Primary Decomposition in a Sequentially Cohen-Macaulay Module

Sara Faridi*

March 17, 2005

The notion of a sequentially Cohen-Macaulay module was introduced by Stanley [?], following the introduction of a nonpure shellable simplicial complex by Björner and Wachs [BW]. It was known that the Stanley-Reisner ideal of a shellable simplicial complex is CohenMacaulay (see $[\mathrm{BH}]$). A shellable simplicial complex is by definition pure (all facets have the same dimension), which is equivalent to its Stanley-Reisner ideal being unmixed. A nonpure shellable simplicial complex, on the other hand, may not be pure, so its Stanley-Reisner ideal may not be unmixed, and hence not Cohen-Macaulay. As it turns out, however, the Stanley-Reisner ideal of a nonpure simplicial complex is "sequentially Cohen-Macaulay" (Definition 1 below).

If the Stanley-Reisner ideal of a simplicial complex is sequentially Cohen-Macaulay, the complex has Cohen-Macaulay pure subcomplexes (see Duval [D] Theorem 3.3, or Stanley [?] Chapter III, Proposition 2.10). In the language of commutative algebra, this is equivalent to all equidimensional components appearing in the primary decomposition of a square-free monomial ideal being Cohen-Macaulay (see [F] for more details).

The purpose of this note is to establish that, more generally, this is what being sequentially Cohen-Macaulay means for any module. Below we use basic facts about primary decomposition of modules to study the structure of the submodules appearing in the (unique) filtration of a sequentially Cohen-Macaulay module. The main result (Theorem 5) states that each submodule appearing in the filtration of a sequentially Cohen-Macaulay module M is the intersection of all primary submodules whose associated primes have a certain height and appear in an irredundant primary decomposition of the 0 -submodule of M. Similar results, stated in a different language, appear in [Sc]; the author thanks Jürgen Herzog for pointing this out.

Definition 1 ([St] Chapter III, Definition 2.9). Let M be a finitely generated \mathbb{Z} graded module over a finitely generated \mathbb{N}-graded k-algebra, with $R_{0}=k$. We say that M is sequentially Cohen-Macaulay if there exists a finite filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{r}=M
$$

of M by graded submodules M_{i} satisfying the following two conditions.
(a) Each quotient M_{i} / M_{i-1} is Cohen-Macaulay;

[^0](b) $\operatorname{dim}\left(M_{1} / M_{0}\right)<\operatorname{dim}\left(M_{2} / M_{1}\right)<\ldots<\operatorname{dim}\left(M_{r} / M_{r-1}\right)$, where "dim" denotes Krull dimension.

Before we begin our study of sequentially Cohen-Macaulay modules, we record two basic lemmas that we shall use later. Throughout the discussions below, we assume that R is a finitely generated algebra over a field, and M is a finite module over R.

Lemma 2. Let $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{t}, \mathcal{P}$ all be primary submodules of an R-module M, such that $\operatorname{Ass}\left(M / \mathcal{Q}_{i}\right)=\left\{q_{i}\right\}$ and $\operatorname{Ass}(M / \mathcal{P})=\{\wp\}$. If $\mathcal{Q}_{1} \cap \ldots \cap \mathcal{Q}_{t} \subseteq \mathcal{P}$ and $\mathcal{Q}_{i} \nsubseteq \mathcal{P}$ for some i, then there is a $j \neq i$ such that $q_{j} \subseteq \wp$.

Proof. Let $x \in \mathcal{Q}_{i} \backslash \mathcal{P}$. For each $j \neq i$, pick the positive integer m_{j} such that

$$
q_{j}^{m_{j}} x \subseteq \mathcal{Q}_{j}
$$

So we have that

$$
q_{1}^{m_{1}} \ldots q_{i-1}^{m_{i-1}} q_{i+1}^{m_{i+1}} \ldots q_{t}^{m_{t}} x \subseteq \mathcal{Q}_{1} \cap \ldots \cap \mathcal{Q}_{t} \subseteq \mathcal{P}
$$

which implies that, since $x \notin \mathcal{P}$,

$$
q_{1}^{m_{1}} \ldots q_{i-1}^{m_{i-1}} q_{i+1}^{m_{i+1}} \ldots q_{t}^{m_{t}} \subseteq \wp
$$

and hence for some $j \neq i, q_{j} \subseteq \wp$.
Lemma 3. Let M be an R-module and N be a submodule of M. Then for every $\wp \in$ $\operatorname{Ass}(M / N)$, if $\wp \nsupseteq \operatorname{Ann}(N)$, then $\wp \in \operatorname{Ass}(M)$.

