between the appropriate time
sliceu(x, ty) of the solution computed by AUTO at the second saddle-noéeeoy time slice
of Figure[2.14(). The time at which thes norm of the difference was minimized was taken
to be the time at which the solution was considered to havehezhthe second saddle-node.
The log-log relation of the traversal time to the distandeom the saddle-node is shown in
Figure[2.14(d); the solid line is a least squares fit througmerical data (empty circles), and
the dashed line has slopel /2. We finally remark that the aforementioned slight aperiibglic
of the temporal oscillations in time evolved solutions[ofIj2makes it difficult to determine
whether an integer number of temporal oscillations occtwéen saddle-node transitions. This
difficulty is exacerbated by the vast difference in the tiroales between one temporal period

and the transition time.

2.3.4. Wavelength Selection

In studies of pinning solutions in the stationary Swift-téaberg equations, the wavelength of
the periodic state was shown to vary within the snaking megidis variation can be understood
by the conservation of a spatial Hamiltonian (412]), a property not available in the Brusselator

model. However, in the latter case, the wavelength of thengustate also varies within the
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(a) schematic of progression down the brancfb) space-time depiction of Turing invasion

Figure 2.15. Shown in (a) is a closeup of thiép,. branch with the location of the initial
condition indicated by the solid circle. At the saddle-nofle= D, ~ 0.26649. The
evolution down the branch atdistance outside the snaking region is depicted by the
large vertical arrow. The space-time depiction of the $ofustarting from this initial
condition is shown in (b) fod = —1 x 10~°. Only the time slices at which the center of
the time oscillatory region is at a local minimum are inclddé& wavelength adjustment
occurs att ~ 2 x 10*. The final pure Turing state contais§ wavelengths. The
parameters ar8 = 3.21, £ = 1.4, andL = 137.37.

snaking region and is distributed evenly among all strip#s. illustrate this phenomenon for
solutions on theBp, branch. Figur¢ 2.16(a) shows a scatter plot of the waveteofjthe
striped region for solutions in the snaking region. It shalat, generally, the wavelenggh
increases as the paramefeincreases. Deviation from the trend near the top of Figuté(2)
occurs for solutions near the top of the snaking branch. lkase solutions, the Hopf region
has significant influence on the entire striped region as @tresthe Turing-Hopf coupling.
For a typical solution, Figuie 2.16({b) shows thécations of each individual local maximum.
The linear relationship implies a spatially uniform wavejéh throughout the striped region.
We note that the critical wavelength is \. ~ 3.8158 and the value ofD at the C2THP is

D. =~ 0.26483. Thus, Figuré 2.16(h) shows that whénis closer toD,, the wavelength\ is
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closer to)\.. We also observe this trend with the paraméiethe closerB is to By, the closer
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(a) scatter plot of wavelengthsversusD  (b) locations of local maxima of typical solu-
tion
Figure 2.16. Shown in (a) is a scatter plot of the wavelengghsf the striped region
of solutions on the snaking segments of #Bg, branch. Most of the data points are
concentrated in the lower region of the plot and suggest giy@sorrelation ofA\ with
D. The approximately linear behavior shown in (b) of the lawa of local maxima of a

typical solution indicates equally spaced peaks and slyatiaiform wavelengths. The
parameters ar& = 3.21, £ = 1.4, andL = 137.37.

There is an important difference, however, between the l@agéh selection in Figure
and that found for the (variational) 3—5 Swift-Hoberg equation irld2]. In the case of
the latter, the snaking region straddles a Maxwell poiniiatpof energy balance between the
homogeneous and spatially periodic states. Deviation tf@rMaxwell point in the direction
that favors the periodic state causes it to expand, regultia uniform increase in wavelength
of the entire spatially periodic region. Further deviatimyond the snaking region triggers a
depinning transition where the spatially periodic statades the homogeneous state leading to
a picture similar to Figurg 2.15(b). The reverse is true wtheviation from the Maxwell point
energetically favors the homogeneous state. In this chsepitture would resemble Figure

[2.14(b). Thus, the variation of the wavelength within thalsng region is consistent with the
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depinning process: when the bifurcation parameter is @ateas to increase the wavelength,
further variation of the parameter in the same directionutside the snaking region would lead
to an invasion of the periodic state. Conversely, when tharpater is varied so as to decrease
the wavelength, further variation to outside the snakirggore would result in an invasion of
the homogeneous state. This relation between wavelenggbtise and depinning direction
does not apply in the case of the Turing-Hopf pinning sohgidiowever. Given the depinning
results of§2.3.3, the reasoning above would suggest that the wavéleridhe striped region
should decrease (increase) wherincreases (decreases). Figure 2.16(a) suggests that-the op
posite is true for the Turing-Hopf pinning solutions. Thtiee wavelength selection within the
snaking region is unrelated to the direction of depinninige Tatter is determined by the relative
dominance between the Turing and Hopf modes and was exglairf2.3.3. An explanation

for the former is given in the next subsection.

2.3.5. Comparison of Pinning Region to Results Based on Amplde Equations

Like the Turing-Hopf pinning solutions describedd?.3.2 for the full Brusselator modé[(2.1),
there also exist Turing-Hopf solutions of the amplitudea@ns [Z.2). In such solutions as that
in Figure[2.17(3), regions in space wherd|, |C|) = (0, Cy) are connected by approximately
exponential monotonic fronts (close up in Figure 2.1[7 (@)egions wheré| A|, |C|) = (A, 0).
We note that whileC| is stationary('(z, t) is complex and oscillates periodically in time. The
widths of the Turing and Hopf regions are arbitrary and thasrainuum of solutions exists for
an appropriate parameter set. Such solutions of the ardpliquations translate to solutions
similar to that shown in Figurle 2.8 for the full Brusselatoodiel. However, these solutions of

the amplitude equations exist only on a codimension onestubgarameter space, while the
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snaking region of the Brusselator model is codimension.z&tas point is developed further
below. We remark that while Figufe 2.17(a) resembles thearpatterns constructed i6{] for
a particular scaling of (211), that analysis does not apfzelbe applicable td(2]2).

Above, Ay = \/% is the spatially homogeneous pure Turing amplitude, winéedm-
plitude of the Hopf mode’, ~ +/v/j3, is slightly affected by interaction with the Turing
mode; its exact determination is beyond the scope of thiptelha The reason that only the
spatially homogeneous Turing amplitude needs to be coregide the property that the spatial
dynamics of[(2.2a) conserves a quantityin(see e.g.,/44)]) that uniquely selects the wave-
length. In particular, a solutiodl = R(X)e?™) must conserve the “angular momentum”
h(X) = R*(X)d0/dX. If R(X) = 0 for any X, thenh(X) = 0 for all X. Thus, at any point
at which R(X) is nonzerodf/dX = 0 must hold, leading to a spatially homogeneous Turing
region. By this conservation law, for any solution[to (2.2}Is that[(2.2la) reaches a steady state,
if there exists a region in space such tfiat|, |C|) = (0, Cy), regions for whichC| = 0 may
only admit the spatially homogeneods= A, state. Indeed, when time evolvidg (R.2) initial-
ized with A spatially periodic in th&' = 0 region, a coarsening of the Turing state occurs until
the region is spatially homogeneous. This wavelength 8etewithin the amplitude equations
may explain the observation #2.3.4 that the wavelengthof the striped region is closer to the
critical value), the closer( B, D) are to(By, D..), their values at the C2THP.

The front solution to[(Z2]2) shown in Figure 2.17(a) only &xisn a positively sloped line
in (u, p)—space through the origin (dashed line in Figure 2.18(agpdimension one subset
in parameter space. The- relationship was obtained numerically by time evolvin@jZor
variousy, andp and observing pairéu, p) for which the Turing-Hopf front remained station-

ary. The line shown in Figule 2.18]a) is a least squares fiutjin the computed data points
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Figure 2.17. Shown in (a) is a plot of the stationary amplitudes of a Tuitia@pf solu-
tion of the amplitude equations. The Turing (Hopf) ampléusl the solid (dashed) line.
The widths of the Turing and Hopf regions are arbitrary. Theameters arg = 25,

p = 0.1682, andE = 1.4. A close-up of the left front is shown in (b).

(empty circles). We refer to this line as the Maxwell linege\though the problem is not varia-
tional. The significance of the Maxwell line is that the smakiegion is expected to straddle the
Maxwell line, regardless of whether the system is variaioAnother nonvariational example
can be found in3], where a higher order analytical approximation to the Mabkwurve for
stationary solutions of the (nonvariational) Lugiato-¢edér model was calculated from a sev-
enth order Ginzburg-Landau equation near the codimengiopoint corresponding to weakly
subcritical Turing bifurcation. This curve was shown to beddled by a numerically deter-
mined snaking region of8@).

Below the Maxwell line in Figuré 2.18(a), the Turing mode t@es less dominant in re-
lation to the Hopf mode, and the Hopf mode invades the Turiloglen Above this line, the
opposite is true. By comparing the Turing and Hopf growtksatandv given in the appendix,
it is easily shown that the ratip/v decreases ab (or p) increases. Unlike the full Brussela-

tor model that has a codimension zero snaking region witinenparameter space in which a
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continuum of solutions exist, the Turing-Hopf solutionstieé amplitude equations only exist
on a codimension one subset. The reason is that the ampétydsgions do not capture the
nonadiabatic effects of (2.1) responsible for the pinnihgesiodic fronts (see e.g2B,[63,88]
and references therein), or equivalently, the broaderfitiggaViaxwell curve. The black dots in
Figure[2.18(3) are computed limits of the snaking regionvéorous values of3 for a domain
length of L = 250. We observed that the limits of the snaking region shift ntoréhe left,
i.e., closer to straddling the Maxwell line, the larger tladue of L. Comprehensive results for
lengths significantly larger thah = 250 were difficult to obtain due to computational con-
straints. Besides the length of the domain, another reasdhé slight discrepancy may be the
lowest order approximation df (2.1). 163, it was shown that the weakly nonlinear analysis
must be carried out to higher orders for the Maxwell curvedstraddled by the limits of the
snaking region near a codimension two point. In Figure 2}.8¢e show a semi-log plot of
the width of the snaking region ify for various values of-(B — By)~!. The dashed line is a
least squares fit through the data points (empty circlesg. lilear relation indicates that, near
the C2THP, the width of the pinning region in is exponentially narrow in-(B — By)™,

consistent with the scaling analytically determinedid]]
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In this chapter, we have extended the study of homoclini&isgaof stationary pinning

solutions to solutions exhibiting time periodicity. Whasemost studies in the past have fo-

cused on the subcritical Turing regime of variational medele have demonstrated snaking

behavior near a C2THP of a nonvariational system where betfiaring and Hopf bifurcations

are supercritical. In the region of Turing-Hopf bistalyilitve found multiple branches of solu-

tions characterized by a coexistence of temporal osahatand stationary stripes. By using

AUTO to solve boundary value problems in time for the Fouaeplitudes of the space-time

solutions, we were able to compute both stable and unstahiéan branches. Two pairs of

branches were found. Each solution on one pair containefeatds the center of the striped

region, while solutions on the other pair did not. The solasi on either pair of branches differ
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by an phase shift in the spatially periodic pattern. We found thase branches displayed a
similar structure to those found for stationary pinningsioins. Further similarities discovered
include the manner in which striped structures of the spaee-solutions were destroyed or
nucleated when traversing up or down the branches. Thengaailithe speed of the depinning
transition with respect to distance from the nearest sadole was also found to be the same
as that observed in studies of stationary pinning solutibastly, within the framework of the
amplitude equations valid near the C2THP, we numericallgrdeined a Maxwell line, and
showed that the pinning region was located nearby, withéparation decreasing as the length
of the domain increased. There are, however, also impadiiatences. The saddle-nodes of
the snaking branches found did not monotonically convesgedingle value in the bifurcation
parameter. Also, instead of terminating on the pure Hopifdhniahe way that stationary pinning
branches terminate on the homogeneous branches, theghaiirches found here connect to a
pair of collapsed snaking branches through a series of ansgplddle-nodes. Wavelength selec-
tion of the striped region along the snaking branches isdiféerent. In particular, wavelength
variation appears unrelated to the direction of depinnimgvas the case in the Hamiltonian
spatial dynamics of the Swift-Hohenberg equations.

There are many open problems to pursue that would increasentterstanding of time pe-
riodic pinning solutions. A qualitative interpretatiomaogous to the spatial dynamics frame-
work applied to the stationary pinning solutions, wouldyide valuable insights into the nature
of the solutions found in this study. A quantitative detaration of they~'/2 scaling of the de-
pinning time-scale is also a key open problem. Other patlasalysis may include calculating
the Maxwell point of the system of amplitude equations, deeding the method oflH] to an-

alytically determine the pinning region. A higher ordertgys of amplitude equations may be
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derived to confirm that the corresponding higher order Mdiklivee compares more favorably
to the snaking region. Lastly, it would be interesting to geruring-Hopf pinning solutions
also exist in two dimensions, and if so, if the solutions dse arganized on branches that share
the same structure as those found in this chapter and fawrstiay pinning solutions in the two
dimensional Swift-Hohenberg equatioi®;66]. Turing-Hopf coexistence in two dimensions

near the supercritical C2THP has been numerically obsenvizt8).
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CHAPTER 3

Localized Pulses in the Singularly Perturbed Regime: The Sl

Eigenvalues

Recent attention has focused on deriving localized pulégtisos to various systems of
reaction-diffusion equations. In this chapter, we consttie evolution of localized pulses in
the Brusselator activator-inhibitor model, long consaétea paradigm for the study of nonlinear
equations, in a finite one dimensional domain with feed ofitingbitor through the boundary
and global feed of the activator. We employ the method of hetasymptotic expansions in
the limit of small activator diffusivity and small activatand inhibitor feeds. The disparity of
diffusion lengths between the activator and inhibitor E&mpulse-type solutions in which the
activator is localized while the inhibitor varies on @1) length scale. In the asymptotic limit
considered, the pulses become pulses described by Dircfdettions and evolve slowly in
time until equilibrium is reached. Such quasi-equilibrigmiutions with NV activator pulses
are constructed and a differential-algebraic system o&eops (DAE) is derived, character-
izing the slow evolution of the locations and the amplitudéshe pulses. We find excellent
agreement for the pulse evolution between the asymptaimryhand the results of numerical
computations. An algebraic system for the equilibrium pudsplitudes and locations is de-
rived from the equilibrium points of the DAE system. Both syetric equilibria, corresponding
to a common pulse amplitude, and asymmetric pulse equalifor which the pulse amplitudes

are different, are constructed. We find that for a positivertatary feed rate, pulse spacing of
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symmetric equilibria is no longer uniform, and that for stifintly large boundary flux, pulses
at the edges of the pattern may collide with and remain fixedeaboundary. Lastly, stability
of the equilibrium solutions is analyzed through lineatiima of the DAE, which, in contrast to
previous approaches, provides a quick way to calculaterttal igenvalues governing weak

translation-type instabilities of equilibrium pulse patts.

3.1. Introduction

Since Turing showed that diffusion-driven instabilities of a spatfahomogeneous
steady-state could give rise to spatially complex pattarres mixture of chemically reacting
species, reaction-diffusion equations have been paradifspatio-temporal pattern formation.
Much of the analysis since has been weakly nonlinear, imrglsmall amplitude patterns aris-
ing from small perturbations of the unstable uniform stesidye. However, numerical studies
(see e.g.[84] for numerical simulations of the two dimensional Gray-Becoodel) have shown
that large-amplitude perturbations can lead to the foronadif localized structures, solutions
far from equilibrium and thus not amenable to weakly nordin@nalysis. Instead, the method
of matched asymptotic expansions has been applied to aohstrch localized solutions. Early
works involving the one dimensional Gray-Scott model onittfmite line include [BQ], [2§]
and 29|, where a dynamical systems approach was taken to conkinatized pulse solutions
and study their stability by analyzing a nonlinear eigenggiroblem (NLEP). In73], stability
analysis of a one dimensional pulse to transverse pertartsain the second dimension was
performed. Extensions of these results to incorporatesfohiimain effects for models such as
the Gray-Scott (e.g5Q] and [16]), Gierer-Meinhardt (e.g/47] and [46]), and Schnakenberg

(e.g and [61]) models have been of recent interest. In one dimensiorg\bets such as
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slow pulse evolution, pulse-splitting, and pulse osditlas have been predicted analytically and
confirmed numerically. In103, the dynamics of a one-pulse solution to a simplified Gierer
Meinhardt model were analyzed under the influence of a psecgradient, which was shown
to pin the pulse at a location different from that of equiliion in the absence of the gradi-
ent. In this work, we consider the slow evolution of multiplelses in the one dimensional
activator-inhibitor Brusselator model (see e.d0Q(] and references therein), long a paradigm
of nonlinear analysis.

The Brusselator model describes the space-time dependénice concentrations of the

intermediate productS (the activator) and” (the inhibitor) in the sequence of reactions

E—U, B+U—=V+P, 2+V =30, U—=Q. (3.1)

The global reactioni& + B — P + (), corresponding to the transformation of reactantnd
B into productsP and@. The third reaction of sequende (3.1) is autocatalytic ai thdrives
its own production; thud/ is the activator. The autocatalytic reaction requires tiesgnce of
V to proceed; the depletion &f in the autocatalytic process acts as an inhibition mechatos
limit the growth of U. Thus,V is the inhibitor and is subject to low concentrations in oegi
of high activator concentration. A different scenario isisé the Gierer-Meinhardt mod&T]
where the autocatalytic reaction is impeded by the presehaa inhibitor. In this case, high
concentrations of the inhibitor are observed in regionsgi lactivator concentration.

Due to the third reaction i (3.1), the Brusselator modetehithe same cubic nonlinearity
as the Gray-Scott and Schnakenberg models but differs inttleaformer contains a global
feed term of the activator and not of the inhibitor. The feédhe activator comes from the

first reaction in[(3.11). The result of a global activator féedn is that localized pulses in the
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concentration of the activator can decay to either a zerooorzero value away from their
centers, depending on the value of the feed term. We find lieaalbsence or presence of the
activator feed term has an important role in the evolutiothefpulses. This is in contrast to
the Gray-Scott and Schnakenberg models, where pulsessabiemay to zero away from their
centers. Further, while many previous studies consideueel Neumann boundary conditions
for both the activator and inhibitor, we allow for the poskiy of a boundary feed term of
the inhibitor, which we find alters the equilibrium solut®as well as the interaction between
pulses and boundaries.

In [79), localized solutions were computed numerically and aredyfor a variation of
the conventional Brusselator model. Instead of the comagonh of the reactant being kept
constant as is the case in most studies of the Brusselat@lpiioslas allowed to vary with space
and time. The diffusion rate of was also taken to be significantly larger than thos& @nd
V. Localized structures exhibited by the conventional Beleger model near a codimension
two point were numerically observed under period|[and, additionally, pure Neuman@Z]
boundary conditions with similar diffusivities of the agtor and inhibitor. In the following
analysis, we consider a singular perturbation of the caimweal Brusselator model with an
asymptotically small activator-inhibitor diffusivity tia, leading to the formation of localized
pulses in the concentration of the activator. Assumingh@ut loss of generality) that all rate
constants of the reactions in (B.1) are unity, the conveatidimensionless Brusselator model
in a one dimensional domain with slow diffusion of the adibraand constant influx of the

inhibitor from the boundaries can be written as
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Uy = gy + € — (B + Du+ vu?, —l<z<l1l, wu,(xl,t)=0, t>0, (3.2a)

vy = Dvgg + Bu — vu?, —l<ax<l, wv(£l,t)==xA, t>0, (3.2b)

supplemented by appropriate initial conditions, where> 0 is the activator concentration
(which will be seen to be the localized variable)> 0 is the inhibitor,0 < ¢ < 1, and A, B,
D and¢& are non-negative constants. In a study of mesa-type patt®id considers a slightly
different form in which the first and last steps bf (3.1) ocourch more slowly than the other
reactions, leading to the kinetic terms[0f(3.2a) beifig- (B + r)u + vu? with » small.

The activator drives its own reaction through a positivelfeek (thevu? term in [3.24)),
while its growth is controlled by the inhibitor, for whichehe is negative feedback, represented
by the —vu? term in (3.2b) ([B1]). The condition that the inhibitor diffuses significanfhster
than the activatorl) > ¢?) is essential for the formation of pulses, as7g][ Indeed, the self-
production of the activator in a region of lengthe¢) cannot be sufficiently suppressed by the
inhibitor as the strong inflow of the inhibitor from the pdrgral regions continues to feed the
production of the activator 6], [51]). Itis for this reason, along with the slow diffusion of the
activator, that we expect the formation of localized pulsethe activator, while the inhibitor
varies over arO(1) length scale. As a result, the leading order interactiowéen pulses is
due to the slow spatial variation of the inhibitor varialtleis interaction having thusly been

termed semi-stron@Bfl]. This regime is in contrast to the weak interaction regimeyhich
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D = O(€*), e < 1 and studied in§1] and for the Gray-Scott model, yielding both pulse-
splitting behavior and pulse collisions. In this latterireg, both the activator and the inhibitor
are localized, hence the weaker pulse interaction.

As mentioned, pulse patterns in reaction-diffusion moaetse dimension (e.g/4g], [59],
[105) have previously been considered with no-flux boundarydéoms, leading to repulsive
pulse-boundary interactions. In contrast, we will showt,tlia this Brusselator model with
boundary flux, the boundaries of the domain can be attratbinijzrge enough boundary flux.
We begin in§3.3 by using matched asymptotic expansions to derive amystdifferential
algebraic equations (DAE) describing the slow evolutioWepulse quasi-equilibrium patterns
(see B2] for a treatment of slow pulse evolution in a regularized rétieMeinhardt model).
Considering special two and three-pulse cases, we deratms$tiat pulses at the edges of the
pulse pattern (edge-pulses) can be captured by the bounthary the boundary feed increases
such that their equilibrium positions no longer lie insile tlomain. The term “capture” herein
will refer to the event in which a pulse collides with and rensdixed at the boundary and, in
the cases that we considered, its amplitude changes dcathatver a relatively short time.
The presence of boundary flux also affects equilibrium psisecing and requires modification
of the “gluing” construction for equilibrium pulse patteremployed in[104] and [6Q] for the
Gierer-Meinhardt and Gray-Scott models. Insteadi3@l, we construct equilibrium solutions
by deriving an algebraic system for equilibrium pulse atoplkes and locations from equilib-
rium points of the DAE. As in the aforementioned studies, syatric equilibria, corresponding
to a common pulse amplitude, and asymmetric pulse equailifior which pulse amplitudes are
different, are found. For symmetric equilibria, we showttpalse spacing is non-uniform due

to boundary flux, and we also give a general criterion for guigises to be captured by the
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boundary. Finally, irf§3.3, the stability of the equilibrium points of DAE dynamiisscalcu-
lated analytically which, in contrast to the approachli@4] and [6Q] for Gierer-Meinhardt and
Gray-Scott models, provides a quick way to calculate thdlsigenvalues governing the weak
translation-type instabilities of pulse patterns. In tbigpter, however, no analysis Of(1)
time-scale fast instabilities of the pulse profile, typigajoverned by a nonlocal eigenvalue

problem (see e.g/1Dq, [59]), is carried out.

