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The notion of a sequentially Cohen-Macaulay module was introduced by Stanley [?], fol-
lowing the introduction of a nonpure shellable simplicial complex by Björner and Wachs [BW].
It was known that the Stanley-Reisner ideal of a shellable simplicial complex is Cohen-
Macaulay (see [BH]). A shellable simplicial complex is by definition pure (all facets have
the same dimension), which is equivalent to its Stanley-Reisner ideal being unmixed. A non-
pure shellable simplicial complex, on the other hand, may not be pure, so its Stanley-Reisner
ideal may not be unmixed, and hence not Cohen-Macaulay. As it turns out, however, the
Stanley-Reisner ideal of a nonpure simplicial complex is “sequentially Cohen-Macaulay”
(Definition 1 below).

If the Stanley-Reisner ideal of a simplicial complex is sequentially Cohen-Macaulay, the
complex has Cohen-Macaulay pure subcomplexes (see Duval [D] Theorem 3.3, or Stanley [?]
Chapter III, Proposition 2.10). In the language of commutative algebra, this is equivalent
to all equidimensional components appearing in the primary decomposition of a square-free
monomial ideal being Cohen-Macaulay (see [F] for more details).

The purpose of this note is to establish that, more generally, this is what being se-
quentially Cohen-Macaulay means for any module. Below we use basic facts about pri-
mary decomposition of modules to study the structure of the submodules appearing in the
(unique) filtration of a sequentially Cohen-Macaulay module. The main result (Theorem 5)
states that each submodule appearing in the filtration of a sequentially Cohen-Macaulay
module M is the intersection of all primary submodules whose associated primes have a
certain height and appear in an irredundant primary decomposition of the 0-submodule of
M . Similar results, stated in a different language, appear in [Sc]; the author thanks Jürgen
Herzog for pointing this out.

Definition 1 ([St] Chapter III, Definition 2.9). Let M be a finitely generated Z-
graded module over a finitely generated N-graded k-algebra, with R0 = k. We say that M
is sequentially Cohen-Macaulay if there exists a finite filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

of M by graded submodules Mi satisfying the following two conditions.

(a) Each quotient Mi/Mi−1 is Cohen-Macaulay;
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(b) dim (M1/M0) < dim (M2/M1) < . . . < dim (Mr/Mr−1), where “dim ” denotes Krull
dimension.

Before we begin our study of sequentially Cohen-Macaulay modules, we record two basic
lemmas that we shall use later. Throughout the discussions below, we assume that R is a
finitely generated algebra over a field, and M is a finite module over R.

Lemma 2. Let Q1, . . . ,Qt,P all be primary submodules of an R-module M , such that
Ass(M/Qi) = {qi} and Ass(M/P) = {℘}. If Q1 ∩ . . . ∩ Qt ⊆ P and Qi 6⊆ P for some i,
then there is a j 6= i such that qj ⊆ ℘.

Proof. Let x ∈ Qi \ P. For each j 6= i, pick the positive integer mj such that

q
mj

j x ⊆ Qj .

So we have that
qm1
1 . . . q

mi−1

i−1 q
mi+1

i+1 . . . qmt
t x ⊆ Q1 ∩ . . . ∩Qt ⊆ P

which implies that, since x /∈ P,

qm1
1 . . . q

mi−1

i−1 q
mi+1

i+1 . . . qmt
t ⊆ ℘

and hence for some j 6= i, qj ⊆ ℘.

Lemma 3. Let M be an R-module and N be a submodule of M . Then for every ℘ ∈
Ass(M/N), if ℘ 6⊇ Ann(N), then ℘ ∈ Ass(M).

Proof. Since ℘ ∈ Ass(M/N), there exists x ∈ M \N such that ℘ = Ann(x); in other words

℘x ⊆ N.

Suppose Ann(N) 6⊆ ℘, and let y ∈ Ann(N) \ ℘. Now y℘x = 0, and so ℘ ⊆ Ann(yx) in M .
On the other hand, if z ∈ Ann(yx), then zyx = 0 ⊆ N and so zy ∈ ℘. But y /∈ ℘, so

z ∈ ℘. Therefore ℘ ∈ Ass(M).