Proof. Since $\wp \in \operatorname{Ass}(M / N)$, there exists $x \in M \backslash N$ such that $\wp=\operatorname{Ann}(x)$; in other words

$$
\wp x \subseteq N .
$$

Suppose $\operatorname{Ann}(N) \nsubseteq \wp$, and let $y \in \operatorname{Ann}(N) \backslash \wp$. Now $y \wp x=0$, and so $\wp \subseteq \operatorname{Ann}(y x)$ in M.
On the other hand, if $z \in \operatorname{Ann}(y x)$, then $z y x=0 \subseteq N$ and so $z y \in \wp$. But $y \notin \wp$, so $z \in \wp$. Therefore $\wp \in \operatorname{Ass}(M)$.

Suppose M is a sequentially Cohen-Macaulay module with filtration as in Definition 1. We adopt the following notation. For a given integer j, we let

$$
\operatorname{Ass}(M)_{j}=\{\wp \in \operatorname{Ass}(M) \mid \text { height } \wp=j\} .
$$

Suppose that all the j where $\operatorname{Ass}(M)_{j} \neq \emptyset$ form the sequence of integers

$$
0 \leq h_{1}<\ldots<h_{c} \leq \operatorname{dim} R
$$

so that

$$
\operatorname{Ass}(M)=\bigcup_{1 \leq j \leq c} \operatorname{Ass}(M)_{h_{j}}
$$

We can now make the following observations.
Proposition 4. For all $i=0, \ldots, r-1$, we have

1. $\operatorname{Ass}\left(M_{i+1} / M_{i}\right) \cap \operatorname{Ass}(M) \neq \emptyset$;
2. $\operatorname{Ass}(M)_{h_{r-i}} \subseteq \operatorname{Ass}\left(M_{i+1} / M_{i}\right)$ and $c=r$;
3. If $\wp \in \operatorname{Ass}\left(M_{i+1}\right)$, then height $\wp \geq h_{r-i}$;
4. If $\wp \in \operatorname{Ass}\left(M_{i+1} / M_{i}\right)$, then $\operatorname{Ann}\left(M_{i}\right) \nsubseteq \wp ;$
5. $\operatorname{Ass}\left(M_{i+1} / M_{i}\right) \subseteq \operatorname{Ass}(M) ;$
6. $\operatorname{Ass}\left(M_{i+1} / M_{i}\right)=\operatorname{Ass}(M)_{h_{r-i}}$;
7. $\operatorname{Ass}\left(M / M_{i}\right)=\operatorname{Ass}(M)_{\leq h_{r-i}}$;
8. $\operatorname{Ass}\left(M_{i+1}\right)=\operatorname{Ass}(M)_{\geq h_{r-i}}$.

Proof. 1. We use induction on the length r of the filtration of M. The case $r=1$ is clear, as we have a filtration $0 \subset M$, and the assertion follows. Now suppose the statement holds for sequentially Cohen-Macaulay modules with filtrations of length less than r. Notice that M_{r-1} that appears in the filtration of M in Definition 1 is also sequentially Cohen-Macaulay, and so by the induction hypothesis, we have

$$
\operatorname{Ass}\left(M_{i+1} / M_{i}\right) \cap \operatorname{Ass}\left(M_{r-1}\right) \neq \emptyset \text { for } i=0, \ldots, r-2
$$

and since $\operatorname{Ass}\left(M_{r-1}\right) \subseteq \operatorname{Ass}(M)$ it follows that

$$
\operatorname{Ass}\left(M_{i+1} / M_{i}\right) \cap \operatorname{Ass}(M) \neq \emptyset \text { for } i=0, \ldots, r-2
$$

It remains to show that $\operatorname{Ass}\left(M / M_{r-1}\right) \cap \operatorname{Ass}(M) \neq \emptyset$.
For each $i, M_{i-1} \subset M_{i}$, so we have ([B] Chapter IV)

$$
\begin{equation*}
\operatorname{Ass}\left(M_{1}\right) \subseteq \operatorname{Ass}\left(M_{2}\right) \subseteq \operatorname{Ass}\left(M_{1}\right) \cup \operatorname{Ass}\left(M_{2} / M_{1}\right) \tag{1}
\end{equation*}
$$