3.2. Scalings

To motivate the scalings with respectdof the parameters and variables[in {3.2), we first
note that. is the localized variable for which the inner region of eaalsp hag)(¢) width. We
also assume that, sinees the slowly varying global variable, it is of the same ordeboth
the inner region and the outer region away from each pulses,Tih order to balance, to the
boundary feed rate tertd in (3.2B),v = O(A) in all regions. In the inner region, we let=
O(U;,) and assume thaf;,, > £. In order for the cubic term in(3.Ra) to balance the deneati
and linear terms and yield a homoclinic solutioninwe require that/;,. A = O(1), orU;, =
O(A™Y). In the outer region, the teraw? in (3.2B) asc — 0 can be represented as a delta
sequence with weigh®(eU?2,.A), which must balance the,, term, yieldingA = O(cUZ A).
Thus,U;, = O(e"/?) and A = O(¢'/?). The same scaling is obtained from repeating this
argument for theBu term in [3.2b) withB = O(1). Finally, from [3.2&), assumingu® < u,
we haveu = O(U,,;) = O(€) in the outer region, which must balance thg term in (3.2b),
so thatO(&) = O(e'/?). Thus,u = O(e~/2) in the inner region while. = O(¢'/?) in the outer

region. Globallypy = O(¢'/?). With these scalings fad and&, we rewrite [3.2) as



112

Uy = gy + €/2E — (B+1u+vu?, —l<z<l1l, wu,(£l,t)=0, t>0, (3.3a)

vy = Dvgg + Bu — vu?, —l<z<l1, w(£l,t)==+e24, t>0.(3.3b)

All subsequent analysis and computations will be performethis system.

3.3. Evolution of Multiple Pulses

Using matched asymptotic expansions, we now construgt-gulse quasi-equilibrium so-
lution to (3.3) that evolves on an asymptotically slow tiselel’ = ¢?t; the scale determined
by enforcing consistency in the solvability condition iretimner problem. Assuming an(1)
separation distance between adjacent pulses and betwgespal$es and the boundaries, we
separately consider the inner problem for each individulslgy. That is, in thej!" inner region,

we recall the inner scalings 8.2 and introduce the inner variables

L 1 x—x;(T)
u~€1/2Uj(yj)=€1/2 (UjO—FEUjl—G—...); yj:fj7
(T) (3.4)
T — T,
v PV (y) = e (Vig+ eV +..) Yy = —

€
where we assume, < z; for ¢ < j. The solution is thus characterized Bypulses whose form

remains constant while their center and amplitude may varg slow time-scale. Substituting
(33) into [3.3), we find the leading order equationsifgrandV;,:

Ujy = (B+1)Uj, + Vj,Up, =0, =00 < y; < o0, (3.52)

Jo Jo ™~ j0

Uj, — 0 as Jy;| — oo, (3.5b)
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and

DV =0, —00 < yj < 00, (3.6a)
Vj, bounded as|y;| — oo, (3.6b)

where the decay condition dn, at+oo and the boundedness conditiondp are required to
match to the outer solution. We remove the translationadriance of[(3.6) by requiring that
U, (0) = 0. Here, the primes indicate differentiation with respecg toSince [(3.5) leads toj,

being a constant, the leading order inner equations areuptexd. We can then readily solve

(3.5) and[(3.b) as

and

Ujo (yj) =

LBTUS%H( B+1y-) (3.7)
2 1) '

2V,

whereV is spatially independent but can dependaan. .., zy. In [74], it was shown that
the exponential decay in the tail ¢f(B.7) is replaced by aeladaic decay when the activator
is superdiffusive. We refer to the pre-factor in (3.7) aspghése amplitude, which is inversely
proportional toV;. We will see below that, like;;, V; evolves on arD(e?) time-scale. At the

next order, we obtain fal/;, andV),

Ul — (B + 1)U, +2V;U;,Uj, = —a(T)U}, — VU2 —E,  —oco<y; <oco, (3.89)

J1> J0
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Upn = 51 as lyl — o0, (3.8b)
and
D‘/;l = Vjonzo - BUjO ) —00 < Y; < o0. (3:9)

The limiting condition [3.8b) follows from the fact that ihet outer regiom ~ ¢'/2E /(B + 1),
which can be deduced from applying the outer region scalirgO(¢'/?) = v and solving for
win (3.34). In the far-field, we allow, to grow linearly iny;, with the precise conditions to
come from matching to the outer solution. The solutior i8)(8an then be readily obtained,

which we write as

3(B+1) vB+1
Vi, (y) = ————~—"sech :
6 vVB+1
YA log (cosh ( 5 yj)) +cjy; + ¢, (3.10)
J
wherec;, andc;,, which may depend omy,...,zy, are integration constants. The former

determines the linear behavior &, in the far-field, and will be calculated when the inner
solution is matched to the outer. Determiniag requires higher order matching, and is not
needed for our purposes.

To use the Fredholm alternative to find an expressionrf¢r") from (3.82&), we make the

substitution/;, = W, + E/(B + 1) to obtain
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WY (B + )W, + 20,0, ; =

_ B
_ QUjOVjB_H — (U}, — vlefO , —00 < y; < oo, (3.11a)
Wj — 0 as |’yj| — OO (311b)

Differentiating [3.5h) with respect tg;, we find thatl¥" = Uj is a solution to the homoge-
neous problem of (3.1]la) satisfying (3.11b); thus, thetrigind side of(3.11a) must satisfy the

Fredholm condition

0 E
/_ Ujl'o (_2Uj0VjoB—_H - x;(T)UJ{O o leUjZO) dyj =0. (3'12)

Noting thatV}, is a constant and thdf;, is an even function (fron((3.7)), we ude (3.10) to
obtain from [(3.1R)

dl’j o Qle
ar — v’

j=1,...,N.

Here,c;,, introduced in[(3.110), and; will be determined by matching the inner solutionab
the outer solution along with a solvability condition. Inngeal,c;, andV; can depend on;,
Jj =1,..., N, resulting in coupling between th€ pulses. Since; varies slowly in time, so
toowill V;, j = 1,..., N, and consequently, the pulse amplitudes.

To solve forv in the outer region, we proceed as[kOF and use the assumption of suffi-

ciently separated pulses to express each term involving[3.38) as a sum oV appropriately
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weighted delta masses, with each delta mass representinga pVith weights equal to the

area under each function involving we approximate thé&w term in [3.3b) as

N
BE GB\/B
B“““El/QB—H+th5(x—xj); wj, =61/2/ U dy; = 2?22V 2 L (543
j=1 —oo

and thevu? term in [3.3b) as

1/20(B + 1)3/2

J

N
vu? ~ ij25(9: —Z); wj, = 61/2/ VJOU]?0 dy; =€ (3.14)
— _
Then, using[(3.13) an@(3.14) in(3]3b), and rescaling ¢'/?v, we find that, to leading order,
v satisfies
N

BE
DVxx+ﬁ—6 27 x—l'] —0,
= (3.15)

-l<z<1, vy (£1) = £A.

<:

Integrating [[3.1b) over-1 < = < 1 and applying the boundary conditions on we find that

V; must satisfy the solvability condition

N
AD AD+ F F
_ 3.16
z:: V, 3/B+1’ (3.16)
where
F= ﬂ. (3.17)
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With the constrain{(3.16), we solve fofz) up to an arbitrary constatin terms of a modified

Green'’s functiorG(z; z;),

N
u:D+éx2+6\/B+1ZiG(x;xj), (3.18)
2 ~V
whereG(z; z;) satisfies
1
DGm(:c;xj)—l—§ = 0(z — xj), —l<z<1,
(3.19)

1
Gu(£1l;25) =0, / G(z;z;)de =0,

1

with uniqueness achieved through the constrairfin {3.18¢. solution to[(3.119) is

1 1 1
G(x; xj) —E(x2 +x§) + ﬁu — x| — D
Now to determiner andc;,, we match the behavior of andV; nearx; fori = 1,..., N.

Expandingy(z) in (3.18) in powers ofx — z;) asz — x;, we find

A, 1
vv+ Sl +6VB ] ; ij(xi, z;)+
N
j=1 7
which must match the behavior bf asy; — oc:

e (T

Vi~ Vit A + ¢iyyj + ci, — log 2) : (3.21)
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Matching the appropriate terms in (3120) ahd (8.21) whitaléng thaty; = (x — ;) /¢, we

find that
A N |
-5 2 E — :
l/—‘/i 5..'232 —6\/B—‘H.j:1 ‘%G(xmxj)?
and
3\/ﬁ
Ciy = DV, + Az; +6VB + 1 E LR (3.22)

wherer is independent of. Matching the behaviors of andV; asz — z; andy; — —oo,

respectively, yields the equivalent expression

Ci, = 5 §V+ + Az, +6vB +1 Z G (x; ;5 x5). (3.23)

We now summarize the results for avrpulse quaS|-eqU|I|br|um solution t@ (3.3) in the
following result:

Principal Result I: Lete — 0 in (8.3)and assumé (1) separation between adjacent pulses as

well asO(1) separation between edge-pulses and nearest boundaries the leading order

guasi-equilibriumN-pulse solutions for, andv are given by

N
BB—i-l B+1lx—ua;
e (e (7))

Jj=1
RICH QR PR — (3.24a)
B+1 — J € ’
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A 1
v(z)~ e (p4+ Sa” +6VB+1Y  —Glaay) | (3.24b)
2 —~V;

whereW; is the even solution t@.11) andv andV;, j = 1,..., N are determined by the

system ofV + 1 equations

N
_ 1 A
v—V,+6 B+1ZTG(1~Z,%)_—§$3, i=1,...,N, (3.25a)
j=1 "7
N BE
1 AD + ==
PP (3.25h)
Vi  3vB+1

TheO(€?) time-scale evolution of the pulse locations can be compfuved

dl’i 2 2Ci1

a v a

N, (3.26)
wherec;, is computed fronf3.22)andV;, i = 1, ..., N are computed fronf3.25) Eqns.(3.25)
and (3.26)with (3.22)form a differential-algebraic system of equations (DAE)he evolution
of the pulse locations antl;, the inverse proportionality constant of pulse amplitudtjch
along withz, uniquely parameterize a quasi-equilibrium state.

We now consider special cases for which simplifications ef AE are possible. The

simplest is the one-pulse case for which, by (3128h)remains constant for all time. To

leading orders, the solution efandv are then given by

u(x) ~

1 (AD+F)(B+1) B VB+1lx—x
€l/2 2 Sec 2 €

E _
42 {B—H+W1 (m Exl)} . (3.27a)
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F F 3vVB+1
~ /2 & (.2 2 - o e
v(x) ~ € 2D(x xy) + (A+ D) |z — 21| + ADIF | (3.27b)
while the center of the pulse evolves on a slow time-scale as
EB(AD+ F
21 (t) = 21(0)e= 1t ki =2 (4D + F) (3.28)

3(B+1)32D "’
wherez(0) is the initial position of the pulse antd is defined in[(3.17). Froni.(3.2I7a), we see
that if £ = 0, that is, if the pulse decays to a trivial background stabgyuise can exist unless
A > 0. This is because the nontrivial background state of activatts as a source for the
inhibitor through theBw term in [3.3b), and without this source, feed of the inhibitast enter
through boundaries. Further, féf = 0 and A > 0, (3.28) predicts that the pulse will remain
stationary to all orders of. However, in this case, exponentially slow dynamics dueh&o t
failure of the pulse profile to satisfy the no-flux boundarpditions become important. This
is analogous to the metastable pulse solution in a nonleeation-diffusion equation derived
from a certain limit of the Gierer-Meinhardt model4q]) and is addressed in Appendix C.
The evolution of two pulses centered(ata(t), «(t)) can also be obtained explicitly, the

evolution ofa(t) given by

B AD+F} oot AD+F _ BE(AD+F) (3.29)

alt) = {O‘m) oF °0F T 3(B+1P2D
Comparing[(3.29) td_(3.28), we see that the evolution of amsginic two pulse pattern when
A = 0 is simply that of a one pulse pattern on a domain of half the.siwhenA > 0, the
equilibrium locations of the pulses are givendy= (AD + F')/(2F") so that whem exceeds

the critical valueA., given by
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F

ACQ = 5 ) (330)

equilibrium locations of the pulses are outside of the dom@ie will illustrate the importance
of this threshold below.

For a three-pulse pattern symmetric about 0 with pulses located &tc, (1), 2, x3(t)) =
(—a(t),0,a(t)), we argue by symmetry that = V3 = V. Then the evolution ofi(¢) is given

by

— =€=|—a=+A+—=—

do 2 F F 3J/B+1 (3.31)
d V' D D VD )’ '

whereV’ is solved in terms ofi using [3.25). As we discuss {8.5, only symmetric patterns are
stable; thus, in equilibrium, all pulse amplitudes are égoahatV; = 9v/B + 1/(AD + F),
i = 1,2, 3. Applying this in [3.31), we find that in equilibriuma, = 2(AD + F')/(3F), leading

to the three-pulse threshold for existence of equilibriogations inside the domain

F
Ay = ——.
* 72D

(3.32)
When the boundary feed exceeds the respective threshobde apulses at the edges of
the pattern are captured by the boundary. Thus, whereas tvadsoundary feed rate is suffi-
ciently small, the boundaries repel the pulses, when thadeny feed is sufficiently large, the
boundaries become attractive, leading to equilibriumgpagt where pulses are centered at the
boundary. We illustrate this point in the figures below in @hwe compare asymptotic results

to those obtained numerically from solvirig (3.3) using M#T'LAB functionpdepe() . The

locations of the centers of the pulses are simply taken tbd®tations on the grid where local
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maxima ofu occur; we do not perform an interpolation near the maximaotofute a more
accurate location. The asymptotic results may be obtaired &ither numerically solving the
DAE (3.28) and[(3.26) with (3.22), or frorb (3.129) arid (3.3l).all plots containing: andwv,
the plotted quantities aré/?u (solid line) ande~'/?v (dashed line). Lastly, in plots comparing
the asymptotic prediction of the pulse location(s), theddate represents the numerical result
while the circles represent the asymptotic result.

In Figureq 3.1(&)-3.1(k), we show the case of repulsive Baries resulting fromd < A,,.
Figure[3.1(d) shows the quasi-equilibrium initial conalis foru andv. In Figure[3.1(H), we
compare the asymptotic prediction of the pulse locatiorthab of the numerical solution. As
predicted, the pulses evolve to symmetric equilibrium tmees inside the domain as seen in
Figure[3.1(d). Note that, as expected, locations of aciivaaxima coincide with locations of
inhibitor minima. Figure$ 3.1({)-3.1[f) show the > A., case for attractive boundaries. In
Figure[3.1(d), we see that the asymptotic prediction of thiegplocations is accurate until the
pulses become sufficiently close to the boundary, at whiaht ploe asymptotic results become
invalid. Figurd 3.1(e) shows the evolution of the right gués it approaches and and is captured
by the boundary at = 1. From the times given in the caption, it is seen that the captu
process is rapid relative to the evolution of the pulse wheficgently far from the boundary.
During this time as the pulse approaches the boundary, itditaishe doubles. Thus, as the
pulses approach the boundaries, their amplitudes chargeatically in a short time. Lastly,
we plot the equilibrium pattern in Figurgs 3.1(f) with twolpes centered at the boundary with
twice their original amplitudes due to the fact that onlyfludleach pulse is inside the domain.

The Neumann conditions ferare met by boundary layers near +1.
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Figure 3.1. lllustration of the effect of boundary feed rate on the bébvaof boundaries
with e = 0.01, B = 2, D = 0.5, andE = 3 so thatA., = 4. In (a)-(c),A = 3 while
in (d)-(f), A = 6. In both cases, the initial conditions (plotted for the femease in
(a)) are(z1,z2) = (—0.5,0.5). WhenA < A.,, the boundaries are repulsive and the
pulses evolve to equilibrium locations inside the domal) gnd (c)). Whem > A.,,
the boundaries are attractive so that the pulses are cdptyrthe boundaries ((d) and
(f)). Note the axis breaks in (f). In (e), we show the evolatimf the right pulse as it
propagates to the right towards boundary at 1. The dotted line is a snapshotdf2u
taken att = 2341, the dashed-dotted line ait= 2561, and the dashed line at= 2576.
The two solid lines correspond to= 2577 andt = 2583, the taller pulse being the
equilibrium shape.

In Figured 3.2 we show the case of attracting boundariesttmes-pulse example symmet-

ric aboutx = 0. The center pulse remains stationary, while the two eddsepudrift toward

the boundaries. As before, the asymptotics are able togirtdi evolution of the pulses until

they are too close to the boundaries (Figures 3.2(a) an®)B.2h contrast to the two-pulse

case, the pulse amplitudes must be calculated as a fundtiba pulse locations, and thus vary

in time (Figurd 3.2(B)). The difference between the asytipand numerical results in Figure

[3.2(b) can be attributed to not including the second termhéexpansion for in (3.4). In
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Figure[3.2(d), we show the equilibrium state with one pufsthe center and two pulses cen-
tered at the boundaries. Stability of near-boundary pulssre studied inl§8] for the shadow
Gierer-Meinhardt system, where it was shown that Robin Hannconditions could give rise

to instabilities while Neumann conditions could not.
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(a) (b) (c)
Figure 3.2. lllustration of the effect of boundary feed rate on the bébraof boundaries
with e = 0.00125, B = 5, D = 1, andE = 40 so that4,., = 16.67. Here,A = 20 >
A, so that the two edge-pulses are captured by the bounda®) amd (b), we compare

the asymptotic to numerical results for pulse locations amglitudes. In (c), we plot
the equilibrium state with two pulses centered on the bognda

In further numerical computations (not shown), we obsemyed any quasi-equilibrium
pattern evolves to a symmetric equilibrium as long as pudsesiot captured by the boundaries
(rapid pulse collapse events, discussed briefl§31@, leading to a decrease in the number of
pulses are possible, and are studied in the next chapteth)e Inext section of this chapter, we
construct such equilibria by deriving an algebraic systemmfequilibrium points of the DAE
obtained in this section. In addition, we construct asymmimetyuilibria characterized by pulses

of different amplitudes and find conditions for their existe.

3.4. Symmetric and Asymmetric Equilibria

In this section, we construct equilibrium states [of I3.3)fingling equilibrium solutions

of the DAE [3.25){(3.26). By[(3.26), equilibrium solutiofisr z;, V;, s = 1...,N, andv
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must satisfy the systerh (3125) along with = 0, = 1,..., N, wherec;, is given in [3.22).
We begin by considering symmetric equilibria for which alllge amplitudes have a common
value, but for which inter-pulse spacing may be non-unifamnthe presence of a boundary
feed rate. We will find that a positive boundary feed rateeases both the pulse amplitudes
as well as inter-pulse spacing. Also, in particular, weded threshold for the boundary feed
rate at which the interaction between the boundary and tge-pdles changes from repulsive
to attractive. In previous similar studies with no boundtagd, the boundaries were shown
to be repulsive. The other main focus of this section is tanstiat, in addition to symmetric
equilibria, there exist asymmetric equilibria in which gh@lse amplitudes can differ from one
another. The existence of asymmetric equilibria arisesiftioe multi-valued property of the
inverse of a function obtained from solvirlg (3.25) and= 0. No general statement can be
made about the effect of boundary feed on asymmetric egailitis effect depends on specific
cases and will not be discussed here.

We begin by obtaining a general relation between equilibrjpulse locations and their
amplitudes, applicable to both symmetric and asymmettitepss. We then consider the two

cases separately. Usirig (3.23) égr, we obtain

3b N
DE%me+%§:ifﬁ@ﬂxQ:0, (3.33)

J=1

where

b=vB+1. (3.34)

Using
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x 1
Gz ) = ~3p + ﬁsgr(x — ;)

in 3.33), we find that the equilibrium pulse locations Sgtis

1 1 AD
= - Z =+ Z =Sgn(z; —x;) = ———;. (3.35)

Using [3:25b) for the first sum il (3.85), and definifygn terms ofV/; by

3b

Vi = (AD + F)I;° (3.36)
we split the second sum in(3]35) according to(sgr =;) and simplify to find
i—1 N
G+ 4=t =Cu, (3.37)
j=1 j=i
where
F
=—<1. .
C ADTF = 1 (3.38)

Note that equality in[(3.38) holds it = 0. We make two remarks abodt. First, sincel’; is
inversely proportional to the amplitude of pulg€/; is proportional to the amplitude. Second,

the equivalent statement {0 (3.25b) in termg af

N
> t=1, (3.39)
j=1

which we use to write the second sum[in (3.37) in terms of tlsé $inm to calculate an expres-

sion forz; in terms of?/;, j < i:
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T = é (22@ -1 +€i> . (3.40)

From (3.40), we obtain the recursion relation for the pubeations

1 1 1
C (—=1+41), Tit+1 = T; + C (l; +Lli1) TN = C (1—"{N) . (3.41)

T =

If C = 1, the quantity2¢; can be interpreted as the space occupied by pulséhis inter-
pretation was used ifLlD5 to construct asymmetric pulse equilibria to the zero-tmam-flux
Schnakenberg model, where equilibrium solutions allowedolilses of two different ampli-
tudes. The method of constructing the asymmetric equalimas different from that employed
in this section, as single pulses solved for on a domain aftte?¥; were “glued” together to
form a multi-pulse solution. The method does not extend agally here because we allow for
non-homogeneous boundary conditions. However, we wilbsémv that asymmetric equilibria
of the Brusselator model arise in the same manner as in thea8ehberg model.

We first consider the simple case of symmetric solutions.céail pulse amplitudes are
equal, [3.3D) yieldg; = 1/N forall j = 1,..., N, leading toV; = 3v/B + IN/(AD + F).
Since pulse amplitudes are inversely proportiondl’towe see that increasing boundary feed
leads to increasing pulse amplitudes in the case of symmsathitions. The recursion relation

(3.41) also simplifies, yielding

oot <_1+ 2 — 1) | (3.42)
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With C given in [3.38), it is evident fronl (3.42) that the presentbaundary feed increases
inter-pulse spacing and also leads to equilibrium edgeeplaications closer to the boundaries.
The condition for all pulses to be inside the domainjis < 1, orC > (N — 1)/N. That is,

as the boundary feed increases to some critical valye the edge-pulses become centered on
the boundary, and as the feed is increased past this thdgstwequilibrium positions within
boundaries exist for the edge-pulses. In terms of the slaugwn of §3.3, the boundaries
whenA > A., are said to be attracting. This leads to the main result efgéction:

Principal Result Il: Lete — 0 in (3.3)and assumé)(1) separation between adjacent pulses

as well asO(1) separation between edge-pulses and nearest boundarig¢scmsider the slow
evolution of the quasi-equilibrium pattern given in Pripal Result I. Then the threshol.
for the boundary feed! at which the boundaries change from repelling to attracting pulses
at the edges of aiV-pulse pattern is given by

F

Ao, = EE (3.43)

WhenA < A.,, the boundaries repel pulses at the edges of the patterhe wiienA > A. .,
the boundaries attract the edge-pulses.

We note that the result (3.43) is consistent with those abthin [3.30) and[(3.32) for the
two and three-pulse cases, and also that- 0 is required for equilibrium locations inside
the boundaries to exist. Because it appears that all asymereguilibria are unstable, as we
will discuss in§3.8, this analysis is not worth repeating for asymmetrizisohs, as quasi-

equilibrium patterns will always evolve toward symmetrguéibrium points.

