Local Cohomology and the Cohen-Macaulay property

Abstract

These lectures represent an extended version of the contents of a one hour introductory talk prepared
by Florian Enescu and Sara Faridi for the Minnowbrook workshop to assist the lectures of one of the main
speakers, Paul Roberts.

Part of this talk was given earlier at the 2004 Utah mini-cours€lassical problems in commutative
algebraby the first author. The notes for that talk have been been typed and prepared by Bahman Engheta
and we used part of them quite extensively in preparing this version. We would like to thank Bahman for
his work.

The references listed at the end were used in depth in preparing these notes and the authors make no
claim of originality. Moreover, the reader is encouraged to consult these references for more details and
many more results that were omitted due to time constraints.

1 Injective modules and essential extensions

Throughout, letR be a commutative Noetherian ring.

Definition 1 (injective module). An R-moduleFE is calledinjectiveif one of the following equivalent con-
ditions hold.

1. Given anyR-module monomorphisnfi: N — M, every homomorphism : N — FE can be extended
to a homomorphismg : M — E,i.e.g f = u.
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2. For each ideal of R, any homomorphism : J — E can be extended to a homomorphi&in- E.
3. The functofom(_, F) is exact.
Example 2. From part 2 of Definition 1 it follows tha® andQ/Z are injectiveZ-modules.

Definition 3 (divisible module). An R-module M is calleddivisible if for every m € M and M-regular
element- € R, there is ann’ € M such thatn = rm/’.

Exercise 4. An injective R-module is divisible. The converse holdsfifis a principal ideal domain; see the
example above.

A note on existence: IR — S'is aring homomorphism anfl is an injectiveR-module, thelomg(S, F)
is an injectiveS-module. [TheS-module structure is given by () := ¢(s_).] In particular,Homy (R, Q)
is an injectiveR-module and any?-module can be embedded in an injectivemodule.

We now show how to embed a given module into a minimal injective module.

Definition 5 (essential extension).Let M C N be R-modules. We say thaV is anessential extensioof
M if one of the following equivalent conditions holds:

a) MAN' #0 Y0#N CN.



b) VO#ne N dJre R suchthat 0+#rne M.
c) VN % Q, if p|y is injective, thenp is injective.
If additionally M # N, then we say thaV is aproperessential extension aff.

More generally, an injective maj/ ", N is called aressential extensioifiin the conditions above we
replaceM by h(M).

Example 6. If R is a domain and)(R) its fraction field, thenk C Q(R) is an essential extension.

Example 7. Let (R, m, k) be alocal ring andv an R-module such that every element®fis annihilated by
some power of the maximal ideal. Let Soc(N) := Anny(m) denote the socle a¥ (which is ak-vector
space). TheSoc(N) C N is an essential extension.

Exercise 8. An R-moduleN is Artinian if and only ifSoc(V) is finite dimensional (as &vector space) and
Soc(N) C N is essential.

Exercise 9. Let M be a submodule aiV. Use Zorn's lemma to show that there is a maximal submodule
N’ C N containingM such thatM C N’ is an essential extension.

Definition 10 (maximal essential extension)If A/ C N is an essential extension such thahas no proper
essential extension, théd C N is called amaximal essential extension

The following proposition characterizes injective modules in terms of essential extensions.
Proposition 11.  a) AnR-moduleF is injective if and only if it has no proper essential extension.

b) Let M be an R-module andFE an injective R-module containingV/. Then any maximal essential
extensionV of M with N C F is a maximal essential extension. In particul,is injective and thus
a direct summand af’.

c) If M C FandM C E’ are two maximal essential extensions, then there is an isomorphismE’
that fixesM .

Definition 12 (injective hull). A maximal essential extension of &rmoduleM is called arinjective hull
of M, denotedEr(M).

Proposition 11 states that every modilehas a unique injective hull up to isomorphism. Moreover, if
M C E whereF is an injective module, the has a maximal essential extensiBg (M) that is contained
in £, andERr (M) is a direct summand df.