The inclusion $M_{2} \subseteq M_{3}$ along with the inclusions in (1) imply that

$$
\operatorname{Ass}\left(M_{2}\right) \subseteq \operatorname{Ass}\left(M_{3}\right) \subseteq \operatorname{Ass}\left(M_{2}\right) \cup \operatorname{Ass}\left(M_{3} / M_{2}\right) \subseteq \operatorname{Ass}\left(M_{1}\right) \cup \operatorname{Ass}\left(M_{2} / M_{1}\right) \cup \operatorname{Ass}\left(M_{3} / M_{2}\right)
$$

If we continue this process inductively, at the i-th stage we have

$$
\begin{aligned}
\operatorname{Ass}\left(M_{i}\right) & \subseteq \operatorname{Ass}\left(M_{i-1}\right) \cup \operatorname{Ass}\left(M_{i} / M_{i-1}\right) \\
& \subseteq \operatorname{Ass}\left(M_{1}\right) \cup \operatorname{Ass}\left(M_{2} / M_{1}\right) \cup \operatorname{Ass}\left(M_{3} / M_{2}\right) \cup \ldots \cup \operatorname{Ass}\left(M_{i} / M_{i-1}\right)
\end{aligned}
$$

and finally, when $i=r$ it gives

$$
\begin{equation*}
\operatorname{Ass}(M) \subseteq \operatorname{Ass}\left(M_{1}\right) \cup \operatorname{Ass}\left(M_{2} / M_{1}\right) \cup \operatorname{Ass}\left(M_{3} / M_{2}\right) \cup \ldots \cup \operatorname{Ass}\left(M / M_{r-1}\right) \tag{2}
\end{equation*}
$$

Because of Condition (b) in Definition 1, and the fact that each M_{i+1} / M_{i} is CohenMacaulay (and hence all its associated primes have the same height; see [BH] Chapter 2), if for every i we pick $\wp_{i} \in \operatorname{Ass}\left(M_{i+1} / M_{i}\right)$, then

$$
h_{c} \geq \text { height } \wp_{0}>\text { height } \wp_{1}>\ldots>\text { height } \wp_{r-1}
$$

where the left-hand-side inequality comes from the fact that $\operatorname{Ass}\left(M_{1}\right) \subseteq \operatorname{Ass}(M)$. By our induction hypothesis, $\operatorname{Ass}(M)$ intersects $\operatorname{Ass}\left(M_{i+1} / M_{i}\right)$ for all $i \leq r-2$, and so because of (2) we conclude that

$$
\text { height } \wp_{i}=h_{c-i}, \text { and } \operatorname{Ass}(M)_{h_{c-i}} \subseteq \operatorname{Ass}\left(M_{i+1} / M_{i}\right) \text { for } 0 \leq i \leq r-2
$$

And now $\operatorname{Ass}(M)_{h_{0}}$ has no choice but to be included in $\operatorname{Ass}\left(M / M_{r-1}\right)$, which settles our claim. It also follows that $c=r$.
2. See the proof for part 1 .
3. We use induction. The case $i=0$ is clear, since for every $\wp \in \operatorname{Ass}\left(M_{1}\right)=\operatorname{Ass}\left(M_{1} / M_{0}\right)$ we know from part 2 that height $\wp=h_{r}$. Suppose the statement holds for all indices up to $i-1$. Consider the inclusion

$$
\operatorname{Ass}\left(M_{i}\right) \subseteq \operatorname{Ass}\left(M_{i+1}\right) \subseteq \operatorname{Ass}\left(M_{i}\right) \cup \operatorname{Ass}\left(M_{i+1} / M_{i}\right)
$$

From part 2 and the induction hypothesis it follows that if $\wp \in \operatorname{Ass}\left(M_{i+1}\right)$ then height $\wp \geq h_{r-i}$.
4. Suppose $\operatorname{Ann}\left(M_{i}\right) \subseteq \wp$. Since $\sqrt{\operatorname{Ann}\left(M_{i}\right)}=\bigcap_{\wp^{\prime} \in \operatorname{Ass}\left(M_{i}\right)} \wp^{\prime}$, we have

$$
\bigcap_{\wp^{\prime} \in \operatorname{Ass}\left(M_{i}\right)} \wp^{\prime} \subseteq \wp
$$

so there is a $\wp^{\prime} \in \operatorname{Ass}\left(M_{i}\right)$ such that $\wp^{\prime} \subseteq \wp$. But by part 2 and part 3 above

$$
\text { height } \wp^{\prime} \geq h_{r-i+1} \text { and height } \wp=h_{r-i}
$$

which is a contradiction.
5. From part 4 and Lemma 3, it follows that

$$
\operatorname{Ass}\left(M_{i+1} / M_{i}\right) \subseteq \operatorname{Ass}\left(M_{i+1}\right) \subseteq \operatorname{Ass}(M)
$$