To construct asymmetric equilibria, we compéteising [3.25k) to findV — 1 equations of

the form
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_ 6b é 2
H—l xl+l7 x] 9 xi+1 —

=

S
]
k><: =

Using [3.36) to writel/; in terms of¢;, (3.44) becomes

3b 1 1)
AD+F \ Ul 6]

N
A
2(AD + F) Z G(wig1;75) — G(ai;75)) +

3 (27, —27) . (3.45)

We calculate the sum il (3.45) to be

1 1
_E(g;§+1—x§) o (it i) (Ze — Z e) . (3.46)

Jj=i+1

To write the difference of squares term[in (3.46) in termg;@nd/; ., we write

$?+1 - 56’? = (Tiy1 — 23)(Tipr — 75+ 275) = (vi1 — xi)z + 2 (w1 — i)

and, upon applyind (3.40) far; and [3.41) for(x; ; — x;), we find that
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1 i
x?—i—l - 1’? = E(&'H +4;) (42&' +ligr — 4 — 2) . (3.47)

J=1

Using (3.47) and(3.46) in (3.45) and recallihg (3.39), we fimat, upon rearranging,

1 1 (AD+F)

R S e )
£i+1 gl 6bDF (62 gl-l—l) : (348)
Making the substitution
(6bDF)'/3
— =07 4
li=qz, ¢ ADLF (3.49)
in (3.48) and[(3.39), we find that must satisfy
B(z) = Blzips),  di=1,...,N—1, (3.502)
al 1
> == (3.50b)

wheref3(z) = 22 + % Note that the amplitude of pulgeis proportional toz;. The function

B(z), plotted for a select range ofin Figure[3.3(d), has a global minimumat z., where

ze =273, (3.51)

Further,5’(z) < 00on(0, z.) andf’(z) > 0 on(z., o). Thus, for any: € (0, z.), there exists a
unique pointz € (z., oo) such that3(z) = 3(z). That s, the inverse functiofi~!(z) is multi-
valued. Consequently, becauke (3150a) must be satisfiedfor, ..., N — 1, z; can take on
two and only two possible values, yielding two possible pamplitudes in a given equilibrium

state. It is not restricted, however, in which value it dadston, meaning that the left-to-right
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order in which the pulses appear in the domain is arbitramcesSthe amplitude of pulseis
proportional toz;, z; = z would correspond to a small pulse at locatipmhile z; = Z would
correspond to a large pulse at locatioThe system((3.530) is the same system that also led to
the possibility of two pulse amplitudes in equilibrium stduns constructed indl0g.

To find solutions to[(3.50), we first solv&(z) = ((z) for Z > z in terms ofz. There are
two positive solutions fog; clearly one solution i = z. The other is given by

—s 2
Z=f(z)= il +4/Z>z.

10

B

0 015 1 1:5 2 0 012 0:4 0:6
(a) (b)
Figure 3.3. Plots of the functiongi(z) (left) and f(z) (right). The domain over which
f(z) is plotted isz € (0, z.).
Letting N; be the number of small pulses and = N — N; the number of large pulses,

allowing (3.50b) to be written a&,z + N,z = 1/¢, we find that an equilibrium solution exists

if there is at least one intersection between the curves

F=—loyp — (3.52a)
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—z+ /22 +4/z
5 :

z =

(3.52b)

Analysis concerning the existence and uniqueness of sakitd [3.52) can be found id05.

We give here a short discussion leading to the results. Tperitant properties of the function
f(z) are thatf(z.) = z., f"(z) > 00n (0, z.), f'(0) = —o0, and f’(z.) = —1. We can then
conclude thaf’(z) < —1on(0, z.). Thus, if N; /N, < 1, there can be at most one intersection
between the two curves ih (3152) in the intervat (0, z.). For a givenN; and N,, the value

of z at which the intersection occurs decreaseg awreases; that is, the line_(3.52a) shifts
downwards ag increases. Ag increases above a critical valyg, the two curves can no

longer intersect. Whea = ¢,,, the intersection occurs &t, z) = (z., z.). Using this fact in

(B:524), we find that

B 1
Nz’

G (3.53)

whereN = N; + N, is the total number of pulses, andis given in [3.51). The intersection
of the two curves atz, z2) = (z., z.) whenq = ¢,, leads to the small and large pulses being of
equal amplitude. Thus, whew;, < N,, asymmetric equilibria exist only when< g,,,.

If N;/N, > 1, there can be either zero, one, or two points of intersedtiche interval
z € (0,z.). The three ways in which intersections can occur are depicte N; = 3 and
N, = 1in Figure[3.4. Similar to the previous case,gascreases past a critical valgg,, no
intersection is possible. When= ¢,,,, the two curves are tangentat= z, (the bottommost

curve in Figuré 314), where < z, < z. is given by

21+%) —2/T+ 7P -a-9]" 2N,
= L oy=1-22 (3.54)

Zy =
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Figure 3.4. Plot of f(z) (solid curve) and the linear function (3.52a) (dashed ifiess
N; = 3, N = 1. Wheng = ¢,,,, the two curves are tangent. When < q < ¢m,,
there are two intersections, and when< ¢,,, there is only one intersection. Here,
gm ~ 0.31498 and¢,,, ~ 0.3886. The three values af, from lowest line to highest
line, areq ~ 0.3886, ¢ ~ 0.33498, andq ~ 0.26498.

Using [3.54) in[(3.52a), we obtain the expressiongor

1

— NN (3.55)

Qm,

As ¢ decreases below,,, , the curves intersect in two locations (the middle line igufe[3.4)
until the rightmost intersection point reachesz) = (z., z.). The value ofg at which this
occurs isg = ¢,,. Forg < g,,, only one intersection on € (0, z.) is possible (the uppermost
line in Figure 3.4).

We now summarize the results of asymmetric equilibria. Tmmné ofu andv are the same
as those of the quasi-equilibrium solution giveriin (3.24)ere the pulse locations are given
by the recursion relatio (3.41), with = ¢z corresponding to a small pulse centered at x;,
or(; = ¢z corresponding to a large pulse centered at ;. Here,q is defined in[(3.49), and

(2, 2) is given by an intersection of the right-hand sides[of (352 [3.52b). The inverse
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proportionality constant of the amplitude of each pulgg,is given in terms of; by (3.36).
The last parameter needed to construct the solutionwhich may be calculated from; and
V; independent of. The left-to-right ordering of small and large pulses isitaay.

In Figured 3.b, we demonstrate the arbitrary left-to-rigtatering of small and large pulses

using a five-pulse example with; = 2 and N, = 3. Even though the same parameters

were used to generate Figufes 3.5(a) and 3.5(b), the aybl&f-to-right ordering predicted

above allows for different equilibrium states. Howevencel N; < N,, only two possible
pulse amplitudes are possible. That is, while other lefiigbt orderings are possible, the pulse

amplitudes in Figure 3|5 are the only amplitudes allowedisyparameter set.

12 " " 12
10t ] 10
N> 87 N> 87
= =
\w 67 Iw 6
o o
4r 4
25 Pt RN ST T | LA 2~ PAEEREN ST TN T
’ \] l' ~ll’ M l’ ‘\ I’ A 1%
0 ' 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

(a) (b)
Figure 3.5. Two asymmetric equilibrium states wifk; = 2 and N, = 3 and the same
parameters but different left-to-right ordering of smaitldarge pulses. The parameters

aree = 0.01, A=3,B=05,D=1andFE = 40. The small and large pulses of (a) are
of the same amplitude as those in (b).

In Figure$ 3.6, we demonstrate the non-uniqueness of thé@us to [3.5R) whedV, > N,.
We illustrate the point on a four-pulse example with = 3 and N, = 1. The parameters are
the same as those used to generate the middle line in HigliraNdth the same left-to-right

ordering of small and large pulses, we plot the solutionsesmonding to the left (solid) and
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right (dashed) intersections in Figurel3.4. The left irget®n corresponds to more disparate
values forz andz, leading to more disparate pulse amplitudes and interemgdacings while the
right intersection corresponds to less disparate valuesdadz, and thus the pulse amplitudes

are less disparate with the pulses more evenly distribudexba the domain.

12 " " " 20

10y

e“zu
[e2]

N
- -
e e

bzo=--

o
b=
B

-1 -0.5 0 0.5 1
X

@)

Figure 3.6. Four-pulse asymmetric solutions wiff; = 3 and N, = 1 and the same
left-to-right ordering but corresponding to differentérgections of (=) and the middle
curve of Figurd 34. The parameters are 0.01, A = 0, B = 5, D ~ 0.25576, and
E = 12 so thatg,, ~ 0.31498, ¢,,, ~ 0.3886, andq ~ 0.34498. We plote'/?u in (a)
ande~ /2y in (b). The solid curves correspond to the left intersectiohile the dashed
curves correspond to the right intersection.

In §3.3, we analyze the stability a¥-pulse equilibria to small@(e?)) eigenvalues cor-
responding to perturbations that either grow or decay oWé&i) time-scale. They do not
account for pulse collapse events in which one or more puskapse relatively rapidly on

anO(1) time-scale, nor do they predict oscillations of pulse atgks. Such instabilities are

governed by large(§(1)) eigenvalues and are not studied here.

3.5. Stability of Equilibria to Small Eigenvalues

In this section, we study the stability of the equilibriumugmns constructed 3.4 to

O(€?) eigenvalues. The class of perturbations that we considmuats only for slow drift
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instabilities that occur on a@(e?) time-scale; analysis of these perturbations cannot predic
instabilities that occur on af(1) time-scale. Thus, stability with respect to this class afyre
bations does not guarantee that such solutions are sthblegh solutions found to be unstable
to these perturbations are certainly unstable. Two appesawere taken to analyze the sta-
bility to such perturbations. The first approach, in whicheagenvalue problem is derived by
linearizing the systeni (3.3) around ARpulse equilibrium solution, is analogous to that taken
in the small eigenvalue analysis dfd5. As in [105, we found that the eigenvalues scaled as
O(€*) and were eigenvalues of a certdinh x N matrix Mp. In the other approach, instead
of linearizing [3.8), we linearize the DAE systeim (3.25)2@ around anV-pulse equilibrium
solution. The associated eigenvalues are eigenvalues@fanV matrix M p. Since the DAE
evolves on am®(e?) time-scale, perturbations of the DAE also grow or decay o@ @) time-
scale, consistent with the first approach. Moreover, furtiaéculations (not shown) show that
Mp = rMp, wherer is a positive constant. The two analyses thus yield the sasdts in
terms of stability and are equivalent. Because of the leafjthe first analysis and its similarity
to that given in[L05, we only present the stability analysis of the DAE in thistgan.

We first introduce the twaV-dimensional column vectorg = (z1,...,zy)" andV =
(V4,...,Vx)T containing the pulse locations and inverse pulse amplitudspectively, where

T denotes the transpose. We also denote

C(z,V)=(Ci(z,V),...,Cy(z, V)T, (3.56a)

b
Ci(x,V)=¢, =— ’

N
1 +. .
D%+Axi+6b;ijx(xi ), i=1,...,N,  (3.56b)
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wherec;, was defined in[(3.22). We lastly rewrite thié + 1 algebraic equations i (3.25) in

vector form as

where
H(ZB,V,D):(Hl(ZB,V,D),...,HN(w,V,D))T, (357a)
_ N A
Hi(w,V,ﬂ):ﬁ—%+6b;vj6’(xi;xj)+§x?, i=1,...,N, (3.57b)
and
1 AD+F

N

where F is defined in[(31]7) and is defined in[(3.34). An equilibrium solutiof, V,v) =

(x., V., 1.) thus satisfies the N + 1 system of equations

Clz.,V,) =0, (3.58a)
H(z,, V. 7)=0, (3.58h)
S(V,)=0. (3.58¢)

To derive the eigenvalue problem that determines stapiigyperturb the equilibrium solutions

according to

T =x,+ &, V=V.+dp, v="0,+u, (3.59)
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with § < 1. We then usd(3.58b) and (3.58c) to determpnand,: in terms of¢, which we then
use in [3.58a) to comput€(x, V') = sM¢E for some matrixM. Using this forC in (3.26),
the leading order terms yield the eigenvalue problégpdt = 262V Mg, whereV© is the

matrix

1/Vie 0 ... 0
0 0

Yl = , (3.60)
0 0 - 1/Vye

whereV, is thei™ component oV ... The eigenvalues of the matriX®) M then determine the
stability of the equilibrium solutions with respect to petiations of the DAE.
We begin by substituting the perturbed solutidns (3.59) Bt58b) and expanding to first

order inJ to calculate that

HOE+HY o+ uHY =0, (3.61)

where, for soméV-dimensional column vector vectas, scalars, and N-dimensional vector

function F', F,,(w, s) denotes the Jacobian matrix

_oR
A Bwj’

(fw('w,s)) 1§17]§Na F:(Flv"'aFN)T7 w:(w17"'7wN)T7

and F'y denotes the derivative df' with respect to s(F;), = %. The superscript” indi-
cates that the quantity is evaluated at the equilibriumtsniixz, V', v) = (x., V., 7.). Next,

expanding[(3.58¢) to first order if) we find thatv S T¢ = 0.
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Since we require in terms of¢, we must first calculate in terms of¢. We first use[(3.61)

to write

¢=—Hy ' (HOE + pew) , (3.62)

where we have used (3]57) to calculate tHE-ﬁ) is the N-dimensional vectoey = (1,...,1)".

Then using[(3.62) fop in V.S©T¢ = 0, we find that

VSO (Y Hg)
VSETH ey
Using (3.63) foru in (3.61), we arrive at

= (3.63)

VSO (1) HYE)
VSOTH ey

ey,

Hy'¢ = —HOE +

which, upon some matrix algebra, yields= R&, whereR is defined as

1

_©-1 | _a(e)
R=Ty M +vs<e>TH§?‘1eN

en (vs<e>TH§§)‘1H§>)] . (3.64)

Finally, to derive the eigenvalue problem, we rewrlite (B.id6natrix form as

Vi 0 ... 0

0 0
‘fl—f =2e2VC(z, V), = , (3.65)

0 0 - 1/Vy
whereC is defined in[(3.56). Using the perturbations (3.59)#andV in (3.63) and expand-

ing to the first order i, we arrive at the eigenvalue problem
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%:ﬂéw%Mg, M=CE+C9R, (3.66)

whereV©) andR are defined in(3.60) and(3164), respectively. This leadisa@anain result of
this section:

Principal Result lll: Lete — 0 in (3.3)and assumé (1) separation between adjacent pulses

as well asO(1) separation between edge-pulses and nearest boundariécamsider an equi-
librium solution as constructed i§3.4 parameterized by, V., v) = (x., V., 7.). Then the
solution is stable with respect to small eigenvalues if @eavalues of the matri¥(©) M have
negative real parts. Here/(®) and M are defined in3.60)and (3.68) respectively. It is un-
stable if at least one of the eigenvalues has positive regl pehe entries of the vectors and

matrices defined above are given as follows:

H(e) B Vie anG(xzm x]) R > ? 7£ Js
( x )ij - N
Axie+6\/B+1zk:1i %G(Jf“l’ke) B ) Z:ju
. 6vVB 1
(H)ij = =01 — —7 Gl®ic Tie)
je

whered;; is the Kronecker delta function, and

. 1
(VST =~
“ (3.67)
. 3VB+1 6yB+1 . F
(Cif))ij = 0y D2 - V2 G:c(%t; %'6)7 (Ca(c))ij = —5@'57
e je
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whereF is defined in(3.17) This stability result is equivalent to that obtained fromayzing
perturbations within the original syste(8.3).

While, as expected, the above analysis predicts that sommsyric solutions are stable, it
predicts that some asymmetric solutions are also stableieiter, when solvind (313) numeri-
cally with such asymmetric solutions as initial conditipwg have observed in all cases a pulse
collapse event in which one or more pulses collapse relgtieidly on anO(1) time-scale.
Thus, it appears that no asymmetric solutions are stabtbelasymmetric case witd = 0, the
matrix V) M reduces to a positive multiple of a matrix analyzed4f][ the eigenvalues; of

which were calculated as

q s 2 (0
N N (1 - <T> )ta“ (7)
——, wj - ——= 3 ) J=4,..
5T e @) - () (3
q

whered; = n(j —1)/N, j = 2,..., N, andq andg,, are defined in[(3.49) anf@(3]53), respec-

w1 =

'7N7

tively. Thus, we find thatv, crosses into the right-half plane on the real axis whenncreased
from ¢, to ¢.. Whenqg = ¢,,, there areV — 1 eigenvalues equal 10, equaling the number
of asymmetric branches that bifurcate from the symmetrambhn (ignoring the permutations
in left-to-right ordering of small and large pulses). Weettat, forg sufficiently larger than
qm, all eigenvaluesv; become negative. However, it has been observed that theseedyic
solutions are unstable to relatively rapid pulse collapssnts (Figuré 3.8(F)). We note that
increasing from e = 0.01 to e = 0.015 in Figure[3.8(d) did not change the time at which the

middle pulse collapsed, indicating ar(1) instability.
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Notice that the value = ¢, at which stability changes is also the value at which asymimet
patterns bifurcate from a symmetric branch with= 0. This is found to be true also fot > 0,
and is illustrated in Figurds 3.7, where we plot bifurcatébagrams for one and two pulses
(3.7(a)) and three pulsds (3.7(b)). The horizontal axibésifurcation parametet, while the

vertical axis is the norm defined by

e

i=1

In the annotationssy is the symmetricV-pulse branch, and &1 label represents krge-
small-largeordering of a three-pulse asymmetric pattern. Parts of taadh that are stable
(unstable) to small eigenvalues are depicted by a solich@hdine. Note that permutations
of such a pattern would trace out the same curve, though we plaited the curve for the
permutations for which the pulse locations are betweérand1 for the values ofA depicted.
Lastly, A,, and A,,, are values ofA such thayy = ¢,, andq = q,,,, respectively, where, ¢,,
andg,,, are given in[(3.49)[(3.53), and (3155). As previously stateterms ofg, stability of
the symmetric branches changes at wher- A,,. In Figure[3.7(H), twa)01 solutions exist
in the intervalA,,, < A < A,, as found in§3.4 for theN; > N, case. The lower branch
corresponds to the solution df (3152) with largeand smallz, while the opposite is true for
the upper branch. The upper branch ends when the locatiom efige-pulse is outside of the
domain. If the010 solution were plotted instead, the stability propertiethefbranches would
change. In all cases, asymmetric equilibria are unstaldentall eigenvalues foA sufficiently
nearA,,, the value where they bifurcate from the symmetric branch.eWwiphasize that while
some parts of asymmetric branches may be stable to smaflivailges sufficiently far from

the bifurcation point, numerical computations bn [3.3)wlioat such solutions are unstable to
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rapid collapse events; we have not numerically observedldesasymmetric solution. Lastly,
in the context of the DAE, there is no contradiction in thesexce of multiple stable equilibria
for a given value ofA; different solutions of the algebraic part of the DAE leaddtfierent

systems of differential equations whose stationary pditsl their stability) are independent

of one another.

10

Figure 3.7. Bifurcation diagrams for one and two pulses ((a)) and thnelegs ((b))
with B = 2 andF = 10. In (a), D = 1.3 while in (b), D = 0.6. The solid (dashed)
lines indicate solutions that are stable (unstable) to stmitabilities. In (a) a single
asymmetric branch (ignoring thé permutation) bifurcates from, whenA = A,,. In
(b), two branches (again ignoring permutations) bifurdeden s; whenA = A,,. In
the region4,,,, < A < A,,, two 001 solutions exist.

In Figureg 3.8(a) arld 3.8(b), we show space-time plots ohsgtric solutions starting from

perturbations of two different three-pulse equilibriatibof which are stable to large eigenval-
ues, one for whicly < ¢,, (stable, Figurg¢ 3.8(R)) and the other for whigh> ¢,, (unstable,
Figure[3.8(H)). The perturbation in the pulse locations telen to be in th¢—1/+/2,0,1/v/2)
direction, with the perturbation in Figufe 3.8(a) taken &olérger for illustrative purposes. In
Figure[3.8(0), the solution drifts on &h(e?) time-scale to a solution near a three-pulse asym-

metric equilibrium observed numerically to be stable tgéaeigenvalues. However, because it
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is unstable to small eigenvalues, the pattern drifts forratin of O(e~2) until the pulse loca-
tions are such that the right pulse collapses (if the peatioh were in the-(—1/v/2,0,1/v/2)
direction, it is the middle pulse that collapses). As wasctee for the Gierer-Meinhardt model
in [446], stability to collapse events is sensitive to instantarsgoulse locations; thus, in Figure
[3.8(b), itis likely that the slow drift instability has tgred a fast collapse instability. While, as
previously stated, the collapse event in Fidure 3]8(c) xcatia time independent efthe time
of the collapse event in Figure 3.8(b) scale®xds 2), confirming that the initial instabilities in
these two figures are of different nature. We finally note &tiahree pulses drift in the same di-
rection at the onset of the pulse collapse due to the facthikainstable eigenvectgrin (3.66)

of the aforementioned asymmetric three-pulse equilibigimthe(0.38671, 0.83720, 0.38671)

direction.

Figure 3.8. Space-time plot ofi(x, t) starting from perturbations of three-pulse equilib-
ria. The dark (light) regions represent large (small) valughe parameters ate= 0.01,
A=0,B =2,andFE = 10. Here,q,, ~ 0.41997. The pulses are initially perturbed
from their equilibrium locations atrie, x2e, x3.) = (—2/3,0,2/3). In (a),D = 0.29

(¢ = 0.40778 < @,,,) So that the symmetric three-pulse equilibrium is stable(bi),

D = 0.37 (¢ =~ 0.44228 > q,,) so that the symmetric three-pulse equilibrium is un-
stable and the pulse locations drift away from the equiuirilocations. Eventually,
one of the pulses collapses and the solution evolves to &diab-pulse equilibrium
(gm =~ 0.63 > ¢). The apparent discontinuity neair= 4 x 10 is due to the low tem-
poral resolution used only for plotting purposes. In (©),= 2 (¢ = 0.7762) so that
wj < 0forj =1,2,3. However, two pulses collapse relatively rapidly.
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3.6. Discussion

The method of matched asymptotic expansions was used targcnguasi-equilibrium
pulse solutions to a singularly perturbed Brusselator rhiodée semi-strong pulse-interaction
regime. We introduced a particular scaling of the pararsetithe Brusselator model to analyze
the regime in which pulses move toward equilibrium posgiom anO(€?) time-scale. Using
solvability conditions and matching the inner and outeusohs, we derived a differential-
algebraic system of equations (DAE) for the evolution of paése locations and inverse pulse
amplitudes. We found excellent agreement between the asyimand numerical results com-
puted from the Brusselator equations. We observed thatrdsepce of a boundary feed term
shifted the equilibrium positions of the edge-pulses taithae boundaries and increased inter-
pulse spacings as well as pulse amplitudes. Further, bastte@ondition that edge-pulses of
anN-pulse symmetric equilibrium lie outside of the domain, veeiged a critical boundary feed
rate above which the pulse-boundary interaction changes fepulsive to attractive. When the
boundary feed rate exceeded this threshold, we found tigatpdises of quasi-equilibrium so-
lutions are captured by the boundary, leading to an equihibsolution in which two pulses are
centered on the boundary.