Definition 13 (injective resolution). Let M be anR-module. SetF—! := M andE° := Er(M). Induc-
tively defineE” := ER(Enfl/im(Enfz)). Then the acyclic complex

I: 0—-E'SE' ... 5 EY ...
is called arinjective resolutiorof M, where the maps are given by the composition
E"! — E" 1 im(E"?) — Eg(E"!'/im(E""?)).
Conversely, an acyclic compléof injective R-modules is a minimal injective resolution &f if
e M =ker(E° — E'),
o E0 = Ep(M),
e E" = Exr(im(E""1 — Em)).

For a Noetherian ring? one can give a specific description of ed¢happearing in the injective resolution
of M as adirect sum aE'r(R/p) for p € SpecR. We refer interested reader to the sources mentioned in the
references for more on this.



2 Local cohomology

Definition 14 (I/-torsion). Given an ideal C R and anR-moduleM, setl'; (M) := J,,(0 :ar I™). The
covariant functof';(_) over the category aR-modules is called thé-torsion functor and for a homomor-
phismf : M — N, T';(f) is given by the restrictiO[f|FI(M).
Proposition 15. T';(_) is a left exact functor.
Proof. Let

0—-LLME N0
be a short exact sequence. We want to show that

0— () " 1 0) 9 1y (v

is an exact sequence.

Exactness df;(L): T';(f) is injective as it is the restriction of the injective mApExactness df; (M ):
It is clear thatm(I';(f)) C ker(I';(g)). Conversely, lein € ker(I';(g)). Thenm € ker(g) and therefore
m = f(1) for somel € L. It remains to show thdte T';(L). Asm € T';(M), we havel*m = 0 for some
integerk. Thenf(I*1) = I* (1) = I*m = 0. As f is injective,I*] = 0 andl € T';(L). O
Exercise 16.I'; =T'; ifand only if /T =+/J.
Definition 17 (local cohomology). The i-th local cohomology functofi(_) is defined as the-th right
derived functor of";(_). More precisely, given aR-module)M, letI be an injective resolution a¥/:

- 0B S pd . prd
Apply T';(_) toI and obtain the complex:
F[(H)I 0—>F](EO)—>F[(E1)—>---—>FI(En)_>...

Then set?(M) := T';(M) and H:(M) := ker(I';(d"))/im(T';(d*~1)) for i > 0. Note thatHi(_) is a
covariant functor.

Clearly, if E is an injectiveR-module, therH ¢ (E) = 0 for i > 0.

Proposition 18. 1) If0 — L — M — N — 0is a short exact sequence, then we have an induced long
exact sequence

0 — H{(L) — H}(M) — H}(N) —
HI(L) — HY (M) — HE(N) — -+

2) Given a commutative diagram with exact rows:

0 L M N 0
0 L M’ N’ 0

then we have the following commutative diagram with exact rows:

n——— Hj(M) —— Hj(N) —— H{"(L) —— -~

I

L H}(M') —— H}(N') —— HI (L) ——— -

3) VI =+/J ifandonlyif Hi(_) = Hi()).

4) Localization: LetS C R be a multiplicatively closed set. Thém ' T';(M) = I's-1;(S~1M) and the
same holds for the higher local cohomology modules.



2.1 Alternate construction of local cohomology

~

An alternate way of constructing the local cohomology modules: Consider the midduig(R/I™, M) =
(0 :p7 I™). Now, if n > m, then one has a natural m&j 1™ — R/I™, forming an inverse system. Applying
Hompg(_, M), we get a direct system of maps:

lim,, Homp(R/I", M) 2| J(0 :p I") = T'1(M).

n

As one might guess (or hope), it is also the case that
lim, Exti(R/I", M) = Hi(M).
This follows from the theory of negative strongly connected functors — see [R].

Definition 19 (strongly connected functors).Let R, R’ be commutative rings. A sequence of covariant
functors {T},>, from the category of?-modules to the category dt’-modules is said to beegative
(strongly) connected

(i) Any short exact sequen¢e— L — M — N — 0 induces a long exact sequence

0— T%L) — T°(M) — T°(N) —
THL) = TY(M) = T'(N) — -

(i) For any commutative diagram with exact rows

0 L M N 0
0 r M’ N’ 0

there is a chain map between the long exact sequences given in (i).

