The Betti numbers of Stanley-Reisner ideals of SIMPLICIAL TREES

Sara Faridi*

Abstract

We provide a simple method to compute the Betti numbers of the Stanley-Reisner ideal of a simplicial tree and its Alexander dual.

Keywords: resolution, monomial ideal, simplicial tree, Stanley-Reisner ideal
Simplicial trees [F1] are a class of flag complexes initially studied for the properties of their facet ideals. In this short note we give a short and straightforward method to compute the Betti numbers of their Stanley-Reisner ideals.

The Betti numbers of a homogeneous ideal I in a polynomial ring R over a field are the ranks of the free modules appearing in a minimal free resolution

$$
0 \rightarrow \oplus_{d} R(-d)^{\beta_{p, d}} \rightarrow \cdots \rightarrow \oplus_{d} R(-d)^{\beta_{0, d}} \rightarrow I \rightarrow 0
$$

of I. Here $R(-d)$ denotes the graded free module obtained by shifting the degrees of elements in R by d. The numbers $\beta_{i, d}$, which we shall refer to as the i th \mathbb{N}-graded Betti numbers of degree d of I, are independent of the choice of the graded minimal finite free resolution.

Definition 1 (simplicial complex). A simplicial complex Δ over a set of vertices $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is a collection of subsets of V, with the property that $\left\{v_{i}\right\} \in \Delta$ for all i, and if $F \in \Delta$ then all subsets of F are also in Δ. An element of Δ is called a face of Δ. The maximal faces of Δ under inclusion are called facets of Δ. A subcollection of Δ is a simplicial complex whose facets are also facets of Δ; in other words a simplicial complex generated by a subset of the set of facets of Δ. $A \subseteq V$, the induced subcomplex of Δ on A, denoted by Δ_{A}, is defined as $\Delta_{A}=\{F \in \Delta \mid F \subseteq A\}$.

[^0]Definition 2. Let Δ be a simplicial complex with vertex set x_{1}, \ldots, x_{n} and $R=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k. The Stanley-Reisner ideal of Δ is defined as $I_{\Delta}=$ $\left(\prod_{x_{i} \in F} x_{i} \mid F \notin \Delta\right)$.

Definition 3 ([F1] leaf, joint). A facet F of a simplicial complex is called a leaf if either F is the only facet of Δ or for some facet $G \neq F$ of Δ we have $F \cap H \subseteq G$ for all other facets H of Δ. Such a facet G is called a joint of F.

Definition 4 ([F1] tree, forest). A connected simplicial complex Δ is a tree if every nonempty subcollection of Δ has a leaf. If Δ is not necessarily connected, but every subcollection has a leaf, then Δ is called a forest.

Theorem 5 ([F2] Theorem 2.5). An induced subcomplex of a simplicial tree is a simplicial forest.

Definition 6 (link). Let Δ be a simplicial complex over a vertex set V and let F be a face of Δ. The link of F is defined as $\mathrm{lk}_{\Delta}(F)=\{G \in \Delta \mid F \cap G=\emptyset \& F \cup G \in \Delta\}$.

Lemma 7 (A link in a tree is a forest). If Δ is a tree and F is a face of Δ, then $\mathrm{lk}_{\Delta}(F)$ is a forest.

Proof. Suppose $\mathrm{lk}_{\Delta}(F)=\left\langle G_{1}, \ldots, G_{s}\right\rangle$ where G_{i} is a subset of a facet $F_{i}=F \cup G$ of Δ. Now suppose $\Gamma=\left\langle G_{a_{1}}, \ldots, G_{a_{r}}\right\rangle$ is a subcollection of $\mathrm{lk}_{\Delta}(F)$. We need to show that Γ has a leaf. Let $\left\langle F_{a_{1}}, \ldots, F_{a_{r}}\right\rangle$ be the corresponding subcollection of Δ, which must have a leaf, say $F_{a_{1}}$ and a joint, say $F_{a_{2}}$. Then we have $F_{a_{i}} \cap F_{a_{1}} \subseteq F_{a_{2}}$ for $i=3, \ldots, r$. But since $F_{a_{i}}=F \cup G_{a_{i}}$ and $F \cap G_{a_{i}}=\emptyset$ for all i, we must have $G_{a_{i}} \cap G_{a_{1}} \subseteq G_{a_{2}}$ for $i=3, \ldots, r$ which means that $G_{a_{1}}$ is a leaf of Γ.