We also found equilibrium points of the differential-algeic system of equations to con-
struct equilibrium solutions. We found that, in additionggmmetric equilibria with equal
pulse amplitudes, asymmetric solutions are also admitieddrtain ranges of the parameter
defined in[(3.4B). The asymmetric equilibria are charaoterby N, small andV; large pulses
spaced unevenly across the domain with arbitrary lefightrordering. Numerical evidence
suggests that asymmetric equilibria are always unstaddelting either in a slow evolution to

a symmetric equilibrium or in the rapid collapse of one or enpulses.
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Finally, we analyzed the stability aWV-pulse equilibria to perturbations that evolve on
an O(e?) time-scale. Calculations (not shown) reveal that anatyziarturbations within the
differential-algebraic system (3125)-(3126) is equivél® analyzing perturbations within the
original reaction-diffusion system (3.3). Combining thelslity results of§3.3 with those of
numerical computations, we found that only symmetric sohg may be stable to both small
and large eigenvalues, and that asymmetric solutions appba always unstable to at least one
of the modes of instability. Instability to large eigenvatumay manifest in rapid collapse events
(depicted in Figurg 3.8(c) for which the value Bfis larger) or in pulse amplitude oscillations
(not yet observed for this model). Study of such instalesitiypically requires analysis of a non-
local eigenvalue problem, and has been performed for theeGhMeinhardt (7], [46], [107))
and Gray-Scott (38]) models. The study of large eigenvalues for the Brusselatmdel is an
open problem. Another interesting problem might be to finthére exists a regime such that
pulse-splitting behavior may occur (as in, e8d|[and discussed qualitatively i29]). Grow-
ing domains leading to pulse-splitting behavior has beep@sed as a model for robust pattern
formation in reaction-diffusion systems[3][with noise and86] with time delay). It would
also be interesting to study the evolution of spots in a twoetisional singularly perturbed
Brusselator model. Ifgl], spot-replication was studied for a singularly perturtmthnaken-
berg model on a unit square and unit disk, while38][ interaction of rings were studied with
exothermic reaction kinetics. It was numerical observed, iin the parameter regime where the
velocity of a traveling pulse in one dimension was fast, riatéons between ring boundaries
led to annihilation at the points of contact. Converselyhie parameter regime where velocity
of a traveling pulse in one dimension was slow, interactlogtsveen ring boundaries resulted in

the breaking up of the rings, leading to a domain filled witbts@nd labyrithian-like patterns.
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In the next chapter, we analyze the large eigenvalues reggerior amplitude instabilities
that evolve on ar©(1) time scale. Two possible classes of amplitude instalslitay occur.
Competition instabilities result in the collapse or ankation of one or more pulses, and are
triggered when an eigenvalue crosses through the origmtiv@ right-half plane. Oscillatory
instabilities are characterized by oscillations in the biuges of all pulses, which occur when a
pair of eigenvalues crosses the imaginary axis into the-tglf plane. The oscillations may be
either in phase or out of phase, depending on parametens.cBotpetition instabilities and the
two types of oscillatory instabilities can be triggeredheitby a certain tuning of parameters, in
which case the instabilities set in immediately at 0, or they can be dynamically triggered at
atimet; > 0 by the slow dynamics studied in this chapter. Both of theseagos are analyzed

in detail in the next chapter.
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CHAPTER 4

Localized Pulses in the Singularly Perturbed Regime: The Lege

Eigenvalues

In this chapter, in a one dimensional domain, the stabilitpcalized pulse patterns is ana-
lyzed for two closely related singularly perturbed reatthffusion (RD) systems with Brusse-
lator kinetics. For the first system, where there is no inflithe inhibitor on the domain bound-
ary, asymptotic analysis is used to derive a nonlocal egeesvproblem (NLEP) whose spec-
trum determines the linear stability of a multi-pulse sieathte solution. Similar to previous
NLEP stability analyses of pulse patterns for other RD systesuch as the Gierer-Meinhardt
(GM) and Gray-Scott (GS) models, a multi-pulse steadyestatution can become unstable to
either a competition or an oscillatory instability depermglon the parameter regime. An ex-
plicit result for the threshold value for the initiation otampetition instability, which triggers
the annihilation of pulses in a multi-pulse pattern, isdedi Alternatively, in the parameter
regime when a Hopf bifurcation occurs, it is shown from a nrioa study of the NLEP that
an asynchronougsrather than synchronous, oscillatory instability of thése amplitudes can
be the dominant instability. The existence of robust asymobus temporal oscillations of the
pulse amplitudes has not been predicted from NLEP stalsilitgies of other RD systems. For
the second system, where there is an influx of inhibitor froemdomain boundaries, an NLEP
stability analysis of a quasi-steady-state two-pulseepatteveals the possibility of dynamic

bifurcations leading to either a competition or an osaltgtinstability of the pulse amplitudes
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depending on the parameter regime. It is shown that the rmsyelchronousscillatory insta-
bility mode can again be the dominant instability. For bothdgelator systems, the detailed
stability results from NLEP theory are confirmed by ratheteasive numerical computations
of the full PDE system. This chapter is based on joint workhviRtof. Michael Ward of the
Department of Mathematics at the University of British Gohia, and Yana Nec, who at the

time was a postdoctoral research at the same department.

4.1. Introduction

Spatially localized patterns arise from a wide variety afateon-diffusion systems, with ap-
plications to chemical dynamics and biological modellinfy [101]), the spatial distribution of
urban crime (cf.[$62,92]), electronic gas-discharge systems (©fl]), and many other areas. In
particular, it is now well-known that localized spot patteican exhibit a wide range of differ-
ent instabilities including, spot oscillation, spot arilation, and spot self-replication behavior.
Various topics related to the analysis of far-from-equilim patterns modeled by PDE systems
are discussed if8[)], [4Q], and [(2].

In this broad context, in this chapter we study the stabdftiocalized pulse-type solutions
to two closely related RD systems with Brusselator-type#as. The Brusselator system (see
e.g., [79], [104, or [85 and the references therein) is a well-known theoreticatiehdor a
simplified autocatalytic reaction. It describes the sp@oe-dependence of the concentrations
of the intermediate products (the activator) and” (the inhibitor) in the sequence of reactions
given in [3.1). Assuming (without loss of generality) thitrate constants of the reactions in
(3.1) are unity, the conventional dimensionless Brussetabdel in a one dimensional domain,

with slow diffusion of the activator and constant influx o&timhibitor from the boundaries, can
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be written as

U =eUp+&— (Bo+ DU +vu?, —1<ax<1, Ufxl,t)=0, t>0, (4.1a)

V, = DyVye + BoU — VU?, —l<ax<l, Vi(£l,t)==4A,, t>0, (4.1b)

supplemented by appropriate initial conditions. HEre> 0, V' > 0,0 < ¢y < 1, and. Ay, By,
D,y and&, are all non-negative constants. The consténtepresents a boundary feed term for
the inhibitor, while the constarffy represents a constant bulk feed for the activator. Our key
assumption in the model is that there is an asymptoticatfyelaatio of the diffusivities fol/
andV.

In the absence of a boundary feed-term, so that 0 in (4.18), then pulses fol (4.1) occur
when&, = O()/?) (see AppendikB andd[7]). Upon writing&, = €)/* Ey whereE, = O(1),

the scaling analysis in AppendiX B yields
Uy = EUpy + € —u + fou?, —l<z<l, w(£l,t)=0, t>0, (4.2a)

1
T'Ut:D/Uxx_'__(u_Uuz), —l<ax<l, w(£l,t)=0, t>0, (4.2b)
€

wheret is a different time-scale than ih(4.1). Hefte 7, ¢, and f, are defined by

Dy(By + 1)3/2 By + 1)5/2 B
p= DB 7 o B DT e By
E? E? VBo 1 By +1

In contrast, when both the boundary and bulk feed terms arevanishing, and are asymp-

totically small of the orde®(¢;/*) so that, = ¢)/* Ey and.Ay = /> Ay, whereE, and 4, are
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O(1), then the appropriate re-scaled form[of{4.1) is (see AppdBithelow)
Uy = EUpy + B —u+ fou?, —1l<az<1l, wu,(£l,t)=0, t>0, (4.4a)

1
Tvt:Dvmz—l——(u—vu?), —l<ax<l, wv(£l,t)=%+1, t>0, (4.4b)
€

whereD, E, 7, ¢, and f are now defined by

D= DQA%\/B()—F:[ E= E()AQ
- B? ’ " ByWBy+1’ 45)
T:M e=__0 f= Bo |
- B2 ’ T VB +1’ T By+1°

The spatially uniform steady-state solution[of{4.2)is= ¢/(1 — f) andv, = ¢ *(1 — f).
For arbitrarye > 0, it is well-known that this solution undergoes either a mgror Hopf insta-
bility depending on the parameter rangedinl(4.2) (€8])} Near the bifurcation points for the
onset of these instabilities, small amplitude patternsrgemand they have been well-studied
in a multi-spatial dimensional context through canonigapéitude equations that are readily
derived from a multi-scale weakly nonlinear analysis (85 &nd the references therein). For
a detailed survey of normal form theory as applied to theysaid -D pattern formation in the
Brusselator model seA1(. More recently, a weakly nonlinear analysis was use®#) fo
study pattern formation near a Turing-Hopf bifurcation iBrasselator model with superdiffu-
sion.

In contrast, with an asymptotically large diffusivity mtas in [4.2), localized large ampli-
tude patterns are readily observed in full numerical sitmare of (4.2) with initial conditions
close to the spatially uniform state.,v.). A standard calculation shows that fér> 1/2,

0 < e < 1,andr = O(1), the band of unstable wave numbetdor an instability mode of the
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form (u,v) = (ue, ve) + M (P, N) satisfies

2 [2f 1)1 - D] <m< M ., as e—0. (4.6)

The maximum growth rate within this instability band is edéted as\max ~ (2f — 1) —2e2m?,

which occurs whem = mmay, Where

3f—2 \'* 14
~ | = . 4.7
Mmax (D(f—1)2) € , as e— 0 (4.7)

Therefore, the instability has a short wavelengtt@gé!/*), In contrast, our results below (see
(4.8) and [(4.9)), show that stable localized pulses occly anO(1) inter-pulse separation

distances. This suggests that starting from initial dataasening process must occur, which
eventually leads to localized pulses. For a particular pater set, in Fig._4]11 we show the

formation of a two-pulse pattern as obtained from the nucaésolution of [4.R).

1.2 1.2
1.0 {\ 1.0
0.8 i i 08 "\"I\‘«
i i i
0.6 it it B 0.6 |- !11:
m [ ! H u b
0af i i 1 0af P
1 i1 t
MM 1 J,/ \
0.0 L 0.0 L
1.00 —-0.75 —0.50 —0.25 0.00 025 0.50 0.75 1.00 1.00 -0.75 —0.50 —0.25 0.00 025 0.50 0.75 1.00
(a) watt = 18 andt = 46 (b) watt = 193 andt = 837

Figure 4.1. Plot of numerical solutiom of (4.2) at different times for the parameter set
e =0.02, f = 0.8, D = 0.1, and7 = 0.001, with initial conditionu(z,0) = wu.(1 +
0.02 x rand) andv(x, 0) = v.(1+0.02 x rand), whereu, = ¢/(1 — f),v. = € 1(1—f),
andrand is a uniformly generated random numberinl]. Left: the small amplitude
pattern att = 18 leads to the two-pulse pattern showntat 46. Right figure: As

t increases front = 193 to ¢t = 837 the two pulses slowly drift to their equilibrium
locations atr = £0.5.
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Rigorous results for the existence of large amplitude dmyiiim solutions for some gen-
eralizations of the Brusselator model (4.2) in the non-glagperturbation limit = 1 have
recently been obtained i8] and (see also the references therein). However, to date, there
is no comprehensive stability theory for these large amgdtsolutions.

In a more general 1-D context, there are now many resultshekistence and stability
of localized equilibrium pulse patterns for various siraglyl perturbed two-component RD
systems such as the Gierer-Meinhardt (GM) md@é/47/106/10§, the Gray-Scott (GS) model
[15/30/58/72/73], and the Schnakenberg modé48[105. A explicit characterization of the slow
dynamics of pulse patterns, and their instability mechanijss given in[28/29/31,32/46/94] for
various RD systems in one space dimension. A central featuak of these previous studies
is that the determination of the spectrum of various clasge®nlocal eigenvalue problems
(NLEP's) is critical for characterizing the stability of thoequilibrium and quasi-equilibrium
multi-pulse patterns. A survey of NLEP theory is given10.

The goal of this chapter is to provide a detailed analysishef gtability of multi-pulse
equilibria of [4.2), and a detailed study of the dynamics sadbility of two-pulse solutions for
the Brusselator moddl (4.4) with a non-zero boundary feed.tAlthough much of the general
theoretical framework for the pulse-stability analysiscigsely related to that developed in
previous works for GM, GS, and Schnakenberg RD systemse tli@r important differences
both in the details of the analysis required and in the stabigsults that are obtained. The
stability results obtained herein complement the resudtained in the previous chapter for the
dynamics of pulses in the Brusselator model.

We now summarize our main results. 2.1 we begin by briefly outlining the asymptotic

construction of symmetriéV-pulse equilibrium solutions td_(4.2). We refer to a symiricetr
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N-pulse solution as one for which the pulses are equally sbaoe, correspondingly, each
pulse has the same amplitude. The main focugldl, not considered iff[7], is to analyze the
stability of symmetricV-pulse equilibrium solutions t@ (4.2). A singular pertuiba analysis
is used ig4.2.2 to derive a nonlocal eigenvalue problem (NLEP) thedmieines the stability of
this solution taD(1) time-scale instabilities. The derivation of this NLEP ier more intricate
than for related RD systems i@7,/30,47,/48,58,[73/105/10€ owing primarily to the presence
of two separate nonlocal terms resulting from éhe ') coefficient in [4.2b), and secondarily
from the nontrivial background state for the activator Hsg from the constant feed term of
orderO(e) in (4.24). From an analysis of this NLEP there are two distimechanisms through
which the solution can go unstable as the bifurcation pararse and D are varied.

Firstly, for 7 sufficiently small, our analysis of the NLEP #d.2.3 reveals the existence of
a critical thresholdV,., such that a pattern consisting & pulses with/N > 1 is unstable to
a competition instability if and only ifV > N.,. This instability, which develops on afi(1)
time scale ag — 0, is due to a positive real eigenvalue, and it triggers thé&apsk of some
of the pulses in the overall pattern. This critical thresh®d]., > 0 is the unique root of (see
Principal Results 2.3 and 2.4 below)

) 1/3
N (1 4 cos (n/N)Y? = <ﬁ) | (4.8)

In addition, from the location of the bifurcation point assted with the birth of an asymmetric
N-pulse equilibrium solution, a further threshald__ is derived that predicts that ai-pulse

equilibrium solution withNV > 1 is stable with respect to slow translational instabilitéshe
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pulse locations if and only iV < N,_, where (sed (4.55))

- 242 1/3
v (i pm) -

Since N._ < N.., the stability properties of aV-pulse equilibrium solution td_(4.2) with
N > 1 andr sufficiently small are as follows: stability whe¥ < N, _; stability with respect
to fastO(1) time-scale instabilities but unstable with respect to stoamslation instabilities
whenN.. < N < N.;; a fastO(1) time-scale instability dominates whevi > N... We
remark that for[(4]2) posed on a domain of lengttthen by a scaling argument we need only
replaceD in (4.8) and[(4.P) witht D/L?. As an example, consider the parametereset0.02,
f = 0.8, andr = 0.001 < 1. Then, the threshold (4.9) witN,._ = 2 predicts that a two-pulse
pattern is stable to both fast and slow instabilities wiien< 0.133. The numerical results
shown in Fig[4.ll withD = 0.1 confirm this prediction.

For the case > 0in (4.2), we show that aiV-pulse equilibrium solution td_(4.2) is unstable

whenN > N_., or equivalently wherD > D, (see Principal Result 2.3 below), where

_ 2f?
Pex = 58s(1— 7 (1+cost)’

ForD < D.,, in §.2.4 we show from a numerical computation of the spectruth®NLEP

Nt
that there is a critical valug; of 7 for which an/NV-pulse equilibrium solution undergoes a Hopf
bifurcation. In contrast to the previous NLEP stabilitydies of 58,102,10€¢ for the GM and
GS models, where a synchronous oscillation in the pulseitudpk was always the dominant
instability, our results show that there is a parametemnegihere the Hopf bifurcation for the

Brusselator[(4]2) triggers robuasynchronousemporal oscillations of the pulse amplitudes.

Furthermore, we establish the scaling law~ ¢/D asD — 0 for someO(1) constant > 0.
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Therefore, in contrast to the previous analyses for the GN@S& models (cf/38,[106) where
™ = O(1) asD — 0, this new scaling law indicates that pulses that are isoltem their
neighbors or from the domain boundaries (iesmall) do not undergo an oscillatory instability
unlessr is very large.

For the boundary-flux systern (4.4), #.3.1 we derive an ODE for the slow evolution of
a two-pulse quasi-steady pattern. In the presence of boyfida, equilibrium pulses are not
equally spaced, and depending on the parameter valuedy slafting pulses may annihilate
against the domain boundaries. §4.3.2 we derive an NLEP governing the stability of the
two-pulse quasi-steady pattern@j1) time-scale instabilities. From an analytical and numer-
ical study of this NLEP, irj4.3.3 andj4.3.4 we show the possibility of dynamic bifurcations
leading to either a competition or an oscillatory instapibf the pulse amplitudes depending
on the parameter regime. As in the study of the no-flux sysief),(the novebhsynchronous
oscillatory instability mode can again be the dominantahsity.

For both Brusselator systems, the detailed stability tesuke confirmed and illustrated by

rather extensive numerical computations of the full PDEays.

4.2. Stability of Symmetric N-Pulse Equilibria with No Boundary Flux

In this section, we construd{-pulse symmetric equilibrium solutions &f (#.2). By a sym-
metric pulse solution we refer to a pattern of pulses withmmmn height and equal spacing.
We then linearize about this equilibrium solution to derreNLEP governing the stability of
the equilibrium pattern t@(1) eigenvalues. Stability with respect to the sm@lle?) eigen-
values as well as the existence of asymmetric equilibri@wsardied in[@7]. We highlight the

differences between the NLEP derived here and analogousPiSlderived for the Gray-Scott
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([58]) and Gierer-Meinhardt (0€]) models. We also draw similarities to the aforementioned
NLEP’s and appeal to results dQ€] to determine criteria for competition and oscillatory in-

stabilities. Numerical results computed frdm {4.2) aredusevalidate our stability results.

4.2.1. Asymptotic Construction of V-Pulse Equilibria

To construct anV-pulse symmetric equilibrium solution, characterized bisps of a common
amplitude and equal spacing, we employ the “gluing” techaigsed in105. We first consider
a one-pulse solution on the interya| < ¢ centered at = 0. In the inner region of widtl®(¢),
we introduce the stretched spatial variaple- ¢~z and letU(y) = u(ey). Because» varies
on anO(1) length scale, then ~ v, in the inner region where the constantis to be found.
Then, by [4.2l), we obtain to leading order thasatisfies/,, — U + fv.U? = 0. The pulse

solution to this problem is

U) = 7). (4.10)

wherew = 2 sech®(y/2) is the homoclinic solution to

w' —w4w?=0, —00 < Y < 00,
(4.11)
w— 0 as |y| — oo, w'(0) =0, w(0) >0,
for which
/ wdy:/ w?dy = 6. (4.12)

In the outer region, we obtain frorh (412a) that= O(¢) so thatvu? < u. Thus,u ~ ¢ to

leading order in the outer region. The resulting leadingeoicomposite solution far is then
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given by
1

un~ e+ —uw(x/e), (4.13)

Cc

wherew(y) is defined by[(4.11). Since is localized near: = 0, the terms involving: in
(4.21) can be represented in the outer region as delta émsctiUpon using(4.12) and (4]13)

we calculate that

%(u—vuz) ~ 14 (fifc /_Oowdy— levc /_Oow2 dy) d(x)
6 1
= 1+ <1 - ?) 5(z) . (4.14)

Therefore, in the outer region we obtain for- 0 thatv satisfies

6

Dvg, +1 =
(o o

(%4) 5(z), A<z <l,  v(£l)=0. (4.15)

Integrating this equation ovér| < ¢ and imposing that, = 0 atx = 4/, we obtain

3 /1
ve= 5 <?—1) >0, (4.16)

sincef satisfied) < f < 1. To obtain anV-pulse equilibrium solution fof(412) on the domain
of length two, we must s& = 2N/ and periodically extend our solution ¢n| < [ to [—1, 1].
Thus, we identify that = 1/N and [4.16) becomes

3N /1
ve="F <? - 1) . (4.17)
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Before solving for the outer solution far, we make some remarks. Firstly, in (4.17)
increases withV, and so, by[(4.10), the common pulse amplitude decreasé® amimber of
pulses increases. Also, the common amplitude is indepe¢ddn which will not be the case
when we construct pulse solutions under the presence ofdaoyrflux in§4.3. Secondly, by

using? = 1/N, the center of each pulse is located at

2+ 1
r =1+ j]\f . j=0.. N-1. (4.18)

This equally-spaced pulse result will be shown not to holgdild when we allow for the pres-
ence of boundary flux. Lastly, the uniqueness of the solutdd.1%) is achieved by imposing
the matching condition(z;) = v..

Using the last remark, we write the equation faon the interval-1 < z < 1 as

N-1
6 (1
Dvg, +1= o <?—1) Zé(z—xj), -l<z<1, v(£1) =0, (4.19)

=0
wherev, satisfies[(4.17). The solution fo (4119) can be written imt&of the Neumann Green’s

functionG(x; x;) as

v="0+ 6 (l—l) N_IG(x'x-) (4.20)
o \F ) &)

for some constant to be determined. Her@/(z; ;) satisfies

1
DGm(:c;xj)—l—Q = 0(z — xj), —l<z<1,
) (4.21)
Gu(£1l;25) =0, / G(z;z;)de =0,

1



160

which has the explicit solution

) = (P e D — ] —
G(z;z;) = 4D(x +xj)+2D|x x| D (4.22)
The constant is determined by the matching conditiof;) = v., yielding
6 (1 —
U=, — - —1 Gz x;), 4.23
fvc (f ) jgo ( J) ( )

where the right-hand side df (4]23) is readily shown to bepehdent of. We summarize our

result as follows:

Principal Result 4.2.1: Lete — 0 in (4.2). Then, the leading order composite approximation

for the symmetricV-pulse equilibrium solution for is

N-1

1
() ~ €+ I Z wle Nz — ;)] (4.24a)
C ]ZO

Alternatively, the outer solution farvalid for |z — z;| > O(e) andj = 0,..., N — 1 is given

asymptotically by

6 1 N-1

e(z) ~ 0 - -1 ;). 4.24b
ve() U—i-fvc <f ) > G(x; xj) ( )

[e=]

Herew(y) satisfiegd.11) whilev,, z;, v, andG(x; x;) are given in(4.17) (4.18) (4.23) and
(@.22) respectively.

Next, we calculate the critical value,,, of D for which an asymmetrieV-pulse equilibrium
solution, characterized by pulses of different height ao-aniform spacing, bifurcates from
the symmetridV-pulse symmetric solution branch. This bifurcation poimtresponds to a zero

eigenvalue crossing along the symmetric branch, and soifficiently small it characterizes the
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stability threshold of symmetri&/-pulse equilibria with respect to the small eigenvaluefiwit
A — 0 ase — 0in the linearization of[(4]2) (cflq7]).