Definition 20 (natural equivalence of functors). Let " andU be two covariant functors from a categaty
to a categoryD. A natural transformation) from 7" to U associates to every obje&tin C a morphismyx :
T(X) — U(X) in D, such that for every morphisth: X — Y in C we haveyy oT'(f) = U(f)ovx. If, for
every objectX in C, the morphism) is an isomorphism ifD, theny is said to be aatural equivalence

Theorem 21. Lety? : T° — U be a natural equivalence, whef&@'},~¢, {U*};>0 are strongly connected.
If T{(E) = U*(E) = 0 for all i > 0 and injective moduleg&, then there is a natural equivalence of functors

¥ ={¢'tizo : {T"} = {U'}i.
The above theorem implies thiay,, Ext(R/I", M) = Hj(M).

Remark 22. i) One can replace the sequence{6f} by any decreasing sequence of idefafs} which
are cofinal with{1™}, i.e.Vt 3n such thatt™ C .J; and¥n 3¢ such that/, C I™.

ii) Every element off}()M) is killed by some power of, as everym € Hj(M) is the image of some
ExtRw(R/I™, M) which is killed byI™.

iii) Foranyz € R, the homomorphism/ % M induces a homomorphisi (M) % Hi(M).

Proposition 23. Let M be a finitely generatedk-module and/ C R an ideal. ThenlM = M <«—
Hi(M)=0Vi If IM # M, thenmin{i | Hi(M) # 0} = depth;(M).



Proof. We havelM = M <= I'M = M Vt. SoI'+ Ann(M) = R, as otherwisd® + Ann(M) C m for
somem € max-Spec(R). Sincel* + Ann(M) annihilatesExt’, (R/I*, M), we haveExt’ (R/It, M) = 0
and therefordf (M) = 0.

It suffices to assume now thal/ # M. Setd := depth;(M) and letzy,...,z, be a maximalM -
regular sequence ih We show by induction od that H (M) = 0 for i < d andH{(M) # 0.

If d =0, thatis, ifdepth; (M) = 0, then there is afl # m € M killed by I. Som € H?(M) # 0. Now
letd > 1 and setr := x;. Consider the short exact sequence

0—M3E2M— M/zM —0
and the induced long exact sequence
o HEY (M /aM) — Hi (M) =% Hi(M) — -

If i < d,thenH:"*(M/2M) = 0 by induction hypothesis and is a nonzerodivisor o/} (M). As all
elements off/:(M) are killed by some power df, we conclude thatli (M) = 0.
It remains to show that/¢(M) # 0. This follows from the induction hypothesis and the long exact
sequence
- B HPNM) - HEYM/aM) — HY(M) =5 -

which yield0 # H{™Y(M/xM) — HE(M). O

2.2 The Koszul interpretation

LetK, L be two complexes ak-modules with differentiald’, d”, respectively. One can define the complex
M:=K@LviaMy := ®i+j=k K; ® Lj with differentiald(ai ® bj) = d’(ai) ® bj + (*1)1-0,1' ® d”(bj)
wherea; € K;, b; € L;. Similarly, if KV ... K™ aren complexes, theiK(") @ --. @ K™ is defined
inductively as K @ - - @ K1) @ K",

To anyx € R one can associate complexes

Ke(z;R): 0= REZR—0 or K*z;R): 0-R5R—0

where the degrees of the componeRtsrom left to right, are 1, 0 foé, (z; R) and 0,1 forK*(z; R).

Given a sequence = z1,...,x, Of elements inR, we define the (homological) Koszul complex
Ko(z; R) := @, K¢(xi; R), and cohomological Koszul complek® (z; R) := @, K*(z;; R).

For anR-module M we defineK,(z; M) := Ko(z; R) @ M andK*(z; M) := K*(z; R) @ M. The
following isomorphism holdsi®(z; M) = Homp (K. (z; R), M).