6. This follows from parts 2 and 5 , and the fact that M_{i+1} / M_{i} is Cohen-Macaulay, and hence all associated primes have the same height.
7. We show this by induction on $e=r-i$. The case $e=1$ (or $i=r-1$) is clear, because by part 6

$$
\operatorname{Ass}\left(M / M_{r-1}\right)=\operatorname{Ass}(M)_{h_{1}}=\operatorname{Ass}(M)_{\leq h_{1}}
$$

Now suppose the equation holds for all integers up to $e-1$ (namely $i=r-e+1$), and we would like to prove the statement for e (or $i=r-e$). Since $M_{i+1} / M_{i} \subseteq M / M_{i}$, we have

$$
\begin{equation*}
\operatorname{Ass}\left(M_{i+1} / M_{i}\right) \subseteq \operatorname{Ass}\left(M / M_{i}\right) \subseteq \operatorname{Ass}\left(M_{i+1} / M_{i}\right) \cup \operatorname{Ass}\left(M / M_{i+1}\right) \tag{3}
\end{equation*}
$$

By the induction hypothesis and part 6 we know that

$$
\operatorname{Ass}\left(M / M_{i+1}\right)=\operatorname{Ass}(M)_{\leq h_{r-i-1}} \text { and } \operatorname{Ass}\left(M_{i+1} / M_{i}\right)=\operatorname{Ass}(M)_{h_{r-i}}
$$

which put together with (3) implies that

$$
\operatorname{Ass}(M)_{h_{r-i}} \subseteq \operatorname{Ass}\left(M / M_{i}\right) \subseteq \operatorname{Ass}(M)_{\leq h_{r-i}}
$$

We still have to show that $\operatorname{Ass}\left(M / M_{i}\right) \supseteq \operatorname{Ass}(M)_{\leq h_{r-i-1}}$.
Let

$$
\wp \in \operatorname{Ass}(M)_{\leq h_{r-i-1}}=\operatorname{Ass}\left(M / M_{i+1}\right)=\operatorname{Ass}\left(\left(M / M_{i}\right) /\left(M_{i+1} / M_{i}\right)\right)
$$

If $\wp \supseteq \operatorname{Ann}\left(M_{i+1} / M_{i}\right)$, then (by part 6)

$$
\wp \supseteq \bigcap_{q \in \operatorname{Ass}(M)_{h_{r-i}}} q \Longrightarrow \wp \supseteq q \text { for some } q \in \operatorname{Ass}(M)_{h_{r-i}}
$$

which is a contradiction, as height $\wp \leq h_{r-i-1}<$ height q.
It follows from Lemma 3 that $\wp \in \operatorname{Ass}\left(M / M_{i}\right)$.
8. The argument is based on induction, and exactly the same as the one in part 4, using more information; from

$$
\operatorname{Ass}\left(M_{i}\right) \subseteq \operatorname{Ass}\left(M_{i+1}\right) \subseteq \operatorname{Ass}\left(M_{i}\right) \cup \operatorname{Ass}\left(M_{i+1} / M_{i}\right)
$$

the induction hypothesis, and part 6 we deduce that

$$
\operatorname{Ass}(M)_{\geq h_{r-i+1}} \subseteq \operatorname{Ass}\left(M_{i+1}\right) \subseteq \operatorname{Ass}(M)_{\geq h_{r-i+1}} \cup \operatorname{Ass}(M)_{h_{r-i}}
$$

which put together with part 4 , along with Lemma 3 produces the equality.