To determine this bifurcation point, we computg) for the one-pulse equilibrium solution
to (4.2) on the domain-l < x < I. From [4.15) and_(4.16), we readily calculate that

v(l):%<l2+%)), b="20_p).

The bifurcation point for the emergence of an asymmeifipulse solution on a domain of

length two, is obtained by calculating the minimum pointted graph of)(1) versud, and then

setting2/N! = 2 (cf. [97]). This occurs at the valup = D, where
f2
D,.=—"——. 4.2

4.2.2. Derivation of Nonlocal Eigenvalue Problem

To analyze the stability of the equilibrium solution consted above, we linearize abaytand
ve, Whereu, andv, are given inl[(4.24a) an@ (4.24b), respectively. We sulistitu= u, + e\ ®

andv = v, +eMW into (4.2), wheré®| < 1 and|¥| < 1. This leads to the eigenvalue problem

EDuy — O+ 2fu v, + full = AP, —l<z<1, P, (£1) =0, (4.26a)
1

DV, + = [® — 2uev,® — ulV] = 7AT, ~-l<z<1, U, (+1)=0. (4.26b)
€

To analyze the large eigenvalues that@g) ase — 0, we look for a localized eigenfunc-

tion for @ of the form

O~y Bile (@ - ay)], (4.27)
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where®,(y) is an even function witb; — 0 exponentially agy| — oo. In the inner region
near thejth pulse we obtain froni(4.26b) that ~ ¥;, whereV, is a constant to be found.

Since both:. and® are localized near eact}, we calculate in the sense of distributions that

1 [<I> — 2u0.P — ug\lf} ~

€
_Oo<1>j dy — 7 _Oou@j dy — 72,2 _oow dy ) 6(x —x;). (4.28)

Substituting[(4.27) intd(4.26a) and (4128) info (4126l asing [4.1R) for the last integral in
(4.28), we obtain that

1
<I>;(—(I)j+2w<1>j+ﬁw2\lfj =\, , —00 <y < 00, ®; — 0 as |y| — oo, (4.29a)
and
N—-1
Wow — 120 = — Y 0;0(x — ;) ~l<z<1, U, (+1) =0, (4.29Db)
=0

TA - 1 o 2 [ 6w,
W= D W, 5[/ <I>jdy—?/ wd; dy — 32 : (4.30)

—00 00 f2vc

To derive an NLEP for;, we must comput&; for j = 0,..., N — 1 from (4.29b). To do so,

we write U (x) as
N-1

J=0
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whereGW (z; r;) is the Green’s function satisfying
GW — G = —§(x — x;), -l<z<1; GW(+1;2;)=0. (4.32)

Evaluating [4:31) at: = z; we obtain that¥(z;) = ¥; = V' Ga;, whereGY,

GW (z;, z;) and®; is given in [£30). In matrix form, this system can be writen

6
where
Gy 6o Gi s
Yo () ()
G o gm
= : ’ G = 1,0 1,N—1 ’ (4.34)
\I’N—l
Gy GV, G n s
and
D
1
wzﬁl/ <I>dy——/ w‘I’dy] P = (4.35)
(I>N—1
Solving for ¥ in (4.33), we obtain
T =C'¢Wy: C=T+ G» (4.36)

f2v2D

C

whereZ is the N x N identity matrix.
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Having obtainedV in terms of®, we now derive a vector NLEP fab. Upon defining the
local operator’, by

Lop = ¢" — ¢+ 2we, (4.37)

we then usd (4.35) fap to write (4.298) in vector form as

2 o)
Lo® + f:)‘;Dc—lgW) U (<1> — ;uﬂb) dy} =\D. (4.38)

[

To obtain N uncoupled scalar NLEP’s, we diagonalige! andG* by using the eigenpairs

GWo; = kv;forj=0,...,N — 1 of GW. This yields,

6
f2v2D’

GW =SAS™',  Cl'=S[T+p/A'ST B= (4.39)

whereS is the non-singular matrix whose columns are the eigenveabG™ andA is the
diagonal matrix of the eigenvalues, . . ., xy_,. From the observation th@(ﬂ))_1 is a tridi-

agonal matrix, explicit formulae for these eigenvalueseneliculated in Proposition 2 ofT]

as
1 .
Kj = —, j=0,....,.N—1, (4.40)
KT
whereo; for j = 0,..., N — 1 are given by
Jm ,
oo = e+ 2fy; 0j = ex+ 2fycos ~ j=1,...,N—1. (4.41a)

Heree, andf, are defined in terms gf = \/7\/D by

ex = 2coth (%u) , fr = —csch (%u) ) (4.41b)
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The corresponding eigenvectors@f) are

vy =(1,...,1); Ug’j:COS{%(€—1/2>:|, j=1,...,N—1, (4.41c)

wheret denotes the transpose angd denotes théth component of the vectar;.
Upon substituting[{4.39) intd {4.88), and making use of taasformation® = S&, we

obtain the diagonal NLEP

) (@2 ay )
Lo® + fBy[Z + BoA] ™' Aw - =\, (4.42)

where(, is defined in[(4.3P), and where we have used yhoéng dy = 6. While the compo-
nents of® are generally different, for notational convenience wédab = de, wheree is the
N-vector(1,...,1)". SinceA is the diagonal matrix of eigenvalugs, this substitution leads to
N uncoupled scalar NLEP’s of the form
ffooo <<i> — %wi)) dy
2w dy

Lo(i) —+ f)ijz

wherey; is defined by

%= % (4.44)
In contrast to the NLEP problems for the Gierer-Meinhardt @nay-Scott models analyzed

in and [58], the NLEP [4.4B) involves the two separate nonlocal tegfﬁs& dy and

[ wd dy. These terms arise from the fact that tée ") term in [Z.2b) involves the sum

of two localized terms. Due to this complication, it initiaappears that the general theory
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developed in[10§ is not applicable. However, as we now show, by a simple mdatjpn we
can recasi{(4.43) into the same general form as the NLEP zethig [LO€]].

To do so, we first defing, andl, asl, = [ &dy andl, = [*_wddy. Then, by using
(@.37) for L,®, together with the condition that — 0 as|y| — oo, we integrate[(4.43) over

—00 < y < oo to obtain

2
— 5L+ 2L+ fx; {Il — ?]2:| =\,

which is then re-arranged to yield

L-2n,-_2 [M} L. (4.45)

2
P S

Finally, using [(4.4b) in[(4.43), we obtain the NLEP problem

[2 wddy A T+A—f
Ly® 2= ") =)\, =2y | ———— |, 4.46
0® — x;w (f_OOWZd@/ Xj = 2X; |:1+)\_Xjf} (4.46)

wherey; is defined in terms of; in (4.44).

The NLEP in [4.46) is of the form given in Proposition 2.3 for the GM model
and in Principal Result 3.2 oBB] for the GS model. However, because the activator in the
Brusselator model acts as two separate sources for thatothithe identity [4.45) is needed,
which results in a rather complicated coefficient in fronthef nonlocal term i (4.46). Finally,

by substituting[(4.44) and (4.40) info (4146) we obtain thiéofving main result:

Principal Result 4.2.2: Let ¢ — 0 in (4.2) and consider theV-pulse equilibrium solution

constructed iff4.2.1. The stability of this solution on &®(1) timescale is determined by the



167

spectrum of the NLEP

. > wdd . .
Lo® — x;w? M =D, —00 <y < 00, d —0 as |y| — oo, (4.47a)
f_oow2 dy
wherey is given explicitly by
2 fro;
o + 4.47b
Y T 00,75 l 7B~ (Lt N (ot 5) (4.475)

Hereo; is defined in terms qf in (@.414) . is defined in terms of in (4.30) and, is defined
in (4.39)

We make a few remarks concerning (4.47). Firstly, the depecel ofy; in (4.41) ont
is strictly through the parameter = \/m the importance of which will be discussed
in the following section. From the explicit formula (4.4 1it)follows that x; does not have
a branch point at the origin = 0. Secondly, sincé is even, thenff‘;owé dy # 0. The
spectrum ofL, was studied in65] and [27], where it was proved that in addition to the zero
eigenvalue associated with translation invariarigehas a unigue positive eigenvalug= 5/4
corresponding to an eigenfunctieg of constant sign. In addition, there is another discrete
eigenvalue fol,, on the negative real line ap = —3/4 (cf. [27]).

Finally, the spectrum of the NLEP fdr (4J47) is recast into@enconvenient form by first

. ffooow(f dy B
@ZXJ (m (LO—)\) 1w2.

and then multiplying both sides of this equation tyand integrating over the real line. In

writing

this way, we obtain that the eigenvalues[of (4.47) are thesrobthe transcendental equations

gj(A\) =0,forj=0,...,N —1, where
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9N =C;N) = F(), G\ = R s
_ ffoooww dy _ 1.2 .
F()\) = 7]1)000“]2 dy s w = (LO — )\) w,

and where the inversiofl, — )\)_1 is defined uniquely by requiring thatis an even function.

4.2.3. Competition Instabilities

In this sub-section, we seek criteria in termsiofthat guarantee that there is a positive real
solution to [4.4B) in the limitr — 0". Such a root corresponds to an unstable real positive
eigenvalue of the NLER (4.47). Fer— 07 it will be shown that such a linear instability is
of competition type in the sense that it conserves the surneoéinplitudes of the pulses. The
instability threshold condition o® will also be shown to apply to the case where 0.

We begin the analysis by recalling key properties of the fionc/'(\) when \ is real and
positive as determined in Proposition 3.5 @0f]. We then determine the behavior 6f(\)
in (4.48) in the limitr — 0%. Using the properties of’;(\) in this limit, together with the
properties off’(\), we obtain criteria for which there exists a positive redlieaof A at which
C;(X) and F'(\) intersect. Some global properties Bf\) when\ is real and positive, which

were rigorously established id(€], are as follows:

F(\) >0, F'(\) >0, F'(\) >0, for 0<\<5/4;
(4.49a)
F(\) <0, for A>5/4.

Furthermore, sincéow = w? and since the operat¢f,, — \) is not invertible at\ = 5/4, we
obtain that

F(0)=1, F(\) — 400, as A—5/4 . (4.49D)
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To determine the behavior 6f;(\) ast — 07, we first writeC;;(\) in terms ofo; as

IS

. _ H9j
1+X—=f]"

G =5 [1+6+ -2,
0

5 j=0,...,N—1. (4.50)

&

For any branch of/}, this function is analytic in the finita plane except at the simple pole
A = —1+ f, which is on the negative real axis sifte: f < 1. Upon taking the limify — 0"

in o; in (@.414), we see that in (£50) has the behavior

Na; Vs
50_>0+; g]_> 60]7 CLjEl—COS<N>,

j=1,...,N -1, as 7 — 0",

(4.51)

wheref, is defined in[(4.39).

Firstly, by (4.51) and[(4.50), we have that(\) = 1/2 for all A whent = 0. Thus, by
(4.49), it follows thatgy(\) # 0 for any A > 0. Moreover, from the rigorous study of0§
(see Corollary 1.2 ofl0§), we can conclude, more strongly, that whén= 1/2 there are no
roots togg(\) = 0 in the unstable right-half plane Re) > 0 (seel(4.2}4)). Thus, the, ... 1)’
mode, governing synchronous instabilities of the ampétudf the pulses, is always stable in
the limitT — 0.

Next, consider the modgs=1,..., N — 1. Since¢; in (4.51) forj > 0 is independent of
Ain the limit 7 — 07, it follows from (4.50) thatC’(\) < 0 andCj(\) > 0 for A > 0 when
j=1,...,N—1. Thus, from[(4.4D), we conclude thatifax; C;(0) < 1forj =1,..., N —1,
then there are no real positive eigenvalues when 0. A simple calculation using (4.50) and

(4.51) shows that as — 0%, we have the ordering'y_;(0) > Cn_2(0) > ... > C1(0).
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Therefore, in the limitr — 07, (4.47) has no real positive eigenvalues when

Cn_1(0) = 1 [M

2 1—f

<1. (4.52)

If Cy_1(0) > 1, there is an unstable positive real eigenvalue whern 0*. The threshold
value D, of D, as given below in[(4.53), is obtained by settifig_;(0) = 1, and then using
(4.51) foréy_, together with[(4.39) fops,.

Although for the case > 0 it is no longer true tha€'y,_; () is monotonically decreasing,
we still have thatCy_,(0) > 1 whenD > D... Hence, by the properties d@f(\) given in
(4.49) it follows that there must still be a positive root@g,_;(\) = F()\). However, when
T > 0 it is possible that there can now be further real positivdgaghere the other curves

Cj(A) forj =0,..., N —2intersect'(\). We summarize our instability result as follows:

Principal Result 4.2.3: Lete — 0 and7 > 0 in (4.2). Then theN-pulse equilibrium solution

(N > 2) constructed irff4.2.7 is unstable when

212
BN3(1—f) (14 cos %)’

D>D,, = 0<f<1, (4.53)

and the spectrum of the NLER.47)contains at least one unstable positive real eigenvalue. Fo
7 — 0T, the instability is of competition type in the sense thatlamarly unstable eigenvector

v; for the pulse amplitudes must satigty. .., 1) - v; = 0.

We now make some remarks. Firstly, for the limiting case» 07, in §4.2.4 a winding
number calculation will be used to prove that there are noalnhs complex eigenvalues in the
right half-plane wherD < D.,. Therefore, forr — 07, the threshold..,, gives a necessary

and sufficient condition for stability. Secondly, by comipar({4.53) with [4.55), we see that
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ast — 07, the N-pulse equilibrium solutior{ (4.24) is stable if and onlytifs stable to small
eigenvalues. Thirdly, the term competition instabilitydge to the fact that when such an
instability is triggered, some pulses grow in amplitude le/tither decrease. This is due to
the difference in signs of the components of the eigenveaipifor j = 1,...,N — 1. As
shown in the numerical experiments below, computed fromfulieBrusselator model (4]2),
this linear instability triggers a nonlinear event thatdgdo pulse annihilation. In contrast, as
was shown above, the synchronous mode corresponding te (1,...,1)" is always stable
when is sufficiently small. FourthlyD,, decreases as N—2 when N is large, which is
the same scaling as for the Schnakenberg model (Corollargf3105). In contrast, the GM
(Proposition 7 of 47]) and GS ([B8]) models have a more robuat—2 scaling in terms of the
ability to support additional pulses. Siné&is inversely proportional to the square length of
the domain,[(4.53) shows that in order to maintain staltifisydomain size must increase as the
number of pulses increases. Finally, in terms of the origénasselator parameters,, D, and

E, in (4.8), we have the stability criterion

2E2B?

Dy < Dy, = )
TN T3NS (By + 1)5/2 (1 + cos )

(4.54)

Thus a pulse pattern can be stabilized with sniglor large £,. Note that, by[(4B8)FZ =
O(r71) sothatD,., = O(r7') asT — 0'. However, if we require thab = O(1) with respect
to 7, then Dy, must also beD(7~!) by (&3). Also, ifr = (B, + 1)°/2/E? is held constant,
then increasing3 in (4.54) relaxes the stability criterion. This fact is refled in terms of the
rescaled variables il (4.53), where increasing B,/(B, + 1) towards unity increased..,, .
Finally, we remark that the eigenvalue probldm (%#.26) asmitother class of eigenvalues

associated with translation-type instabilities, and ¢heigenvalues are of the order= O(€?)
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ase — 0. These eigenvalues, studied BY], were found to be real negative whenrn= O(1) if
and only if D < Dj,,, where (cf.[p7])

2
/ <D

Dy —_—— e
YTANI(I— ) T

(4.55)

This threshold value is the same as that calculatdd inl(#o2H)e bifurcation point correspond-
ing to the emergence of asymmeticpulse equilibria from a symmetriy-pulse equilibrium

solution branch.

4.2.4. Complex Eigenvalues and Oscillatory Instabilities

For the caseD < D., andr = 0, we now use a winding number argument to prove that
(4.47) has no unstable eigenvalues wit Re> 0. To calculate the number of zeros @i \)

in the right-half plane, we compute the winding @f\) over the contout” traversed in the
counterclockwise direction composed of the following segts in the complex- plane: '}

(0 <Im(N) <iR,Reg\) =0),I'; (—iR < Im()\) < 0, Rg\) = 0), andl'y is the semi-circle

in the right-half plane defined Q| = R > 0, —7/2 < arg(\) < 7/2, whereR > 0.

Each functiong;(\) in (4.48) forj = 0,...,N — 1 is analytic in R¢\) > 0 except at
the simple pole\ = 5/4 corresponding to the unique positive eigenvalue of theaiper,, in
(@.31). Therefore, by the argument principle we obtain ffat- 1 = (27) ! limp_. [arg g;] .,
where)V/; is the number of zeros af; in the right half-plane, and wheferg g;]. denotes the
change in the argument ¢f overI'. Furthermore from(4.48)_(4.50) arid (451) it follows that

g9; — (1+¢&;)/2 as[A| — oo on the semi-circld’g, so thatlimg_.. [arg g;];,, = 0. For the

contourl’;, we use thag;(\) = g;()\) so thafjarg gj]FI, = |arg gj]rj. By summing the roots of

the N separate functiong;(\) for j =0, ..., N — 1, we obtain that the numbér of unstable
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eigenvalues of the NLEP(447) when= 0 is

r

M=N +

3=

larg g+ - (4.56)

<.
I
o

Here [arggj]ﬁ denotes the change in the argumentpfas the imaginary axis = i\; is
traversed from\; = +oo to A\; = 0.
To explicitly calculatdarg gj]r? whenr = 0, we substitute\ = i); into (4.50) forC;, and

separate the resulting expression into real and imagiretg po obtain

Ci(iMr) = Cir(Ar) +iCir (A1) (4.57a)

where
G =5, Colh) =0, (4.57b)
CjR(AI):% 1+@+% . j=1,..,N—1, (4.57c)
Cﬂ(AI):—%, j=1,...,N—1. (4.57d)

In (4.57) we use the limiting behavior fgr asT — 0% as given in[(4.51).
Similarly, we separate the real and imaginary part$'0f\;), where F'(\) was defined in

(4.48), to obtain that

. ffooowLo [L2 + )\%]_1 wdy [ Mg ffooow [L2 + )\%]_1 w? dy
F(Z)\I) - foo w2 dy + 7 foo ’Uj2 dy
Fr(Ar) +iFr(Ar), (4.58)
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which determineg(i)\;) from (4.48) as
9;(iAr) = Cir(Ar) — Fr(Ar) + i [Cir(A1) — Fi(An)] = gjr(A1) +ig1(Ar) - (4.59)

In order to calculat¢arggj]rl+, we require the following properties @fz(\;) and F;(\;),

as established rigorously in Propositions 3.1 and 3.0}

Fr(0)=1; Fr(\) <0, A >0; Fr(\1) = O(\;?), A\ — +oo,  (4.60a)
F](O) =0; F]()\[) > 0, )\] > 0; F]()\[) :O()\I_l), )\] — +00. (460b)
By using [4.57) and (4.60), we obtain from (4.59) that < 0 andgy; = 0 at\; = 0, while

gor > 0andg;o = 0 asA; — +oo. In addition, since;(A\;) > 0, we conclude thag,; < 0 for

Ar > 0. Thereforearg go|.+ = —, and hence (4.56) becomes

N-1
1
M=N-1+_ z; [arg g+ - (4.61)
]:
The calculation o{arggj]w forj =1,...,N — 1is similar, but depends on the range of

D. Suppose thaD < D.,, whereD,, is the threshold of (4.53), so thatz(0) < 1 for all
j=1,...,N —1. Then, from[(4.57)[(4.80), and (4]59), we calculate that< 0 andgy; = 0
at \; = 0, while gog > 0 andg;o, = 0 asA; — +oo. In addition, sincef;(A;) > 0 and
Cor(Ar) < 0, we getgoy < 0 forall A; > 0. This givesjarg ;] = —m forj =1,..., N — L.

From [4.61), we then obtain the following result:

Principal Result 4.2.4: Lett — 0" ande — 0. Then, whenD < D, , whereD, is the

CN

threshold of(4.53) the NLEP({4.47)has no unstable eigenvalues in(Rg> 0. Therefore, for
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7 — 0T, the thresholdD., gives a necessary and sufficient condition for the stabilitthe

N-pulse equilibrium solutiofd.24a)of [@.2).

We remark that a® is increased above the threshdhd, in such a way thaf’y_,(0) > 1

but C;(0) < 0forj = 1,...,N — 2, we readily calculate froni(4.57)._(4)60), arid (4.59),
that [arggN_l]F? = 0 and [arggj]ﬁ = —nforj=1,...,N — 2. Therefore, from[{(4.61) we
conclude thafi/ = 1, and the only eigenvalue entering the right-half planeés#al eigenvalue
corresponding to the competition instability analyzed4i?.3. We remark that sinceappears
only through the factor ), then increasing cannot result in a competition instability. Thus,
the threshold criteriori (4.53) for stability is also valat & range o) < 7 < 7, for somery, > 0
to be determined.

Next, we show that fob < D < D.y, there are exactlyV unstable eigenvalues in Rg >
0 whent > 0 is sufficiently large, and that these eigenvalues are on tiséiye real axis in
0 < A < 5/4. ForT > 1, we obtain from[(4.50) and(4.41a) thadj = O(v/A\7) onT', so that

limp_.o [arg g;]. . = 7/2. In this way, we obtain in place di (4.56) that

=2

5N
M = e + [arggj]ry : (4.62)

3]
Il
o

J

For7 > 1 and) = i)\;, we obtain from[(4.50) and (4.41a) that

1 _ fRrRAVITAS 2
Cj—§ 14k ZT)\]—Fm], K:ﬂo\/b‘ (4.63)
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Separating into real and imaginary parts, With= C» + ¢C;;, we get forr > 1 and\; # 0

that | |
 RVTAL 14+ iA; T 1
CjR— 5 |(1_f)+i)\I|COS(Z+90 91>—|‘2,
. | A (4.64a)
_ RVTA; 142 (T B
Cr="75 \(1—f)+m|sm<4+9° ")
wheref, andf; are defined by
0y = arctan(\;) , 0, = arctan(\; /(1 — f)) . (4.64b)

Since\; > 0, and0 < f < 1, then0 < 6, < 6; < m/2. Notice thatC;z > 0 for anyA\; > 0 on
this range o, andé,.

Forr > 1, we haveg; ~ ce™™/*\/)\;, wherec > 0 is a real constant, as; — -+oo.
Therefore, we have afg;) = 7/4 as\; — +oo. Now for \; = 0, we havey,;z < 0andg;; =0
whenD < D.,, so that ary;) = m when\; = 0. In order to prove tha[targgj]rf = 3 /4,
we must show thag,; > 0 whenevergr; = 0. SinceFr > 0 andC,z(A\;) > 0 for A; > 0,
but C;rp = O(y/7) > 1for 7 > 1, it follows that any root\; of gz; = 0 must be such
that\; = O(r') < 1. Thus, forr > 1, we haved, — 0 andf; — 0 as\; — 0, and
so we conclude fron{(4.64) that;; > 0 with C;; = O(1) at A} = O(r'). Finally, since
g1 = C;r — Fy, andF;(0) = 0, we conclude thag,; > 0 at any root\} < 1 of g;z = 0. This
proves thatarg gj]r? = 3r /4 foreachj =0,..., N — 1. Finally, from (4.62) we conclude that
M =2N.