Suppose M is a sequentially Cohen-Macaulay module with filtration as in Definition 1.
We adopt the following notation. For a given integer j, we let

Ass(M)j = {℘ ∈ Ass(M) | height ℘ = j}.

Suppose that all the j where Ass(M)j 6= ∅ form the sequence of integers

0 ≤ h1 < . . . < hc ≤ dim R

so that
Ass(M) =

⋃
1≤j≤c

Ass(M)hj
.

We can now make the following observations.

Proposition 4. For all i = 0, . . . , r − 1, we have

1. Ass(Mi+1/Mi) ∩Ass(M) 6= ∅;
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2. Ass(M)hr−i
⊆ Ass(Mi+1/Mi) and c = r;

3. If ℘ ∈ Ass(Mi+1), then height ℘ ≥ hr−i;

4. If ℘ ∈ Ass(Mi+1/Mi), then Ann(Mi) 6⊆ ℘;

5. Ass(Mi+1/Mi) ⊆ Ass(M);

6. Ass(Mi+1/Mi) = Ass(M)hr−i
;

7. Ass(M/Mi) = Ass(M)≤hr−i
;

8. Ass(Mi+1) = Ass(M)≥hr−i
.

Proof. 1. We use induction on the length r of the filtration of M . The case r = 1 is
clear, as we have a filtration 0 ⊂ M , and the assertion follows. Now suppose the
statement holds for sequentially Cohen-Macaulay modules with filtrations of length
less than r. Notice that Mr−1 that appears in the filtration of M in Definition 1 is
also sequentially Cohen-Macaulay, and so by the induction hypothesis, we have

Ass(Mi+1/Mi) ∩Ass(Mr−1) 6= ∅ for i = 0, . . . , r − 2

and since Ass(Mr−1) ⊆ Ass(M) it follows that

Ass(Mi+1/Mi) ∩Ass(M) 6= ∅ for i = 0, . . . , r − 2.

It remains to show that Ass(M/Mr−1) ∩Ass(M) 6= ∅.
For each i, Mi−1 ⊂ Mi, so we have ([B] Chapter IV)

Ass(M1) ⊆ Ass(M2) ⊆ Ass(M1) ∪Ass(M2/M1) (1)

The inclusion M2 ⊆ M3 along with the inclusions in (1) imply that

Ass(M2) ⊆ Ass(M3) ⊆ Ass(M2)∪Ass(M3/M2) ⊆ Ass(M1)∪Ass(M2/M1)∪Ass(M3/M2).

If we continue this process inductively, at the i-th stage we have

Ass(Mi) ⊆ Ass(Mi−1) ∪Ass(Mi/Mi−1)
⊆ Ass(M1) ∪Ass(M2/M1) ∪Ass(M3/M2) ∪ . . . ∪Ass(Mi/Mi−1)

and finally, when i = r it gives

Ass(M) ⊆ Ass(M1) ∪Ass(M2/M1) ∪Ass(M3/M2) ∪ . . . ∪Ass(M/Mr−1). (2)

Because of Condition (b) in Definition 1, and the fact that each Mi+1/Mi is Cohen-
Macaulay (and hence all its associated primes have the same height; see [BH] Chap-
ter 2), if for every i we pick ℘i ∈ Ass(Mi+1/Mi), then

hc ≥ height ℘0 > height ℘1 > . . . > height ℘r−1.

where the left-hand-side inequality comes from the fact that Ass(M1) ⊆ Ass(M). By
our induction hypothesis, Ass(M) intersects Ass(Mi+1/Mi) for all i ≤ r − 2, and so
because of (2) we conclude that

height ℘i = hc−i, and Ass(M)hc−i
⊆ Ass(Mi+1/Mi) for 0 ≤ i ≤ r − 2.

And now Ass(M)h0 has no choice but to be included in Ass(M/Mr−1), which settles
our claim. It also follows that c = r.
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2. See the proof for part 1.