Letx € RandM an R-module. Consider the complex

M3E3ME3M-—--.
and setV := ker(M — M,) andM’ := M/N. Note thatN = H?,(M). Then

lim(M 2 M35 M—--.)
—

1

lim(M' 2 M 2 M —--.)
—

lim(M' Caz™*M' C---Ca™'M' C--.)= M. = M,.
—
Notation: Whenever = zi,...,z, denotes a sequence of elementszinwe will denote byz! the

sequence of the individual powers, . .., z!

n

Forz € R we have a chain map of complex&S (z!; R) — K*®(x'*!; R) via the commutative diagram

.It’

K*(z%R): 0

0

R R

Jid Jx Q)
gttt

R R

Kz R): 0



By tensoring these maps for all the, and then tensoring with/, we getK®(zt; M) — K*(z!*; M).
Take the direct limit and denote the resulting complextdy(z°>°; M). We can look atf*(K*(z>°; M)) =
lim; H'(K*(z"; M)) for which we simply writeH " (z>°; M).

Theorem 24.1f I = (z1,...,z,) andM is anR-module, then there is a canonical isomorphiBif{z>°; M) =
Hi(M).
Consider the case where= x4, . . ., z,, is anR-regular sequence. Itis known thi (z*; R) is a projec-

tive resolution ofR/z* R. Apply Hompg(_, M) and note that on the one haad® (x?; M) gives H® (x*; M)
while on the other hand we gt} (R/z?; M). Now take the direct limitH(z>°; M) = Hi(M).

Discussion 25 (The @ch complex and a detailed look af®* (z>°; M)). Letx € R. ThenK®(z*>°; R) = R
andK'(z>; R) = R,. (Recall diagram (1).) S&*(z>°; R) = ®;_,(0 — R — R,, — 0), that s,
K7 (2 R) = P Ras)
|S|=j
whereS C {1,...,n} andz(S) = [] ;. Similarly, K7(z>; M) = @g/—; Mu(s). The mapR,s) —
€S
Ry, where|T| = |S| + 1, is the zero map unles$ C T, in which case it is the localization map times
(—1)* wherea is the number of elements i preceding the element ifi \ S.

Exercise 26.Letz,y, 2 € R. Write down the maps in
0—-R—>R, DRy ®OR, - Ryy DRy, ® R, — Ryy-. — 0.
Discussion 25 and Theorem 24 imply the following.

Corollary 27. If I C Ris an ideal which can be generated hylements up to radical, theH¢(R) = 0 for
1> n.

Remark 28. The modules occurring i ® (z>°; R) are flat.

3 Properties of local cohomology

Proposition 29. Let R and.S be Noetherian rings.

1. LetR — S be aring homomorphisnd,an ideal of R, and M an S-module. Ther{; (M) = Hig (M)
as.S-modules.

2. LetA be adirected setanflM } »c, a direct system aR-modules. Thetimy H7(My) = Hj(limy My).
3. If Sisflat overR, thenH (M) ®r S = His(M ®r S).
4. Ifm C Ris a maximal ideal, thei}, (M) = H} p (My).

5. If (R, m) is local, thenH}, (M) = H! .(R @ M) which is isomorphic taH! . (M) if M is finitely
generated.

Proposition 30. LetI C R be an ideal which is the radical of an ideal generated by a regular sequence of
lengthn. ThenH (M) = Tor,,_;(M, H}(R)) for i < n.

Proof. If i < depth;(R) = n, thenH!(R) = 0. ThereforeK*(z>; R) gives a flat resolution ofi?*(R),
numbered backwards:

o K" K™ HPY(R) = K™/im(d"™1) — 0.

On the one handor? (M, H?(R)) = H'(K*(z>; R) @z M) by definition of Tor. On the other hand, by
the preceding theorent{(K*(z>; R) ® g M) = Hi(M). O



Corollary 31. Let(R, m, k) be a Cohen-Macaulay local ring of dimensionThenH? (M) = Tor (M, H*(R)).

Proof. The maximal idea is the radical of an ideal generated by a(ny) regular sequence of length]
Theorem 32 (Grothendieck’s Theorems).
(Vanishing Theorem)Let C R be anideal and// an R-module. Thed/} (M) = 0fori > dim(M).

(Non-Vanishing Theorem)Let (R, m, k) be a local ring andM a finitely generated?-module. Then
Hi (M) # 0fori = dim(M).