To determine more precisely the location of these unstalgkenealues we proceed as in
§4.2.3. Forr > 1, and on the positive real axis ihn< A\ < 5/4 we obtain from[(4.50) and

(@.41a) thatC;()\) is a concave monotone increasing function. Sia¢cg) < F(0) = 1 when
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D < D, forj=0,...,N —1, it follows from the properties of'(\) in (£.49) that for each,
C;(A\) = F(X\) must have two roots on the interval A\ < 5/4. We summatrize the result as

follows:

Principal Result 4.2.5: LetT — oo ande — 0. Then, whe) < D < D.,, whereD,,, is the

CN

threshold of(4.53) the NLEP({@.417)has exactly2 NV unstable eigenvalues in Re > 0. These

eigenvalues are located on the real axis in the intefval \ < 5/4.

Therefore, for the parameter range< D < D.,, and by the continuity of the branches

Nt
of eigenvalues with respect tg9 we conclude that for each= 0,... N — 1, there must be a
minimum valuery; > 0 of 7 for which the NLEP[(4.4]7) has a complex conjugate pair of eige
values at\ = :I:M?j, corresponding to each eigenmode[in (4141c). We define ttidadsry
stability thresholdr, as the minimum of these thresholds, i®. = min; 7,;. Our numerical
results show that, is a Hopf bifurcation point, in the sense that an unstablepgierconjugate
pair of eigenvalues enters the right half-planefalightly abover,. From [4.41k) the = 0
mode corresponds to synchronous pulse amplitude osgiigtwhile the other modes corre-
spond to asynchronous oscillations in the pulse amplituétes the Gierer-Meinhardt model,
as studied in10§, an ordering principley; < 79;+1, 7 = 0,..., N — 2 was observed for all
values of the parameters tested. That is, the dominantatscy instability is that of synchro-
nous oscillations of the pulse amplitudes. In contrastafbvalues of the parametégttested,
we find an interval ofD in 0 < D < D, in which this ordering principle is reversed. Thus, the
Brusselator admits asynchronous oscillations not obsgerverevious studies of the stability

of pulse solutions. We conjecture that this is due to thevatr acting as two separate sources

for the inhibitor, necessitating the manipulatidn (4.45pbtain the multiplier of the nonlocal
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term in the NLEP[(4.46). We illustrate asynchronous oscitlaphenomena for two-, three-,
and four-pulse examples {#.2.5.

To determine the smallest valug; for which there are two eigenvalues= +i\?; with
/\(}j > 0, on the imaginary axis, and no eigenvalues in the right4blalie, we solve the coupled
systemgr; = gr; = 0 given in (4.59) forr; and)\?j. In (4.59),C;r(Ar) = Re(C;(iA)) and
Cir(Ar) = Im(C;(iA;)), whereC;(\) is defined in[(4.50) in terms af; as given in[(4.41a).

The critical valuer, is then defined by
To = Il’liIl Toj - (465)
J

For given parameter® and f, we used theVATLAB functionf sol ve() to solve the
systemyg; = g1; = 0 for 7p; and\9,. To evaluateFz(\;) andF;();) in (@.58), we discretized
the operatofL2+ A\?] over the intervat-20 < y < 20 using500 grid points and useMATLAB's
inversion algorithm to solve the boundary value problem.e Titapezoidal rule was used to
evaluate the integrals iRz(\;) and F;(\;). Halving the number of grid points, or halving the
interval length, did not significantly affect the calculdtealues ofF'r(A\;) and F;(\;). In all
subsequent plots af,; and )\9]., we treatD as the bifurcation parameter and hgldixed at a
particular value. For the values ¢ftested in the intervdl < f < 1, the qualitative behavior of
70;(D) remained unchanged.

In Figure[4.2(d), we plot the curves; (D) for N = 2 andf = 0.5. The critical valueD, is
indicated by the vertical dotted line in the figure. When= D.,, thej = 1 curve ends as the
corresponding pair of imaginary eigenvalues meet at thggrgras shown in the plot o’f?j(D)
in Figure[4.2(d). AsD increases abov®,,, one eigenvalue moves on the real axis into the

right-half plane. Because thje= 0 mode does not undergo such a bifurcation,the 0 curve
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continues beyond,, but is not plotted. In general, thgh curve ends when thgh mode be-
comes unstable to a real eigenvalue crossing into the higlipplane from the origin. In Figure
[4.2(b), we magnify the interval in Figufe 4.2(a) where theéesing principlery; < 790 holds.
For D in this interval, we expect asynchronous oscillations tthieedominant instability. Fob

to the right of this interval, the familiar ordering print&pry, < 791, guaranteeing synchronous

oscillatory instabilities, is restored.

18]
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(a) 7o (D) for N =2 (b) 70;(D) for N = 2 closeup (c) )\(}j(D) for N =2

Figure 4.2. Plots ofr; (D) (left and center figures) an’d}j(D) (right figure) forN = 2
and f = 0.5. The critical valueD., =~ 0.0417 is indicated by the vertical dotted line. In
all figures, the solid and dashed curves correspond=to0 and;j = 1, respectively. In
the magnified interval shown in the center figurg, < 799, indicating the possibility of
asynchronous oscillations.

In Figure[4.3(d), we show a plot of,;(D) for a three-pulse example with = 0.6. We
again plot only the intervad < D < D.; above which theg = 2 curve ceases to exist. In
the plot of A7;(D) in Figure[4.3(d), we see tha), — 0 asD — Dg. In Figure[4.3(0),
the reverse ordering principle is again observed for amvuatef D, indicating the possibility
of asynchronous oscillations. As similar to the previous-pulse case, fob to the right of
this interval, the usual ordering principle guaranteeiyigckironous oscillatory instabilities is
restored. The same characteristicsigf D) and\j;(D) for a four-pulse example witffi = 0.6

are seen in Figures 4.4(@a)-4.4(c).
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Figure 4.3. Plots ofr; (D) (left and center figures) an’d}j(D) (right figure) forN = 3
and f = 0.6. The critical valueD.3 ~ 0.0148 is indicated by the vertical dotted line. In
all figures, the solid, dashed, and dotted curves corresmnd= 0, 1, 2, respectively.
In the magnified interval shown in the center figutg, < 101 < 7go.
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(@) 7o;(D) for N =4 (b) 70;(D) for N = 4 closeup (c) )\‘}j(D) for N =4

Figure 4.4. Plots ofry; (D) (left and center figures) an’d}j(D) (right figure) forN = 4
and f = 0.6. The critical valueD.4 =~ 0.0055 is indicated by the vertical dotted line. In
all figures, the solid, dashed, dotted, and dash-dotteceswrrespond tp = 0, 1, 2, 3,
respectively. Inthe magnified interval shown in the centpri, o3 < 792 < 701 < Too-

For the two-pulse example of Figure 1.2 with= 0.5, we trace the paths of the pair of
complex conjugate eigenvalues in the right-half plane axreases past the Hopf bifurcation
value computed in Figurés 4.2(a) dnd 4.2(b). For the two mpde0 (Figurg4.5(d)) and = 1
(Figure[4.5(B)), we start with the pair, \) = (70;(D), A};) and solveg()\) = 0 in (4.48) for

increasingly larger values of. For the; = 0 mode we takeD = 0.03 while for thej = 1

mode, we takeD = 0.006 so that in both cases the eigenvalues being tracked are sherfgs

to cross into the right-half plane. The eigenvalues coreergo the positive real axis whens
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sufficiently large. As is increased further, the eigenvalues split and migrategatoe positive

axis toward) andv, = 5/4 asT — oo, wherey, is the principal eigenvalue of the operafay.
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(b) D = 0.006, j = 1

Figure 4.5. Plots of the paths oA = A; + iAgp with N = 2, andf = 0.5 for
(D,j) = (0.03,0) (left) and (D, j) = (0.006,1) (right) as7 increases past its Hopf
bifurcation valuery;(D). The arrows denote the direction of traversal for incregsin
7. The eigenvalues converge onto the positive real axis whesaches some value
7.(D) > 19;(D). The eigenvalues split, with one tendingit@nd the other tending to
vy = 5/4 asT — oo, wherey is the unique positive eigenvalue of the operdtgr

Two key characteristics shared by Figures[4.2-4.4 are thaers ofr; and)\?,j for small

values of D. These figures suggest that — oo asD — 0 independent of;, while A(}j

approaches a constant value also independentdfe now provide a simple analytical expla-

nation for this limiting behavior. We remark that this unbded behavior ofy,; asD — 0 is

in marked contrast to the finite limiting behavior as obtdime[58] or [10€] for the Gray-Scott

and Gierer-Meinhardt RD models, respectively.

In the limit D — 0, a simple scaling argument shows that — oo, wherey = /7A/D.

We then readily obtain froni{4.4la) that — 2 asD — 0 and that3, = O(D~'). Therefore,
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from (4.50), we get the limiting behavior

1 A
CjNCE§ 1+ozz\/X+1a_f;7_{)\
(4.66)
2,,2
2 =1D, a:agﬁ j=0,....N—1.

We set\ = i\;, where); > 0, and then separatie (4]66) into real and imaginary partstto ge

1
C= CR(AI)HCI(AI)—i[HO‘Z\FM+}+Z az/ A M_;

1—fENf+A2 (4.67)

(1= /f)2+A

MiE

SinceC is independent of, it follows that the root- = 7, and\; = A, to the limiting coupled
systemCr(\;) = Fr(A;) andCr(A;) = Fr(A\;) must be independent gf

For this coupled system to possess a root, it is readily $edmte must have = /7D =
O(1) asD — 0, which implies thaty, = O(D~1) asD — 0. We usel[(4.67) to eliminate
between the coupled systetti(A;) = Fr(A;) andCy(A;) = Fi(Ar). In this way, we obtain
that \;; must be a root of

Hr(Ar) = Hi(Ar), (4.68a)

whereHr(\;) andH;(A;) are defined by

2FR(\f) — 1 i 2F1(\;)

Hr(Ar) = N4 fAr+1—f7 :Ai—fh+1—f'

(4.68D)

Therefore, forD — 0, we conclude that;; depends only ory and is independent ak.
The scalingry, = O(D~1') was not observed in the analysis of the Gray-Sd&# pr Gierer-
Meinhardt modeld10§).
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We now prove the existence of a solutiag > 0 to (4.68). We begin by noting that
Hgr(0) = (1 — f)~' > 0 and thatHg(\;) has no poles whenr; > 0. Also, becausé’z — 0
as\; — oo, we find from [4.68b) thati, ~ —1/)2 < 0 as\; — oco. To show the existence
of an intersection betweelHr and H;, there are two cases to consider. The first case is when
0 < f < 2(v/2 — 1) so that the denominator af; is always positive. Sincé;(0) = 0 <
Fr(0) =1,andF(\;) > 0for A\; > 0, then by the properties df ; there must exist a solution
to (4.684). Wher(v/2—1) < f < 1, H;()\;) has two poles on the positive real axis\at= A"
ordered) < A, < X} with A\ — 0+ asf — 1~. Therefore,H; — +oco as\; — \;". Because
Hgr(0) > 0 and is bounded for al\; while H;(0) = 0, there must exist a solution to (4.68a)
on the intervah < X\; < \!. This completes the proof of the existence of a thpt> 0 under
the scalingr = O(D~') asD — 0. While we have not been able to show analytically that
is unique, we have not observed numerically an example telitsymore than one solution to
(4.683).

In Figurg4.6(d), we show the log-log relationship betwegmand smallD for the examples
shown in Figure$ 412[- 4.4. Note that in each case, all cureegsponding to modes =
0,...,N — 1 are plotted. However, as stated abowg,is independent of for small D and
thus the curves are indistinguishable in the plot. In Fiigb}), we plot theV curves ofA;
as a function off with D small for N = 2, 3, 4. We also plot the solution td (4.68a). Although
for each value ofV we use a different value db specified asd) = D.y/10, all curves are
indistinguishable at the resolution allowed by the figurec&ise\, — 0T asf — 1, we
expect theoretically that;; — 07 in this limit. Numerically, however, the problein (4.68a}) fo

1 — f small becomes ill-conditioned and our numerical solvdsfahenf is too close tof = 1.
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Figure 4.6. The log-log relationship between; and smallD with parameters from
Figured 4.P 414 (left) and?j versusf with D small for N =2, 3,4 (right). In the left
figure, the solid lines are numerically computed solutiohg§g = g;; = 0, while the
dotted lines all have slopel. The top line corresponds ¥ = 2, f = 0.5, the center
linetoN = 3, f = 0.6, and the bottom line t& = 4 and f = 0.6. The different curves
of each example corresponding to moges 0, ..., N — 1 are indistinguishable. In the
right figure, the curves oi?. versusf generated by the solution fg; = gr; = 0 are
plotted, as is the solution t&(I_GSa). These curves arstinduishable at the resolution
allowed by the figure.

The main limitation of our analysis is that we are unable ttedeine whether, for each
functiong;, a complex conjugate pair of pure imaginary eigenvaluestgxit only one value of
0; for all the ranges of the parameters. Our numerical experisreuggest that fdr < 7 < 7,
andD < Dy.y, the pattern is stable. This indicates that our computegstioldsr,; are the

minimun values of- for which an oscillatory instability occurs.

4.2.5. Numerical Validation

Next, we illustrate the theory presentedi#2.3 and§4.2.4 regarding competition and oscil-

latory instabilities of N-pulse equilibria. We solve the Brusselator model withootifdary
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flux (4.2) numerically using th&ATLAB partial differential equations solv@depe() with

non-uniformly spaced grid points distributed accordinghi® mapping

y:x+2tanh

1=0

N-1
Tr — T
€

}; —-1-N<y<1l+N,

where x is the physical grid. The initial conditions were taken to @@erturbation of the
equilibrium pulse solution of the form

N-1
1446 Z dke_(“"_“”’“)z/(ﬁ‘g)] , v(x,0) =v}(x), (4.69)

k=0

u(z,0) = ug(x)

whered < 1 is taken to be).002, andd, is the (k 4+ 1)th component of the vectaf to be
defined below. Eithe2000 (¢ = 0.005) or4000 (e = 0.001) grid points were used to produce the
numerical results below. I (4.69), insteaduofv, given in [4.24), we use the true equilibrium
ul,v} calculated using smailt starting from the initial conditions.,v.. Becauser does not
influence the equilibrium solution,’, v} may be used as valid initial conditions for any value
of 7. We briefly explain the reason for this procedure. With anffisiently small choice for-
while starting withu, andv, as initial conditions, we observe an immediate annihifatibone
or more of the pulses. We conjecture that this is due to thezumacy of the asymptotic solution
associated with the non-zero background of the activatarpled with the sluggish response
of the inhibitor. However, forr sufficiently small, the inhibitor is able to respond quickdy
prevent an annihilation, allowing the system to evolve taks@ equilibrium state?, v}.

In (4.69), the choice of the vectat depends on the phenomenon that we illustrate. In

computations illustrating competition instabilitied,is taken to be a multiple ot _;, the
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eigenvector given in[{4.4lc) associated with the eigemvahat first crosses into the right-
half plane asD is increased abov®.y whenr is sufficiently small. The values db in the
experiments illustrating competition instabilities wik such that only thg = N — 1 mode is
unstable. In computations illustrating oscillatory irslities, d is taken to be a multiple of the
vector) "' v;, with v; given in [4.41k), which allows for all the modes to be preseitially.
We track the evolution of the modes through the quaniity’, defined as the amplitude of the

oscillations ofb; given by

by = \Auﬁnvj\ , Aty = (Upo — S (20,0) .. Uy — s (wn_1,0))";
(4.70)

allowing clear identification of which modes grow or decagreét.,,,,, denotes the numerically
computed solution at thgth equilibrium pulse location defined hy,,; = u(z;, t) wherez; =
—1+4(2j+1)/Nwithj =0,...,N—1. Inall experimentsd is normalized so thatax, d;, =

1.

We consider three experiments with two, three, and fourgsul$n each experiment, is
fixed while different combinations af and D are used to illustrate the theory for competition
and oscillatory instabilities. The results are presensedgiplots of the amplitude of each pulse
Umn = u(z,,t) versus time. For certain oscillatory examples, we also fhietquantityb;™”
versus time. In our computations, we limit the timescale temless thar®(e~?) so that the

pulses remain approximately stationary over the time vaisrshown.

Experiment 1: In this experiment we consider competition and oscillatoistabilities of a

two-pulse equilibrium withf = 0.5. We begin with an example of competition instability. For
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e = 0.005 and D = 0.043, in Figure[4.7(d) we plot the initial conditions ferandv on the left
and right axes, respectively. Note the non-zero backgrafind Using the results depicted in
Figure[4.2(d), we calculate that(D) = 0.165, while using [4.5B) we calculat®., = 0.0417.
Forr = 0.01 < o(D) andD > D.,, we expect a competition instability in which one pulse is
annihilated with no oscillation in the amplitudes. In Figi4.7(b), we plot the amplitudes,
andu,,; of the two pulses as a function of time. As suggested by theneertorv, in (4.41¢),

one pulse annihilates as time increases. Note that the aoipétude decays to approximately
the value of the non-zero background state.
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Figure 4.7. Experiment]L: The left figure is the initial condition far(solid curve and
left axis) andv (dashed curve and right axis) fof = 2 with ¢ = 0.005, f = 0.5

and D = 0.043 > D. = 0.0417. The right figure shows the amplitudes of the left

(solid curve) and right (dashed curve) pulsesifee 0.01 versus time. The right pulse
annihilates as time increases.

We now illustrate oscillatory phenomena. In Figlire 4]8¢e, plot the pulse amplitudes
whenD = 0.03 < D, andr = 0.17 < 79(D) = 190 = 0.183. As expected, no pulse
annihilations occur while initial oscillations decay. Whthe equilibrium is stable to large

eigenvalues for this combination @f andr, we calculate from[(4.55) thdd > D} = 0.021.
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Thus, we expect to observe a drift-type instability when O (e~2). Next, for the same value of
D, we setr = 0.191 > 7y(D) so that the synchronous mode undergoes a Hopf bifurcatioa. T
pulse amplitudes are plotted in Figdire 4.8(b). As expedtesl pulse amplitudes synchronize
quickly and oscillate with growing amplitude in time. Theeetual annihilation of the pulses

suggests that the Hopf bifurcation is subcritical for theaemeter values.
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Figure 4.8. Experimen{L: The left figure is a plot of pulse amplitudes for= 2,

e =0.005, f = 0.5, D = 0.03, andr = 0.17. The critical value ofr is 7o(D) = 0.183.
The solid curve isu,,o and the dashed curve is,;. In the right figure, we make a
similar plot with7 = 0.191 > (D).

In the next example, we take= 0.001 and D = 0.006. In Figure[4.2(H) we see that for
this value ofD, the asynchronous oscillatory mode is unstabte if 7,(D) = 79, = 1.065
while the synchronous mode is stable-ikc 750 = 1.083. In Figure[4.9(d), we plot the pulse
amplitudes when = 1.04 during the initial growth of the oscillations. Note the al€antrast
between Figurg 4.9(a) and Figyre 4.8(b) where the pulsebads®ut of phase in the former
and in phase in the latter. In Figyre 4.9(b), we show what afgp® be regular asynchronous

oscillations, suggesting that the Hopf bifurcation may bygescritical for the parameters used.
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In Figure[4.9(d) we plot the initial growth &f"” and the initial decay off;"”, consistent with
predictions from analysis. Both modes are present, withythel mode being dominant. We
remark that while the numerical thresholdrnis not equal to the theoretical value, we have

observed in numerous experiments that agreement with sisahgproves as is decreased.
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(a) oscillations for smalf (b) oscillations for large (c) b;™" versust

Figure 4.9. Experimen{dL: In the left figure, we plot pulse amplitudes tfoe initial
growth of asynchronous oscillations. In the center figurestwow the large time behav-
ior of what appears to be regular asynchronous oscillatidhe solid (dashed) curve is
Umo (um1). In the right figure, we plot the initial growth and decay®gf*” (dashed
curve) andb;™ (solid curve). The parameters afé = 2, ¢ = 0.001, f = 0.6,
D = 0.006, andT = 1.04. The threshold value isy(D) = 79; = 1.065, and cor-
responds to asynchronous oscillations.

Experiment 2: In this experiment, we consider instabilities of a threéspsolution withf =

0.6. We first consider a competition instability. In Figlire 44)) we plot the initial conditions
for v andv for e = 0.005 andD = 0.017 > D.; = 0.0148. The initial perturbation, according
to v, in (4.41¢), increases the amplitude of the first and third@siwhile decreasing that of the
middle pulse. For = 0.01 < 75(D) = 190 = 0.28, we plot the pulse amplitudes versus time in
Figure[4.10(1), observing that the middle pulse annitslathile the other two pulses increase
in amplitude. This increase in amplitude, also observedigurie[4.7(b) of Experiment] 1, is

expected because the common pulse amplitude increasesheheramber of pulses decreases
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(seel(4.17) and (4.24a)). For a perturbation in-the direction we observe the annihilation of

the first and third pulses (not shown).
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Figure 4.10. Experimenf®: The left figure is the initial condition fer(solid curve and
left axis) andv (dashed curve and right axis) fof = 3 with e = 0.005, f = 0.6, and

D =0.017 > D.3 = 0.0148. In the right figure, we plot,,,o andu,,2 (solid curve) and
um,1 (dashed curve) versus time with= 0.01. The second pulse annihilates as time

increases.

To illustrate oscillatory behavior, we take = 0.005 and D = 0.009 so that all real
eigenvalues lie in the left-half plane if is small enough. Using Figufe 4.3(a), we calculate
10(D) = 7190 = 0.3994. In Figure[4.11(d), we set = 0.37 < 7,(D) so that oscillations de-
cay in time. For stability also to small eigenvalues, howewe requireD < D3 = 0.011.

In Figure[4.11(H), we set = 0.42 so that the pulse amplitudes quickly synchronize and the
subsequent oscillations grow in time. As in Experinlént 1,0leerve the annihilation of the
pulses, suggesting that the Hopf bifurcation is subctitica

We next decreas® to D = 0.0034 so that, as suggested by Figiire 4.3(b), asynchronous

oscillations are the dominant instability. We calculatatth (D) = 79, = 1.518, 79; = 1.544,

andry, = 1.557. In Figureq 4.12(a) arld 4.12[b) we plot, respectively, taagient and large
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Figure 4.11. Experimen{®: In the left figure, we plat,,o (solid curve),u,,; (dashed
curve), andu,,» (dotted curve) forN = 3, ¢ = 0.005, f = 0.6, D = 0.009, and

7 = 0.37. The right figure is similar except thatis increased to- = 0.42. The critical
value ofr is 79(D) = 0.3994.

time behavior of the pulse amplitudes for= 0.001 and7 = 1.51. In clear contrast to Figure
4.11(b), the pulse amplitudes oscillate out of phase foh Isotall and large time. In Figure
[4.12(b), as the form of the eigenvectgrin (4.41¢) suggests, the first and third pulses oscillate
approximately in phase with each other while out of phask thié second pulse. For large time,
the oscillations occur within an envelope that oscillateg/ly in time relative to the oscillations

of the pulse amplitudes. In Figure 4.12(c), we plot the ahigirowth and decay df;"™" for all
three modes. Consistent with the results depicted in F[§B@), thej = 2 mode grows while
the other two modes decay. For large time, all modes aremresth the dominant mode being

j=2.