3. We use induction. The case i = 0 is clear, since for every ℘ ∈ Ass(M1) = Ass(M1/M0)
we know from part 2 that height ℘ = hr. Suppose the statement holds for all indices
up to i− 1. Consider the inclusion

Ass(Mi) ⊆ Ass(Mi+1) ⊆ Ass(Mi) ∪Ass(Mi+1/Mi).

From part 2 and the induction hypothesis it follows that if ℘ ∈ Ass(Mi+1) then
height ℘ ≥ hr−i.

4. Suppose Ann(Mi) ⊆ ℘. Since
√

Ann(Mi) =
⋂

℘′∈Ass(Mi)
℘′, we have⋂

℘′∈Ass(Mi)

℘′ ⊆ ℘

so there is a ℘′ ∈ Ass(Mi) such that ℘′ ⊆ ℘. But by part 2 and part 3 above

height ℘′ ≥ hr−i+1 and height ℘ = hr−i

which is a contradiction.

5. From part 4 and Lemma 3, it follows that

Ass(Mi+1/Mi) ⊆ Ass(Mi+1) ⊆ Ass(M).

6. This follows from parts 2 and 5, and the fact that Mi+1/Mi is Cohen-Macaulay, and
hence all associated primes have the same height.

7. We show this by induction on e = r− i. The case e = 1 (or i = r−1) is clear, because
by part 6

Ass(M/Mr−1) = Ass(M)h1 = Ass(M)≤h1 .

Now suppose the equation holds for all integers up to e−1 (namely i = r−e+1), and
we would like to prove the statement for e (or i = r − e). Since Mi+1/Mi ⊆ M/Mi,
we have

Ass(Mi+1/Mi) ⊆ Ass(M/Mi) ⊆ Ass(Mi+1/Mi) ∪Ass(M/Mi+1) (3)

By the induction hypothesis and part 6 we know that

Ass(M/Mi+1) = Ass(M)≤hr−i−1
and Ass(Mi+1/Mi) = Ass(M)hr−i

,

which put together with (3) implies that

Ass(M)hr−i
⊆ Ass(M/Mi) ⊆ Ass(M)≤hr−i

We still have to show that Ass(M/Mi) ⊇ Ass(M)≤hr−i−1
.

Let
℘ ∈ Ass(M)≤hr−i−1

= Ass(M/Mi+1) = Ass((M/Mi)/(Mi+1/Mi)).

If ℘ ⊇ Ann(Mi+1/Mi), then (by part 6)

℘ ⊇
⋂

q∈Ass(M)hr−i

q =⇒ ℘ ⊇ q for some q ∈ Ass(M)hr−i

which is a contradiction, as height ℘ ≤ hr−i−1 < height q.

It follows from Lemma 3 that ℘ ∈ Ass(M/Mi).
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8. The argument is based on induction, and exactly the same as the one in part 4, using
more information; from

Ass(Mi) ⊆ Ass(Mi+1) ⊆ Ass(Mi) ∪Ass(Mi+1/Mi),

the induction hypothesis, and part 6 we deduce that

Ass(M)≥hr−i+1
⊆ Ass(Mi+1) ⊆ Ass(M)≥hr−i+1

∪Ass(M)hr−i
,

which put together with part 4, along with Lemma 3 produces the equality.

Now suppose that as a submodule of M , M0 = 0 has an irredundant primary decompo-
sition of the form:

M0 = 0 =
⋂

1≤j≤r

Qhj

1 ∩ . . . ∩Qhj
sj (4)

where for a fixed j ≤ r and e ≤ sj , Q
hj
e is a primary submodule of M with

Ass(M/Qhj
e ) = {℘hj

e } and Ass(M)hj
= {℘hj

1 , . . . , ℘
hj
sj }.

Theorem 5. Let M be a sequentially Cohen-Macaulay module with filtration as in Defi-
nition 1, and suppose that M0 = 0 has a primary decomposition as in (4). Then for each
i = 0, . . . , r − 1, Mi has the following primary decomposition

Mi =
⋂

1≤j≤r−i

Qhj

1 ∩ . . . ∩Qhj
sj . (5)

Proof. We prove this by induction on r (length of the filtration). The case r = 1 is clear,
as the filtration is of the form 0 = M0 ⊂ M . Now consider M with filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M.