We will combine the above two facts with Hochster's formula for Betti numbers of the ideal and its dual [BCP].

Theorem 8 ([BCP]). Let k be a field and Δ a simplicial complex over vertex set V. Then

$$
\begin{align*}
& \beta_{i, j}\left(I_{\Delta}\right)=\sum_{A \subseteq V,|A|=j} \operatorname{dim}_{k} \widetilde{H}_{j-i-2}\left(\Delta_{A} ; k\right) \tag{1}\\
& \beta_{i, j}\left(I_{\Delta}^{\vee}\right)=\sum_{A \subseteq V,|A|=j} \operatorname{dim}_{k} \widetilde{H}_{i-1}\left(\mathrm{lk}_{\Delta}(V \backslash A ; k)\right) . \tag{2}
\end{align*}
$$

If Δ is a tree, the following theorem shows how to find Betti numbers of I_{Δ}, and along the way also gives a proof of the fact that I_{Δ} has a linear resolution. This last statement is not unknown, it follows also from Fröberg's characterizations of edge ideals with linear resolutions [Fr] along with observations in [HHZ], and is also proved in [CF].

Theorem 9. Let Δ be a simplicial tree with vertex set V. Then Δ is a flag complex, I_{Δ} has a linear resolution, and the Betti numbers of I_{Δ} can be computed by

$$
\beta_{i, j}\left(I_{\Delta}\right)=\left\{\begin{array}{cc}
\sum_{A \subseteq V,|A|=j}\left(\text { number of connected components of } \Delta_{A}-1\right) & j=i+2 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Proof. By (1) we know that we are looking at the reduced homology modules of Δ_{A} for various $A \subseteq V$. For a given A, we know that Δ_{A} is a forest, and every connected component is a tree and therefore acyclic ([F2] Theorem 2.9). Therefore, for each such A the only possible nonzero reduced homology is the 0th one, that is when $|A|-i-2=0$ or $|A|=i+2$. The formula now just follows.

In particular, β_{0} is only positive in degree 2 , which implies that Δ is a flag complex, and the fact that the resolution is linear is evident from the way the Betti numbers grow.

Theorem 10. Let Δ be a simplicial tree with vertex set V of cardinality n. Then the I_{Δ}^{\vee} has projective dimension 1, and its Betti numbers are
$\beta_{i, j}\left(I_{\Delta}^{\vee}\right)= \begin{cases}\begin{array}{ll}\text { number of facets of } \Delta \text { of cardinality } n-j & i=0 \\ \sum_{A \subseteq V,|A|=j}\left(\text { number of connected components of } \mathrm{lk}_{\Delta}(V \backslash A)-1\right) & i=1 \\ 0 & \text { otherwise. }\end{array}\end{cases}$
Proof. This follows from (2). Note that in this case we are looking at the homology modules of $\mathrm{lk}_{\Delta}(V \backslash A)$ for $A \subseteq V$. By Lemma $7 \mathrm{lk}_{\Delta}(V \backslash A)$ is a forest, and so since all the connected components are acyclic, we only have possible homology in degrees -1 (if the link is empty) and 0 .

The case $i=1$ is the 0 th homology, and we are counting the numbers of connected components minus 1 , which is straightforward.

In the case $i=0$, we are counting only those $A \subset V$ where $\mathrm{lk}_{\Delta}(V \backslash A)=\{\emptyset\}$, or equivalently $V \backslash A$ is a facet of Δ. So the formula for the case $i=0$ follows.

References

[BCP] D. Bayer, H. Charalambous, and S. Popescu, Extremal Betti numbers and Applications to Monomial Ideals, J. Alg. 221 (1999), 497-512.
[CF] E. Connon, S. Faridi, Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution, arXiv:1209.5089.
[F1] S. Faridi, The facet ideal of a simplicial complex, Manuscripta Mathematica 109, 159-174 (2002).
[F2] S. Faridi, Monomial resolutions supported by simplicial trees, arXiv:1202.0750.
[Fr] R. Fröberg, On Stanley-Reisner rings, Topics in Algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 57-70.
[HHZ] J. Herzog, T. Hibi, X. Zheng, Diracs theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), 949960.

[^0]: *Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada, faridi@ mathstat.dal.ca, +1 (902)-494-2658. Research supported by NSERC.