Experiment 3: In this experiment, we illustrate instabilities of a fourkpe equilibrium with

f = 0.6. In Figure[4.13(a), we plot the initial conditions farandv with ¢ = 0.005 and

D = 0.0057. We calculate from[{4.53) thdd., = 0.0055 < D. With 7 = 0.01 < 7y(D) =
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Figure 4.12. Experiment 2: In the left and center figures, we plot, respelgt the
transient and large time asynchronous oscillations,gf (solid curve),u,,; (dashed
curve), andu,,,» (dotted curve). The first and third pulses oscillate almogihiase for
large time. In the right figure, we plot the initial growth addcay oft;™” for j = 0
(solid curve),j = 1 (dashed curve), ang = 2 (dotted curve). The parameters are
N = 3,¢ =0.001, f = 0.6, D = 0.0034, and7 = 1.51. The threshold value is
To(D) = T02 = 1.518.

0.2344, we expect an annihilation of one or more pulses withoutliasory behavior. The
form of v3 in (A.41¢) suggests that the second pulse is the first to dateitwhile the fourth
pulse decays in amplitude as the other two pulses grow. Gredirst annihilation occurs,
the resulting three-pulse pattern is no longer in equilitoriand thus evolves according to the
dynamics derived ing7], and any subsequent annihilations should they occur arerlgethe
scope of this analysis. In Figufre 4.13(b), we plot the pulsplaudes up to the time of the
annihilation of the second pulse.

To show oscillatory phenomena, we take- 0.005 and D = 0.004. Using the data from
Figure[4.4(d), we calculatg(D) = 7199 = 0.287. In Figure[4.14(d), we plot the pulse am-
plitudes forr = 0.27 so that the equilibrium solution is stable to large eigemeal Here, we
requireD < Dj; = 0.00469 for the equilibrium to also be stable to small eigenvaluedszigure

[4.14(b), we plot the pulse amplitudes for= 0.31 so that synchronous oscillations grow in time
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Figure 4.13. ExperimenfB: The left figure is the initial condition far(solid curve and
left axis) andv (dashed curve and right axis) fof = 4 with e = 0.005, f = 0.6,
and D = 0.0057 > D.4 = 0.0055. In the right figure, we plot,,o (solid curve),
um1 (dashed curvely,,» (dotted curve), and,,,3 (dash-dotted) curve versus time with

7 = 0.01. The second pulse annihilates as time increases. All congidenvalues are
in the stable left-half plane.

until all pulses annihilate. As in Experimdnt 2, we obserseilatory behavior subsequent to
annihilation.

Lastly, we illustrate asynchronous oscillations with 0.001 and D = 0.0015. According
to the data in Figurg 4.4(b), we calculate thgtD) = 793 = 1.084, 792 = 1.098, 791 = 1.112,
andry, = 1.118. TakingT = 1.06, we plot the initial growth of asynchronous oscillations in
Figure[4.15(3). The form af; suggests that the first and fourth pulses oscilfatadians out of
phase as should the second and third pulses, while no pudsélsite in phase. This is shown
to be approximately the case for large time in Fidure 4.15{ie initial growth and decay of
the quantitied;"", shown in Figur¢ 4.15(c), demonstrate the reverse orderiimgiple of the

Hopf bifurcation thresholds predicted by the theory. Fogéatime, all modes are present, with

the j = 3 mode being dominant.
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Figure 4.14. Experimen{B: In the left figure, we plat,, (solid curve),u,,; (dashed
curve), andu,,» (dotted curve) and.,,s; (dash-dotted curve) foN = 4, ¢ = 0.005,
f =0.6, D =0.004, andT = 0.27. The right figure is similar except = 0.31. The

critical value ofr is 79(D) ~ 0.287.
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Figure 4.15. Experimen{B: In the left and center figures, we plot, respelgt the
transient and large time asynchronous oscillations,gf (solid curve),u,,; (dashed
curve), u,,» (dotted curve), and,,3 (dash-dotted curve). For large time, the first and
fourth pulses oscillate approximatetyradians out of phase, as do the second and third
pulses. In the right figure, we show initial growth and decay’6” for ; = 0 (solid
curve),j = 1 (dashed curve); = 2 (dotted curve), and = 3 (dash-dotted curve). The
parameters ar&/ = 4, ¢ = 0.001, f = 0.6, D = 0.0015, and7 = 1.06. The critical
value of is 7o(D) = 193 = 1.084.
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4.3. Stability of Symmetric Two-Pulse Quasi-Equilibria with Boundary Flux

In this section, we analyze dynamically triggered insiibg of symmetric two-pulse quasi-
equilibrium solutions to[(4]4). In contrast to the equililn case studied i§4.2, for which
initial conditions were either stable or unstable depegain the “tuning” of the model pa-
rameters, dynamically triggered instabilities occur whaguulse pattern, that is initially stable,
eventually undergoes af(1) timescale instability that is triggered by the slow evalatof the
pulses. To study this phenomenon, we first construct a tsepguasi-equilibrium solution
and derive an equation of motion for tti&¢?) slow dynamics of the pulse locations. We then
derive an NLEP governing the stability of the quasi-equilibh solution in terms of the pulse
locations. Then, from an analysis of the NLEP we derive gatéor which a stable solution
may become unstable as a result of the slow dynamics. We tieeeqt numerical examples il-
lustrating the theory. Since generéipulse quasi-equilibria and their slow dynamics have been
studied in[p7] for the original scaling of the Brusselator model, we omiteh of the detail in

the construction of the quasi-equilibrium solution.

4.3.1. Construction and Slow Dynamics of the Two-Pulse Quag&quilibrium Solution

We seek a symmetric two-pulse quasi-equilibrium solutm@i4) with pulses centered at =
—ro = awith 0 < a < 1. Since the pulses have equal amplitude, the leading orélgrsofor
v in the inner region, as if4.2.1, isv ~ v.,, Where the constant,. is to be found. Then, as

in §4.2.1, we solve(4.4a) far in the inner region of thegth pulse to get

1

ur w(y;) yj =€z —x); J=0,1,

cqe
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wherew(y) is the solution to[(411). In the outer regian~ ¢E + O(e?). Then, upon repre-
senting the terms involving in (4.40) as delta masses, we proceed &g, 1 and usd (4.12)

to obtain that the outer equation fois

Dv,, + E + ffcqe (1 - %) [0(z — x0) +0(x —x1)] =0,

—-l<z<1; v (1) = £1.

(4.71)

Integrating [[4.711) over the intervall < x < 1 and applying the boundary conditions, we
calculate that

0 [1—1 > 0. (4.72)

= F D) |7

Note that due to the presence of boundary flux, the pulse ardpb now depend on the inhibitor

diffusion coefficient.
Using [4.72) forv.,. in ({71), we letv = 2?/2 + v(z) and solve forv(x) in terms of G
defined in[(4.2R) with uniqueness achieved by imposingdhaf) = v(z;) = veg. In this way,

we obtain the following result for the two-pulse quasi-éitpuium solution foru andv:

Principal Result 4.3.1: Lete — 0 in (4.4)and consider a two-pulse quasi-equilibrium solution

with pulses centered at, = —xq = a with0 < o < 1. Then, the leading order composite

solution foru is

Uge ~ €£ + (wle e+ )] +w e (z—a)]), (4.73a)

fche
while the leading order outer solution faris given by

Vge ~ U+ %2 + (D + FE)[G(z; —a) + G(x; o)] (4.73b)
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where( is the Green’s function defined {d.22) v.,. is defined in(4.72) andv is given by

7= e = (D + B) [Glo =) + Glav )] - - (4.74)

To derive theO(e?) slow dynamics of the pulse locations, we introduce the slowe ari-

ablec = €2t and retain the next terms in the asymptotic series for theriaalutions of: andv

nearz; as
U= 7o w(yr) + eUr(y1) , U = Vege + €V1(11) ;
cae (4.75)
p=e'(z—1(0), o=t
Substituting[(4.75) intd_(414), and collecting terms of amorders, we obtain that
l"l ’ 'LU2
L()Ul—— w — FE — 2‘/1, —00 <Y <00, U1—>0 aS|y1|—>OO,
f'che fche
(4.76a)
pyr=-_"2 +w—2 —00 < Y1 < 00 V] — Vgea(27) as y; — +oo
' fche fZ'che ’ ' ’ ! geri ! ’
(4.76b)

wherei; = dzy/do and the operatok, is defined in[(4.37). The limiting condition if_(4.76b)

comes from matching the gradients of the inner and outetisoliof v. In (4.764),L, has

a one dimensional kernel with eigenfunctioh Thus, the right-hand side df (4.76a) must be

orthogonal taw’, and consequently

. o (0.] 1 (0.0]
—filq / (w')? dy — E/ w' dy — 702 / ww?Vidy =0.
cqge J —oo —0o0 cqe J —o0
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Sincew’ is odd andw'w? = (w®)’/3, we can integrate by parts and use— 0 as|y| — oo to

obtain

$'1/ (w')? dy = L /w?’Vl'dy. (4.77)

o0 3che —00

Next, we integrate by parts on the right-hand sidd of (4.W&jng the facts thaf, w3 (s) ds is
odd and that, by((4.76b}; is even, we calculate that

. o / 1 > !/ /
:171/ (w')? dy = ™ / w? dy [V (00) + V (—00)] . (4.78)
—o0 cqe J —oc0
Finally, sincefgi(T% = 6, we can apply the limiting conditions fdr; in (4.76B) to reduce
(@4.78) to
. . 1 _
i =& = — [vqex(xf) + Vger (27 )] ) (4.79)
cqe

To calculate the right-hand side 6f(4179), we use (4.730)@P2). We summarize the result

as follows:

Principal Result 4.3.2: Consider the quasi-equilibrium solutio@.73) of (4.4) with pulses

centered atr; = —zy = o for 0 < a < 1. Then, fore — 0, the pulses drift with spee@(e?)

according to the ODE

da 9 ' B
E ~ € H(Of)7 H(O[) = che

1 E  2aF
1 4.80

where v, is defined in(4.72) The equilibrium locations of the pulses are -at.. where

H(a.) = 0, which yields

1 D
L= 4.81
« 2+2E (4.81)
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Due to the imposed boundary flux, these equilibrium locatare not at the symmetry locations
+1/2 of the no boundary flux system studied previousi§i@. From [4.81L), we observe that
for the equilibrium locations to be inside the domain, we trhave thatD/E < 1. Since
H' () < 0, the equilibrium points of the ODE are always stable. Notat {#.80) predicts
an exponential approach to the equilibrium. [A8], it was shown that the approach under the

influence of subdiffusion is algebraic in time.

We limit our study to the parameter range where the inequalitE < 1 is satisfied. We
note that the equilibrium is stable under the dynamniics {4.8Mich was derived under the
assumption that, = —z;. That is, the equilibrium(4.81) is stable only to perturbas that
preserve this symmetry. For the equilibrium to be stablentogerturbation, including to those
that break the symmetry, the parametBrsF and f must satisfy the condition (cf9[])

1-f 1E DY1?
e {H—E} | (4.82)

The criterion [[4.8R), as derived i87], is the condition that must be satisfied for a two-pulse
symmetric equilibrium solution to be stable to eigenvaloe®(c?). The stability with respect

to the large eigenvalues with= O(1) ase — 0 is considered below.

4.3.2. Derivation of the NLEP

In this subsection, we derive the NLEP governing the stghilf quasi-equilibrium solutions
on anO(1) timescale. Since this NLEP has the same form akin{4.4%grii§ only in the
coefficient of the nonlocal term, we focus mainly on the daion of the new coefficient. In
§4.3.3, we calculate a value. such that the quasi-equilibrium solution is unstable torape-

tition instability whena < a.. Thus, a competition instability is dynamically triggerédhe
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conditiona, < a. < a(0) < 1 holds. For theng(t) will dip below o, on its approach to its
equilibrium staten,.. In §4.3.4, we calculate the Hopf bifurcation thresholds as atfon of
«, analogous to those calculated§.2.4, and we find that dynamically triggered oscillatory
instabilities can also occur.

We linearize about the quasi-equilibrium solution by wmttiv = u,. + eM® andv =
vge + MW, Substituting this intd{414), we then follow the same prhae as used il (4.26)-
(4.47). Aside from replacingly = 6(f*v;D)~" by 3 = 6(f*v2,.D)"" in (A39), the only
difference lies in the matri;* due to the pulses not being locatedrat= +1/2. That is,
instead of the matrig ), we now have the matrix

GW(—a, —a) GW(—a,a
GW = ( ) ( ) , (4.83)

GW(a,—a) GW(a,a)
whereG® satisfies[(4.32). Notice that sineg = —xz,, thenG{" is a symmetric matrix with
constant row sum. Thus, the eigenvectors are in the direstio 1) and(1, —1)*. To calculate
the eigenvalues of", we proceed as ifF] and writeGY” = B! /u, whereB, is given in

Section 2 of[@4] as

dOl (0%
B, i ; do = coth(2pa) + tanh [p(1 — )] ,

fo da (4.84)

fo = —csch(2pa) .
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Here. is defined in[(4.30). The eigenvalueg” andalo‘) of B, and the corresponding eigen-

vectorsv, andv; are
g’éa) = tanh(pa) 4 tanh [u(1 — a)] ; ’Uf) = (1,1),
(4.85)
o\ = coth(pa) 4 tanh [u(1 — o)) ; vy = (1,-1).

The eigenvalues; of the matrixG}” are then given by:; = 1/(,u<7 ) forj =0,1. Interms

of o—](.a), we obtain the following NLEP:

Principal Result 4.3.3: Lete — 0 and consider the two-pulse symmetric quasi-equilibrium

solution as given ifd.73) The stability of this quasi-equilibrium solution (1) timescale

instabilities is determined by the spectrum of the NLERIHAT) wherey; is replaced bwg.“),

defined as

(a)

N — i L i=01;

J (o)
1+ po;™ /B f3— (14N (ﬂJr,ua ) (4.86)

(D+E)*f?
8= ba=7r"
6D (1— f)

The discrete eigenvalues ¢.47a)are the roots of the transcendental equati(yﬁfg()\) =0,

where
& o o 1
7N =N -FR), Y0 =— (4.87)
X5 (A)
Here F'(\) is defined in(4.48) andCJ(“)(A) is given by
C(“’(A)—1 1+§-+L 5:”%@ (4.88)
J 9 J 1+ A—f ) ) — 3 : :
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4.3.3. Dynamically Triggered Competition Instabilities

Next, we look for roots td(4.87) on the positive real axise Bmalysis here is similar to that in
§4.2.3. We first consider the case where- 0. To find real positive roots qij(.o‘)(/\) ast — 0,
we let;. — 0 in (@.88) to obtain thaf, — 0 and&; — (af)”' asT — 0. Then, from [Z.8]7)
and [4:88), we have that” = 1/2 < 1, so that the synchronous motle 1) mode is always
stable whenr = 0. Here we have used the properties (#.49) fgn\). Alternatively, when
7 = 0, we have from[(4.88) that

CON) =2 146+ L

2 a7 GV (4.89)

SinceCla)()\) is a positive decreasing function afwhile F'(\) has the properties i (4.49),
theng'” has a unique positive real rootGf® (0) > 1 and no roots iC\* (0) < 1. A winding
number argument similar to that used§# 2.3 can be used to show that no other roots exist in

the right-half plane. This leads to the following stabiliyteria:

Principal Result 4.3.4: For 7 = 0, consider the quasi-equilibrium soluti@d.73)to (4.4) with

pulses centered at = £« for 0 < o < 1. The solution is stable on af(1) timescale if and

only if
6D(1— f)
(D+ E)2f?

(4.90)

a > Qg Q.

If the inequality in(4.90)is reversed, the quasi-equilibrium profile is unstable te o@al posi-

tive eigenvalue corresponding to the —1)" mode, which conserves the sum of the amplitudes
of the pulses. Note that i) < 1 butD > O(€?), we have that,. ~ 6D(1 — f)/(E*f?) < 1

so that the region of stability spans almost the entire rafige o < 1. Also, from(4.90) we

see thaty, ~ O(D7 ') asD — cc.
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As discussed earlier, a two-pulse quasi-equilibrium satutan undergo a dynamic compe-

tition instability whenever., < a. < 1. By using the expression fer, in (4.81), we have the
following result:

Principal Result 4.3.5: The quasi-equilibrium solution i@.73)with a rightmost initial pulse

location«/(0) satisfyinga(0) > a. will undergo a dynamic competition instability at some time

t > 0 whena, < a. < 1. These inequalities hold when

E Ef? T 6D E| -

(4.91)
The region described bl (4191) is plotted in Figure #.16. vbie dotted curve a competi-

tion instability occurs starting @t= 0 for any«(0), while below the solid curve the two-pulse

guasi-equilibrium solution is stable to the large eigengaland there is no competition insta-
bility for any a(0) with a(0) > .

T
1
1
1
1
|
1)
1
1
atls
1
1
1
1
\
1
A

..
~
~
------

0 012 014 0‘.6 018 1
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Figure 4.16. The region between the two curves is the parameter space iohvah

dynamic competition instability is possible for a two-pfsattern with initial state.(0)

with a. < «(0) < 1. The horizontal axis is on the range< D/E < 1 for which a
two-pulse equilibrium solution exists.
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By comparing the lower bound df(4191) with (4182), we conéuhat forr = 0 the two-
pulse equilibrium solution is stable if and only if it is stalto the small eigenvalues in the limit

7 — 0. The result is written as:

Principal Result 4.3.6: The equilibrium solution if4.73)with o = «. is stable with respect

to the large eigenvalues but unstable with respect to thdl sigenvalues when

s (4.92)

1 E D 1-f 1E D1?
{HE} {1+ }

24D | " E| T Ef 12D
It is stable with respect to the small eigenvalues wi@ea2)holds.

For the case > 0, it is difficult, owing to the non-monotonicity of the curvé#a)()\), to
obtain explicit results that count the number of positiva egenvalues in the right half-plane.

However, the following (less precise) results are readibvpd.

Principal Result 4.3.7: Suppose that > 0 and that) < « < a.. Then, the NLEP in Principal

Result 3.3 admits at least one real positive eigenvalue ckelathe quasi-equilibrium pattern in
unstable. Alternatively, suppose that< o < 1. Then, forr > 0 sufficiently large, the NLEP

in Principal Result 3.3 admits four real positive eigenwesu

To prove the first statement, we note th4f’ (0) > 1 whena < «.. Therefore, the curves
Cf“)(A) andF'(\) must have at least one intersection\in- 0 whenr > 0. To prove the second
statement we notice thétj@)(o) < 1whena > a,forj =0,1and thatCJ(.a)()\) =0 <x/§>
for A\ > 0 whent > 1. It follows from the concavity OCJ(.O‘)(A) in the larger limit and
the convexity of F(\) (see propertied (4.49)) that for bofh= 0 and;j = 1, there are two

intersection points OCJ(.O‘)()\) =F\)on0 < \<5/4.
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4.3.4. Dynamically Triggered Oscillatory Instabilities

For the parameter range < a < 1, we calculate the threshotg for which the NLEP has a
complex conjugate pair of eigenvalues on the imaginary. 8@e specifically, we calculate the
valuesr = 7;(«) such thal'g](-a) = 0 has a pair of complex conjugate solutions= i)}, ()

on the imaginary axis. The quantity
To(a) = min(7o0, To1) (4.93)

is then defined to be the Hopf instability threshold. Agdn2.4, either thg = 0 mode, which
corresponds to synchronous oscillations, orjtke 1 mode, which corresponds to asynchronous
oscillations, can be the dominant instability, dependinghe value ofx. In contrast, for the
GM and GS models studied i84] the synchronous mode was always the dominant instability.
Using the numerical procedure used to produce the Hopfdafion curves of4.2.4, we solve
gj(-a) (A7) = 0 to obtain curvesy;(«) and A, (a).

Treatinga as the independent variable, we fixand E and generate Hopf curves for values
of f inthe intervalf, < f < 0.9, wherea, = 1 whenf = f.. In Figure[4.15, this corresponds
to a vertical traversal from the dotted curve down toward/ihd’-axis. Results are presented

on a semi-log plot for three ratios @ /E. In Figured 4.17(&) [- 4.17(c), we takke = 1 and

D = 0.2,0.4 and0.6. Similar plots were made (not shown) for the same ratio® ¢t but
with D = 1 andFE = 5, 2.5, 1.67, yielding qualitatively similar plots. For values afwhere the
curves are solid, the synchronous mode is the dominantoitistd 7o = 749), whereas for the
portions of the curves where they are dashed, the asynalsanode is dominant{ = ;).

The curves are ordered such that for a giwen,(«) increases with increasinfjy We end the
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plot for o < «., that is, values ofv for which thery, curve does not exist; the corresponding
complex conjugate imaginary eigenvalues approach théncegr — o the same way that
A\, — 0asD — D_, as discussed if.2.4. The equilibrium location, is denoted by a dot;
in the absence of a dot, the conditien < «.. is satisfied and a dynamic competition instability
is possible. In Figurg 4.17(ajy, andry; are almost equal far sufficiently near unity, and the
breaks in the curves appear to be due to differences in depiaes beyond the precision of

the solver.
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@ D=02E=1 (b) D=04,FE =1 (©)D=06E=1

Figure 4.17. Plot of p versusa for various f with £ =1 andD = 0.2 (left), D = 0.4
(center) andD = 0.6 (right). The extent of the curves imincreases iry, as does the
value of 7y for any givena. For «a where the curves are solid (dashed), the dominant
instability is the synchronous (asynchronous) mode. Theddootes the equilibrium
locationa,; for curves without a dot, a dynamic competition instapilg possible. The
values of f are as follows: left figure:;f = 0.6181, 0.6494, 0.6808, 0.7121, 0.7434,
0.7747, 0.8060, 0.8374, 0.8687, 0.9000; center figure:f = 0.6772, 0.7019, 0.7267,
0.7514, 0.7762, 0.8010, 0.8257, 0.8505, 0.8752, 0.9000; right figure: f = 0.6980,
0.7204, 0.7429, 0.7653, 0.7878, 0.8102, 0.8327, 0.8551, 0.8776, 0.9000.

For a giveny, the quasi-equilibrium is stable (unstable) wheis below (above) the curve.
Thus, because the pulse motion frdm (4.80) is directed nooncdlly towards the equilibrium
location, dynamic oscillatory instabilities are only pibés when either the slope of, is neg-

ative whena < «, or positive whemy > .. From Figure$ 4.17(R)[- 4.17]c), we see that

for f nearf., the only possibility for a dynamic oscillatory instabylis when the initial pulse
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locations satisfyv(0) > «a. andr satisfiesry(a.) < 7 < 79(a(0)) (Or To(cte) < T < To(x(0)) if
a. < a.), leading to the triggering of synchronous pulse oscolagiat someé > 0 asa — «.
For largerf, a similar scenario is possible for asynchronous osaifeti For still largerf, syn-
chronous oscillations may be triggered when the initiabpubcation satisfies(0) < a.. This
may occur after passage through a region of instability yo@sronous oscillations. In the next

section, we illustrate these scenarios by numericallyisglthe full PDE systeni(414).