Now suppose that as a submodule of $M, M_{0}=0$ has an irredundant primary decomposition of the form:

$$
\begin{equation*}
M_{0}=0=\bigcap_{1 \leq j \leq r} \mathcal{Q}_{1}^{h_{j}} \cap \ldots \cap \mathcal{Q}_{s_{j}}^{h_{j}} \tag{4}
\end{equation*}
$$

where for a fixed $j \leq r$ and $e \leq s_{j}, \mathcal{Q}_{e}^{h_{j}}$ is a primary submodule of M with

$$
\operatorname{Ass}\left(M / \mathcal{Q}_{e}^{h_{j}}\right)=\left\{\wp_{e}^{h_{j}}\right\} \text { and } \operatorname{Ass}(M)_{h_{j}}=\left\{\wp_{1}^{h_{j}}, \ldots, \wp_{s_{j}}^{h_{j}}\right\}
$$

Theorem 5. Let M be a sequentially Cohen-Macaulay module with filtration as in Definition 1, and suppose that $M_{0}=0$ has a primary decomposition as in (4). Then for each $i=0, \ldots, r-1, M_{i}$ has the following primary decomposition

$$
\begin{equation*}
M_{i}=\bigcap_{1 \leq j \leq r-i} \mathcal{Q}_{1}^{h_{j}} \cap \ldots \cap \mathcal{Q}_{s_{j}}^{h_{j}} \tag{5}
\end{equation*}
$$

Proof. We prove this by induction on r (length of the filtration). The case $r=1$ is clear, as the filtration is of the form $0=M_{0} \subset M$. Now consider M with filtration

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{r}=M
$$

Since M_{r-1} is a sequentially Cohen-Macaulay module of length $r-1$, it satisfies the statement of the theorem. We first show that M_{r-1} has a primary decomposition as described in (5). From part 7 of Proposition 4 it follows that

$$
\operatorname{Ass}\left(M / M_{r-1}\right)=\operatorname{Ass}(M)_{h_{1}}
$$

and so for some $\wp_{e}^{h_{1}}$-primary submodules $\mathcal{P}_{e}^{h_{1}}$ of $M\left(1 \leq e \leq s_{j}\right)$, we have

$$
\begin{equation*}
M_{r-1}=\mathcal{P}_{1}^{h_{1}} \cap \ldots \cap \mathcal{P}_{s_{1}}^{h_{1}} \tag{6}
\end{equation*}
$$

We would like to show that $\mathcal{Q}_{e}^{h_{1}}=\mathcal{P}_{e}^{h_{1}}$ for $e=1, \ldots, s_{1}$.
Fix $e=1$ and assume $\mathcal{Q}_{1}^{h_{1}} \not \subset \mathcal{P}_{1}^{h_{1}}$. From the inclusion $M_{0} \subset \mathcal{P}_{1}^{h_{1}}$ and Lemma 2 it follows that for some e and j (with $e \neq 1$ if $j=1$), we have $\wp_{e}^{h_{j}} \subseteq \wp_{1}^{h_{1}}$. Because of the difference in heights of these ideals the only conclusion is $\wp_{e}^{h_{j}}=\wp_{1}^{h_{1}}$, which is not possible. With a similar argument we deduce that $\mathcal{Q}_{e}^{h_{1}} \subset \mathcal{P}_{e}^{h_{1}}$, for $e=1, \ldots, s_{1}$.

Now fix $j \in\{1, \ldots, r\}$ and $e \in\left\{1, \ldots, s_{j}\right\}$. If $M_{r-1}=\mathcal{Q}_{e}^{h_{j}}$ we are done. Otherwise, note that for every j and $\wp_{e}^{h_{j}}$-primary submodule $\mathcal{Q}_{e}^{h_{j}}$ of M,

$$
\mathcal{Q}_{e}^{h_{j}} \cap M_{r-1}
$$

is a $\wp_{e}^{h_{j}}$-primary submodule of $M_{r-1}\left(\right.$ as $\emptyset \neq \operatorname{Ass}\left(M_{r-1} /\left(\mathcal{Q}_{e}^{h_{j}} \cap M_{r-1}\right)\right)=\operatorname{Ass}\left(\left(M_{r-1}+\right.\right.$ $\left.\left.\left.\mathcal{Q}_{e}^{h_{j}}\right) / \mathcal{Q}_{e}^{h_{j}}\right) \subseteq \operatorname{Ass}\left(M / \mathcal{Q}_{e}^{h_{j}}\right)=\left\{\wp_{e}^{h_{j}}\right\}\right)$. So $M_{0}=0$ as a submodule of M_{r-1} has a primary decomposition

$$
M_{0} \cap M_{r-1}=0=\bigcap_{1 \leq j \leq r}\left(\mathcal{Q}_{1}^{h_{j}} \cap M_{r-1}\right) \cap \ldots \cap\left(\mathcal{Q}_{s_{j}}^{h_{j}} \cap M_{r-1}\right) .
$$