Since Mr−1 is a sequentially Cohen-Macaulay module of length r − 1, it satisfies the state-
ment of the theorem. We first show that Mr−1 has a primary decomposition as described
in (5). From part 7 of Proposition 4 it follows that

Ass(M/Mr−1) = Ass(M)h1

and so for some ℘h1
e -primary submodules Ph1

e of M (1 ≤ e ≤ sj), we have

Mr−1 = Ph1
1 ∩ . . . ∩ Ph1

s1
. (6)

We would like to show that Qh1
e = Ph1

e for e = 1, . . . , s1.
Fix e = 1 and assume Qh1

1 6⊂ Ph1
1 . From the inclusion M0 ⊂ Ph1

1 and Lemma 2 it follows
that for some e and j (with e 6= 1 if j = 1), we have ℘

hj
e ⊆ ℘h1

1 . Because of the difference
in heights of these ideals the only conclusion is ℘

hj
e = ℘h1

1 , which is not possible. With a
similar argument we deduce that Qh1

e ⊂ Ph1
e , for e = 1, . . . , s1.

Now fix j ∈ {1, . . . , r} and e ∈ {1, . . . , sj}. If Mr−1 = Qhj
e we are done. Otherwise, note

that for every j and ℘
hj
e -primary submodule Qhj

e of M ,

Qhj
e ∩Mr−1
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is a ℘
hj
e -primary submodule of Mr−1 (as ∅ 6= Ass(Mr−1/(Qhj

e ∩ Mr−1)) = Ass((Mr−1 +
Qhj

e )/Qhj
e ) ⊆ Ass(M/Qhj

e ) = {℘hj
e }). So M0 = 0 as a submodule of Mr−1 has a primary

decomposition

M0 ∩Mr−1 = 0 =
⋂

1≤j≤r

(Qhj

1 ∩Mr−1) ∩ . . . ∩ (Qhj
sj ∩Mr−1).

From Proposition 4 part 8 it follows that

Ass(Mr−1) = Ass(M)≥h2

so the components Qh1
t ∩Mr−1 are redundant for t = 1, . . . , s1, so for each such t we have⋂

Q
hj
e 6=Qh1

t

(Qhj

1 ∩Mr−1) ⊆ Qh1
t ∩Mr−1.

If Qhj
e ∩ Mr−1 6⊆ Qh1

t ∩ Mr−1 for some e and j (with Qhj
e 6= Qh1

t ), then by Lemma 2 for
some such e and j we have ℘

hj
e ⊆ ℘h1

t , which is a contradiction (because of the difference
of heights).

Therefore, for each t (1 ≤ t ≤ s1), there exists indices e and j (with Qhj
e 6= Qh1

t ) such
that

Qhj
e ∩Mr−1 ⊆ Qh1

t ∩Mr−1.

It follows now, from the primary decomposition of Mr−1 in (6) that for a fixed t

Ph1
1 ∩ . . . ∩ Ph1

s1
∩Qhj

e ⊆ Qh1
t .

Assume Ph1
t 6⊆ Qh1

t . Applying Lemma 2 again, we deduce that

℘
hj
e ⊆ ℘h1

t , or there is t′ 6= t such that ℘h1
t′ ⊆ ℘h1

t .

Neither of these is possible, so Ph1
t ⊆ Qh1

t for all t.
We have therefore proved that

Mr−1 = Qh1
1 ∩ . . . ∩Qh1

s1
.

By induction hypothesis, for each i ≤ r−2, Mi has the following primary decomposition

Mi =
⋂

2≤j≤r−i

(Qhj

1 ∩Mr−1) ∩ . . . ∩ (Qhj
sj ∩Mr−1) =

⋂
1≤j≤r−i

Qhj

1 ∩ . . . ∩Qhj
sj

which proves the theorem.
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