4.3.5. Numerical Validation

We now illustrate five different scenarios involving pulsgndmics with parameters used to
generate curves in Figure 4.17(a). For clarity, we repredbe curves in Figuifie 4.118 on which
we qualitatively annotate the dynamicsft) for each run. Below, we present the results of
each run by plotting the pulse amplitudgs and pulse locations; versus time, produced by
solving (4.4) with4000 grid points usingVATLAB's pdepe() solver. In all runs, we took
e = 0.005, D = 0.2and E = 1, with f and7 being varied between the runs. The initial
conditions are treated in the same way as describeéffL.id.3, where the quasi-equilibrium
solution in [4.7B) is taken as the initial conditions, andnaall value ofr is used to solve
forward in time until a true quasi-equilibrium solution sached. While the time required for
the initiation process is small comparedet@, the pulses still drift during this time. As such,
appropriate compensations were made in the initial camttso that the pulse locations were
in their desired locations at the end of the initiation. Adllwes for the initial pulse locations
a(0) quoted below refer to their locations at the end of the itidia

In Run 1, we takev(0) = 0.85, f = 0.6494, andT = 1.05 < 75(«(0)) so that the quasi-

equilibrium is initially stable at = 0. However, as indicated in Figure 4118, our theory predicts
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Figure 4.18. Hopf stability curves for (bottom to topj = 0.6494, 0.7121, and0.806.

The arrows indicate the evolution oft), while the height of the arrows is only indica-
tive of the value ofr used in the runs. Runs 1 and 2 are associated with the lowest
curve, Run 3 with the middle curve, and Runs 4 and 5 with thectope. Solid curves
indicate thatry = 9o (synchronous mode) while dashed curves indicatethat 79,
(asynchronous mode). The curves are cut off on the left at a.. The equilibrium
pointa. = 0.6 is indicated by a dot when the conditio > « is satisfied.

that a dynamic synchronous oscillatory instability isgeged at some > 0 whena decreases
below the synchronous stability threshold indicated bystbied curve in this figure. That is, for
some timeg > 0, the conditionr > 7y(«(t)) is satisfied, at which time the solution becomes un-
stable to synchronous oscillations. In Figure 4.719(a) vesthe amplitudes of the two pulses,
which are indistinguishable, after the onset of the synobus Hopf instability. The pulses
annihilate beforev reachesy., implying that the annihilation was not due to a competifion
stability. In Figurd 4.19(lh), we show a favorable comparibetween the slow time evolution
of the location of the pulses and the dynamics in (4.80) leefloe time of annihilation.

With the initial conditions and the other parameters ungeanfor Run 2 we decreasdo
7 = 0.8 so that the Hopf stability threshold is not crossed at anganithe dynamics. However,

becauser. < a., a competition instability occurs agt) decreases below,. This scenario is
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Figure 4.19. Run 1: Dynamic synchronous oscillatory instability tor= 0.005, D =
0.2, E =1, f =0.6494, 7 = 1.05, anda(0) = 0.85. In the left figure, synchronous
oscillations of the pulse amplitudes grow in time at the bo$astability and annihilate
at some later time. In the right figure, we show a comparisdwéxn the evolution of
the pulse locations and the dynamics (#.80). They are indisishable in this plot.

illustrated in Figuré 4.18. In Figufe 4.20((a), we show theihitation of one of the pulses after
the thresholdv(t) < «. is crossed. In Figuife 4.20(b), we show a favorable compatstween
the numerical pulse dynamics and that predicted by [4.8@) tipe time of the annihilation of
the right pulse. After the annihilation, the remaining puévolves according to the one-pulse
dynamical result of$7].

In Run 3, we keep unchanged but increageo f = 0.7121 so thato,. < «a, andr remains
belowr,(«) for all values ofa in the interval(a., «(0)). Thus, no dynamic instabilities occur,
and the pulses evolve monotonically to their equilibriurcations atv. = 0.6. The motion of
the pulses, along with the dynami€s (4.80), are shown inrE[@20(d).

In Run 4, we takex(0) = 0.91, f = 0.806, andT = 15 < 75(«(0)). This run is similar
to Run 1 except that a dynamic asynchronous instabilityiggéred instead of a synchronous

instability. This scenario is shown in Figure 4.18; for same0, a(t) will satisfy 7 > 7o(«(t)),
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Figure 4.20. Runs 2 and 3: The left and center figures (Run 2) are plots optifee
amplitudes and locations versus time in the case of a dyneonipetition instability for

e =0.005,D =0.2, E =1, f =0.6494, 7 = 0.8, anda/(0) = 0.85. In the right figure
(Run 3),f isincreased t¢ = 0.7172 so that no instabilities are triggered and the pulses
approach the equilibrium locatian, = 0.6.

initiating an asynchronous instability. For this run, wetpebed the initial condition as in
(4.89), whered, = 1 andd; = —1 in accordance with the eigenvector associated with the
asynchronous mode. While the perturbation initially dechgnd appeared to be unnoticeable
by the time the pulses approached the asynchronous instabieshold, enough of the initial
perturbation remained to trigger the asynchronous inlabVWithout the initial perturbation,

a synchronous instability developed due to the nearby sgnclus instability threshold (not
shown in Figur& 4.18).

In Run 5, we keep the parameters as in Run 4, except we(8¢t= 0.28 andT = 6.6 SO
that > 7(a(0)) = 70;. Thus, the solution starts above the asynchronous stathiliéshold
but gains stability as(t) increases towards.. However, before reaching., a loss of stability
to synchronous oscillations occurs before stability isnegd aften(t) drifts across the zone of
synchronous instability. The evolution through the zorfestability and instability is depicted

in Figure[4.18. In Figures 4.22{a) ahd 4.22(b), we show tHeepamplitudes and locations

versus time for the entire duration of the dynamics. Not¢ tihe pulses evolve according to
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Figure 4.21. Run 4: Dynamic asynchronous oscillatory instability for 0.005, D =
02, E =1, f =0.806, 7 = 15, anda(0) = 0.91. In the left figure, asynchronous

oscillations of the left (solid) and right (dashed) pulsepitndes grow in time at the
onset of instability and annihilate at some later time. le tlght figure, we show a

comparison between the evolution of the pulse locationstla@dlynamics[(4.80) up to
the time of annihilation.

(4.80) even whem(t) is in an unstable region. Figure 4.22(a) shows the triggevirtwo dis-

tinct types of instabilities, each of which are eventuallfirguished as time increases. The first

of these instabilities, as previously mentioned, is to tegnahronous mode and is magnified

in Figure[4.22(d). The initial conditions were perturbedfie same way as in Run 4. After
an initial growth in the amplitude of asynchronous osditlas, the pulse amplitudes approach
their quasi-equilibrium value as they move into the zonetalbidity. At a later time, shown in
Figure[4.22(d), the pulses move into a zone of synchronaiability where the amplitude of
synchronous oscillations grow. These oscillations desaya pulses move out of the unstable
region and towards their equilibrium locations. Note thatifiency of synchronous oscillations
is approximately four times that of the asynchronous aatahs, which is consistent with our

calculations (not shown). In other experiments, it was pleskthat starting too far above the
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asynchronous stability curve led to an annihilation of ofi¢he pulses. Further, the move-
ment of the pulses through a zone of instability without ailating may be facilitated by
sufficiently large; for smalt where the times spent in unstable regions are significaoiigdr,
annihilation events may occur.

Finally, we note that all of these experiments involve aflyi ) instabilites. For numerical

computations involving instabilities 10 (¢*) eigenvalues, se®7].
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Figure 4.22. Run 5: Synchronous and asynchronous instabilities fer 0.005, D =
0.2, E =1, f =0.806, 7 = 6.6, anda(0) = 0.28. The top left figure shows the pulse
amplitudes as the pulses move through zones of stabilityretability and eventually to
their equilibrium locations (top right). The first instabjlis to the asynchronous mode
(bottom left) and the second instability is to the synchimmode (bottom right). In
the bottom left figure, the solid (dashed) curve is the amgétof the left (right) pulse.
In the bottom right figure, the pulse amplitudes are indigtishable.

4.4, Discussion

We have analyzed the stability of localized pulse patteon$#o closely related singularly

perturbed RD systems with Brusselator kinetics. The deomaf the NLEP for the Brusselator
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is more intricate than in previous stability analyses ospylatterns for the GM and GS models
[58,102/10€, owing to the non-trivial background state for the activadnd the existence of
two nonlocal terms arising from th@(¢~!) coefficient in [4.2b) and(4.4b). A combination of
rigorous and numerical analysis was used to obtain statbiliesholds from this NLEP, and the
results have been confirmed with full numerical simulatiohthe PDE systems. Fdr(4.4), an
NLEP stability theory is applied to a quasi-steady two-pugolution, and our results show the
existence of dynamically triggered instabilities depegdin the parameter regime.

For both Brusselator models (#.4) ahd {4.2), our NLEP stgbisults show that as in-
creases above a threshold, a Hopf bifurcation triggerge#tsynchronous or an asynchronous
oscillation in the pulse amplitudes. The nature of the t&n depends on the parameter val-
ues of f and D, and for [4.4), also on the inter-pulse distance. Our futhetical simulations
of the PDE systems confirm the two modes of oscillation. Fasrtiore, our numerical results
suggest that the synchronous instability, which leadsdatimihilation of pulses, is subcritical,
while the asynchronous instability is supercritical. Tlestence of robust asynchronous pulse
amplitude oscillations observed in our analysis of the Beletor model has not been reported
in NLEP stability studies of other RD (cf58,109).

A key open problem, suggested by our results, is to perforneakly nonlinear theory on
the Brusselator model, and on related RD systems with pukgiens, to analyze whether
pulse amplitude oscillations are sub- or super-critical.

Another interesting open problem is to try to extend the gusiglitting analysis 030,59,
[72] to analyze a similar pulse-splitting phenomena for thesBalator mode[(412) that occurs
in the regime whef approaches unity. Starting from a one-pulse quasi-eqjiuihib state, in

Fig.[4.23 we show numerical results computed froml(4.2)Hertaramater set= 0.01, A = 0,
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Figure 4.23. Self-replication of a pulse fof(4.2) with = 0.01, A = 0, D = 0.02,
f =0.95, andr = 0.001. The solid curve is: while the dotted curve is.

D = 0.02, f = 0.95, andT = 0.001. Such a pulse-splitting behavior has not been reported
previously for the Brusselator model.

One may also analyze (4.2) in a two dimensional spatial doywehere localized spot pat-
terns undergo either self-replication, competition, asikketory, instabilities depending on the
parameter regime. The determination of phase diagramgsamer space for these instabili-
ties is critical for characterizing dynamic bifurcatiorfdacalized spot patterns. Finally, it may
be interesting to apply the techniques of Chaptérs 3 and Hetoniodels of follicle formation
in the skin developed iri20,[7Q]. A reaction-diffusion system was used to model the epider-

mis, while a mechanochemical system was used to model thaslé8mall amplitude spatially
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periodic solutions of one system was taken a source for ther ahrough a simple coupling
term. A large amplitude study may be possible with a sindylaerturbed reaction-diffusion
system in which a bulk feed of the inhibitor is supplied by thechanochemical system. The
spatially varying inhibitor feed may result in pinning oflpes in the reaction-diffusion system

away from their usual equilibrium locations.
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APPENDIX A

Coefficients of Amplitude Equations near the C2THP

The coefficients of the amplitude equations[in]2.2) are hevis:

A= —
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APPENDIX B

Scaling Analysis of the Brusselator Model

In this appendix we outline the scaling analysis®f][for the existence of pulses tb (3.2).
Forey — 0, U has an inner scal€j,, near a pulse and an outer scélg; away from a pulse.
In contrast,V has only one scale across the interval, which is induced éyptlundary feed so
thatV = O(Ap). In order to obtain a homoclinic solution characterizing fhulse profile, we
require in the inner region near a pulse thtV ~ Upn. ThereforelUip, = O (Agl).

Next, sinceU is localized, we require from (3.2b) th&V,, ~ f_ll VU?dx. Since the
integrand has a9 (e;) support near a pulse, this yields thé§ ~ ¢,/.4y, which implies that
Ay = O(&)/*). Consequently, we conclude that, = O(e, /?) and Vi, = O(e)/?). Finally,
from (3.2B) we must balance the scaleddf,, and BU across—1 < x < 1, which yields that
Uout = O(e)/?), and consequentlg, = O(c,/?) from (3.22).

Therefore, we will considei (3.2) in the parameter regimemtd, = 6(1]/2140 and&, =
e(l)/ *E, for some non-negativé(1) constantsd, and E,. We also give an alternate scaling for
the A, = 0 case.

First, we introduce the rescal&d(1) variablesu andv and the new temporal variabée
defined by

U:eal/zucu, Vze(l]/zvcv, t=To.
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From (3.2), we then obtain the system

1 €0 2 eoFo UcVe 2
— Uy = | —— ) Upp+ ———— —u+ vu” B.1a
T(Bo+1) <VBO+1) UC(BO+1) By +1 ( )
VBo¥1  DywBe+1  VBo+1/[ By ,
o — (e u—ovu . (Blb)
u?T u? €0 UV,

Choosingl’ = 1/(By + 1) andu.v. = By in (B.J), and defining the new parameterd, E,

f,andr as
=0 _ DovBo+1
e ,730 + 1 ) ug Y (B 2)
. E, f By (Bo + 1)3/2 '
= > = ) T= )
ucv/By + 1 By +1 u?
we obtain the system
Uy = EUyy + €F — u + fou?, —-l<z<1, ug(£1,0) =0, (B.3a)
1
TV = Dy, + — (u — Uu2) , —-l<z<l1, v (£1,0) = +Ag /v, (B.3b)
€

valid for A, > 0. If Ay > 0, we choose), = A so thatu, = B,/Ay. Replacing the time
variables with ¢ in (B.3), the Brusselator model with asymptotically smalubdary feed of
the inhibitor is written in the form(414) where is replaced by, ande, f, £, D andr are
defined in terms of the original variables lby (4.5).

Alternatively, if Ay = 0, we may choose. = E,/+/By + 1 so thatv, = Bov/By + 1/ Ey,
resulting in the parameté? in (B.2) and [B.B) being unity. In this case, the Brusselatodel

with no flux boundary conditions i§ (4.2) wheref, D, andr are as defined i (4.3).
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APPENDIX C

Exponentially Slow Evolution of a Single Pulse WherE =0 and A > 0

In §3.3, the analysis predicted that for the single-pulse catie &% = 0 and A > 0, the
pulse would remain stationary for all time regardless opisition in the domain. However,
as we will show below, the single-pulse solution is in factyometastable; the eigenvalue
problem linearized around this solution admits an eigeredhat is exponentially small but
positive. We further find that the exponentially small eiggdoe is the principle eigenvalue,
that is, the eigenvalue with the largest real part. Follgnéiosely the analysis o#f] for a
particular limit of the Gierer-Meinhardt model, we beginfingt casting[(3.B) in the form of a
nonlocal reaction-diffusion system and linearizing ambtime quasi-equilibrium solution. We
then analyze the resulting nonlocal eigenvalue problendaniste an asymptotic expression for
the exponentially small (positive) eigenvalue. Numerio@&thods will be used to confirm the
analysis as well as to show that no other eigenvalues hawévpagal parts. Finally, we derive
an ODE for the exponentially slow dynamics of the center efghlse, which we confirm by
numerically solving[(3.13). Because the following analyaig arguments are similar to those
in [45], we omit much of the detail.

For the purpose of the following analysis, it is convenientonsider a re-scaled form of
(3:3). We introduce the new variables and parameters

B

u:e_l/QZU, v=¢€V2AV . t=

1
B+1

T, e=VB+ le,
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resulting in
Uy = Upw + 0By — U + fVU?, Uy(£1,7) =0, (C.1a)
1
oV, =DV + —(U - VU?), Vi(£1,7) = £1, (C.1b)
€0
where
B EA A? A?
-2 Ey=—— D=DVB+1=— B+1)%2—.
f B + 1 ) 0 Bm’ + B2 ; ( + ) B2

We will consider the case wherg, = 0 in (C.14).

We assume as before thathas a localized solution of widih(¢,) while V' to leading order
is equal to the constant in the inner region and varies on &n1) length-scale in the outer
region. Then in the outer region, treating functiong/ods multiples of delta functiong, (Cl1b)

must satisfy the Fredholm condition

2Dey + [, U(x) da
[LU(a)de

Then solving for the leading order solution &fin the outer region and matching it to the

‘_/:

constant leading order inner solution, we write {(C.1) asrdaual reaction-diffusion system

U, = €Uy — U + fVU?, Uy(£1,7) =0, (C.2a)
2Deo + [ U(z)d
V =z — ao] + —2 J\U(e) da (C.2b)
f_l U?(z) dx

where we have séf, = 0. The leading order quasi-equilibrium solution is then
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Us(iin) = - (”’ ‘fO) C wly) = osecfi (1) (C.32)
Ve(x;z0) = |2 — 20| + Vo3 Vo = 3(;;2f) : (C.3b)

wherez, is the center of the pulse.

To derive the eigenvalue problem, we linearize {C.2) aroligdand Vz by introducing

perturbationg) and» according to

U = Up(a;x0) + eMo(x) (C.4a)
V = Vi(z;x0) 4+ M7, (C.4b)

wheren is a constant. Substituting (C.4) info (C.2a), we obtainftiewing nonlocal eigen-

value problem

Ley = €50zs + (=1 + 2uc) 9+

1 r —X
[ {f—m( °)}¢<x>dx=w, b.(+1) =0, (C5)

-1 €o

where we have used (C.4) n(Cl2b) to compybe terms ofp. Eqn. [C.5) may also be obtained
by substituting[(C#4) intd (Cl1), wherewould then be computed in terms @by applying the
Fredholm alternative to the linearized equationfokVe note that (CJ5) is similar to the NLEP
considered in45], differing only in the nonlocal term.

If (C.5) was posed on an infinite domain = «, would be an eigenfunction corresponding

to A = 0. This is the translation mode. On a finite domaif,fails to satisfy the equation
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and boundary conditions by exponentially small termspas- 0. Thus, we expect that,,
has an exponentially small eigenvalue and also that exponentially close ta.. In order
for the single-pulse solution to be metastable, howeverregegire that all other eigenvalues
have negative real parts. This is where the nonlocal terrf€di)(becomes important; as ar-
gued in 5] (and references therein), (C.5) without the nonlocal there anO (1) positive real
eigenvalue that is exponentially closeitt. This was confirmed numerically by discretizing
the local part ofL., using the second order difference approximation of thersgcrivative
with grid spacingAz and computing the eigenvalues of the resulting matti¢. To add the
contribution of the nonlocal part of.,, we used the trapezoidal rule also with grid spacing
Az to approximate the integral term, constructing the masiX. Computing the eigenvalues
of A%* + BA* = CA* we found that, aside from the expected small (positivegmiglue, all
eigenvalues had negative real parts, regardless of the wdlfi between) and1. Thus, the
small eigenvalue is the principle eigenvalue[of (C.5).

The analysis required to estimate the exponentially smgéirzalue); corresponding to
the eigenfunction, () is similar to that performed ird5]. As such, we only show the steps

that are specific to this problem. We first give Lagrange’siit for (v, L., u), where(u, v) =

f_lluv dx:
(v, Leout) = € (ugv — vmu)‘l_l + (u, L} v), (C.6a)
1 1
LI v = equeg + (—1+ 2uc)v + b (f —2u,.) / u?v d. (C.6b)
-1

We now multiply [C.5) byu,, and integrate over1 < x < 1, to obtain
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(U, ¢1) = —eoulldn |t + (61, L7 ul), (C.7)

where we have applied (Cl6a) to th&,, L.,¢;) term and used;.(+1) = 0 to eliminate the
boundary terms involving);,. The terms in[(Cl7) are the same as thosedif,[with the
exception being that the nonlocal part of the adjoint omeraf is different. However, the
term involving L} was shown to be exponentially negligible #E[; if the same were true in
(C. 1), we may conclude that the eigenpair ¢, is the same as that found idg] to within
exponentially negligible terms. To show this, we first cédtei L u. Sinceu;, is a solution of

the local part ofL*

€o’

* | 1
Liu, = bec (f —2u,) /_luzu'c dx (C.8)
~ 12(f — 2u.) <e_%(1_x°) — e‘%““’“) : (C.9)

where we have used that

ue(y) ~ 6e™ as y — +oo. (C.10)

To estimate(¢y, L} u.), we first recall thatp, is exponentially close ta,, differing only in

exponentially small boundary layer terms required to 8atlse no-flux boundary conditions.

That is,

¢1(z) ~ Chu, (L ; xo) + e.s.t,
0
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where (] is a normalizing constant, ands.t denotes exponentially small terms. Thus, by

integrating and applyind (C.10), it can be shown that thenter

3

1
(¢1, L uy) = 12 (55(1_960) - 6_%(1”0)) / (f —2u.)¢p1 dx (C.11)
—1

is exponentially smaller than the other two termdin [C &ading to the result

AL = 60 (e‘%(”m n e‘%“‘”)) . (C.12)

As a check, we see frorh (C]11) that;, L u.) is exponentially smaller thaf(e~*/), while
A1 = O(e~?/<). Thus, the term in[{C.11) is indeed exponentially negligibResult[([C.12)
was confirmed by calculating the eigenvalues of the matfix. Eigenvalues were computed
using grid spacings of\x, 2Ax and4Ax so that Richardson extrapolation could be applied
twice to increase the accuracy required for smallThe agreement between (C.12) and the
numerical computations is shown in FiglrelC.1. It shouldb@surprising thaf{{C.12) is the
same expression as that obtainedl4f]] the NLEP in 45] has the same local terms while
the nonlocal terms in both NLEP’s contribute terms expoiaéiptsmaller than the exponential
terms in [C.IR), and thus in both cases have an exponentigdjljgible effect on the eigenpair
A1, @1

Since the linearization around the single-pulse quasiliegum solution yields a principle
eigenvalue that is positive but exponentially smalk@s— 0, we expect the pulse to evolve

on an exponentially slow time-scale. As in the calculatibr\g the nonlocal term if{Cl5) is

insignificant and we thus recover the same result for theanatf the pulse as itdf]:
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0.05 0.1 0.15 0.2

Figure C.1. Plot \; versuse, where the solid line is the asymptotic estimate (C.12) and
the circles are from numerical computations.

)

dwo _ 60, (e—%(l—mo) B e—%(1+mo))
dr

or in terms of the original variables B ande,

d 1 !
Z0 — G0eV/B AT (oM ) o ) (C.13)

Thus, forz, # 0, the pulse drifts toward the nearest boundary instead adrtdw= 0, the latter

of which was observed whefi > 0. The result[(C.13) is compared to a numerical solution of
(3.3) in Figure[C.P, the results of which were verified by gefinement. We note that the
numerical solution is extremely sensitive to the rafi@ + 1 /¢, and for values of the ratio

either too large or too small, the match is not as close.
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0.4 0.42 0.44 0.46 0.48
X

Figure C.2. Comparison of asymptotic and numerical results for exptakyn slow

dynamics of a single pulse starting & = 0.4 for parameters = 0.082, A = 2,
B =1,D =1,andF = 0. The solid line (circles) represent the numerical (asymnigto

result.
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