From Proposition 4 part 8 it follows that

$$
\operatorname{Ass}\left(M_{r-1}\right)=\operatorname{Ass}(M)_{\geq h_{2}}
$$

so the components $\mathcal{Q}_{t}^{h_{1}} \cap M_{r-1}$ are redundant for $t=1, \ldots, s_{1}$, so for each such t we have

$$
\bigcap_{h_{i}}\left(\mathcal{Q}_{1}^{h_{j}} \cap M_{r-1}\right) \subseteq \mathcal{Q}_{t}^{h_{1}} \cap M_{r-1}
$$

If $\mathcal{Q}_{e}^{h_{j}} \cap M_{r-1} \nsubseteq \mathcal{Q}_{t}^{h_{1}} \cap M_{r-1}$ for some e and j (with $\mathcal{Q}_{e}^{h_{j}} \neq \mathcal{Q}_{t}^{h_{1}}$), then by Lemma 2 for some such e and j we have $\wp_{e}^{h_{j}} \subseteq \wp_{t}^{h_{1}}$, which is a contradiction (because of the difference of heights).

Therefore, for each $t\left(1 \leq t \leq s_{1}\right)$, there exists indices e and j (with $\mathcal{Q}_{e}^{h_{j}} \neq \mathcal{Q}_{t}^{h_{1}}$) such that

$$
\mathcal{Q}_{e}^{h_{j}} \cap M_{r-1} \subseteq \mathcal{Q}_{t}^{h_{1}} \cap M_{r-1} .
$$

It follows now, from the primary decomposition of M_{r-1} in (6) that for a fixed t

$$
\mathcal{P}_{1}^{h_{1}} \cap \ldots \cap \mathcal{P}_{s_{1}}^{h_{1}} \cap \mathcal{Q}_{e}^{h_{j}} \subseteq \mathcal{Q}_{t}^{h_{1}} .
$$

Assume $\mathcal{P}_{t}^{h_{1}} \nsubseteq \mathcal{Q}_{t}^{h_{1}}$. Applying Lemma 2 again, we deduce that

$$
\wp_{e}^{h_{j}} \subseteq \wp_{t}^{h_{1}}, \text { or there is } t^{\prime} \neq t \text { such that } \wp_{t^{\prime}}^{h_{1}} \subseteq \wp_{t}^{h_{1}}
$$

Neither of these is possible, so $\mathcal{P}_{t}^{h_{1}} \subseteq \mathcal{Q}_{t}^{h_{1}}$ for all t.
We have therefore proved that

$$
M_{r-1}=\mathcal{Q}_{1}^{h_{1}} \cap \ldots \cap \mathcal{Q}_{s_{1}}^{h_{1}} .
$$

By induction hypothesis, for each $i \leq r-2, M_{i}$ has the following primary decomposition

$$
M_{i}=\bigcap_{2 \leq j \leq r-i}\left(\mathcal{Q}_{1}^{h_{j}} \cap M_{r-1}\right) \cap \ldots \cap\left(\mathcal{Q}_{s_{j}}^{h_{j}} \cap M_{r-1}\right)=\bigcap_{1 \leq j \leq r-i} \mathcal{Q}_{1}^{h_{j}} \cap \ldots \cap \mathcal{Q}_{s_{j}}^{h_{j}}
$$

which proves the theorem.

References

[B] Bourbaki, N. Commutative algebra, Chapters 1-7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989.
[BH] Bruns, W., Herzog, J. Cohen-Macaulay rings, vol. 39, Cambridge studies in advanced mathematics, revised edition, 1998.
[BW] Björner, A., Wachs, M.L. Shellable nonpure complexes and posets, I. Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299-1327.
[D] Duval, A.M. Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J. Combin. 3 (1996), no. 1, Research Paper 21.
[F] Faridi, S. Simplicial trees are sequentially Cohen-Macaulay, J. Pure and Applied Algebra, Volume 190, Issues 1-3, Pages 121-136 (June 2004).
[Sc] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Commutative algebra and algebraic geometry (Ferrara), 245-264, Lecture Notes in Pure and Appl. Math., 206, Dekker, New York, 1999.
[St] Stanley, R.P. Combinatorics and commutative algebra, Second edition, Progress in Mathematics 41, Birkhuser Boston, Inc., Boston, MA, 1996.

[^0]: *Université du Québec à Montréal, Laboratoire de combinatoire et d'informatique mathématique, Case postale 8888, succursale Centre-Ville, Montréal, QC Canada H3C 3P8. Email: faridi@math.uqam.ca. This research was supported by a NSERC Postdoctoral Fellowship.