Proof of 1. We may assume thak is local with maximal ideain. Further, as\V/ is the direct limit of its

finitely generated submodules, we may also assumelthés finitely generated. Sef := R/ Ann(M)

so thatn := dim(M) = dim(S). The maximal ideal of5 is generated by:. elements up to radical, so
ig(M)=0fori>n.

We want to show that{}(M) = 0 for i > dim(M). By induction, we assume the theorem is true for
all finitely generated modules of dimension less thaWe leave the case = 0 as an exercise and assume
n > 0.

Note that if a module ig-torsion, then all its higher local cohomology modules vanish. S©,837) is
I-torsion, without loss of generalify; (M) # M. Also, the long exact sequence induced by

0— F[(M) — M — M/FI(M) — 0

yields thatH} (M) = Hi(M/T';(M)) for all i > 0. Hence, by passing td//I'; (M), we may assume that
M # 0 is I-torsionfree. It follows thaf contains an\/-regular element. (Otherwise! is contained in the
union of the associated primes &f, and by prime avoidanckis contained in one of those primes which is
of the form(0 : g m) for some0 # m € M. That isIm = 0 — a contradiction.)

Leti > n and lett be an integer. Consider the short exact sequence

0= MMM —0

and the induced long exact sequence

o HEY(M/rtM) — Hi(M) ™ Hi(M) — -

Sincedim (M /r* M) < dim(M), Hi~*(M/r*M) = 0 by induction hypothesis and is a nonzerodivisor
on Hi(M). But any element offi(M) is killed by a power off. Asr € I, thatimpliesH:(M) =0. O

Remark 33. If dim(R) = n andM is anR-module, therH} (M) = M ®r H7(R). This follows from the
fact thatH. (—) is a right exact functor, a consequence of Grothedieck’s Vanishing Theorem.

4 Kunneth formula and applications

We would like to discuss the local conomology modules of a graded ringRLet®,, >0 R,, be aN-graded
ring overRy, = K, whereK is an algebraically closed field. Assume tliais finitely generated ovek. Let
mp be the maximal ideab,,>1 R,,. Do the modulesH;R(R) inherit a natural grading from the ring? The
answer is yes and we plan to explain how this goes.

Let I be a graded ideal oR. We can consider the category of gradeemodules and homogeneous
R-homomorphisms which is an Abelian category which has enough projective objects and injective objects
so the construction used to define the local cohomology modules can be imitated in this setting.

Let M, N be twoZ-gradedR-modules. Leti be an integer and denol®om (M, N),; the Abelian
group of R-linear mapsf : M — N such thatf(M,,) = N, for all n. The R-module ofhomogeneous
homomorphismbetweenM andN is by definitionHom (M, N) := @;>0Homy (M, N);. One can check
that, for a fixed grade@®-module N, Hom  (—, V) defines a functor on the category of gradeanodules.

For every grade®-moduleN, theith right derived functor oHom , (—, V) will be denote@’é(—, N).
Then,H}(N) = limExt} (R/I", N).



Since R/I™ are finitely generated for at, thenExt% (R/I", N) = Exts(R/I", N) as R-modules
(ignoring the grading on the first module). As a result, we seefijdiV) has a naturaf-grading, and, if we
ignore this grading, we recovéfi(N ). The graded local cohomology can also be defined #eh®r Koszul
complexes and all these approaches agree with each other. In the end, we obtain a naturally graded object
such that if we drop its grading we recover the standard local cohomology module. Important information
resides in this extra structure given by the grading on the local cohomology module anthtlzgiant of a
ring R, a(R) captures some of it. By definition(R) = max{n : (ﬂiR(R))n # 0}, whered = dim(R).
This number will become relevant in the discussion that follows.

LetA = ®A,, andB = ®B,, be twoN-graded rings such that, = By = K. The Segre producbf
these two rings is therind § B = ©,A,, ®k B,. This ring is naturallyN-graded and a direct summand
in the ring A @ B. More generally, ifM is aZ-gradedA-module andV is aZ-gradedB-module,Segre
productof M andB is the graded § B-module defined bW § N = &, M,, ®x N,.

Goto and Watanabe [GW] have proved a formula describing the local cohomology of the Segre product
R with support at the maximal idealp = m 4 § mp. In fact, their result is more general:

Theorem 34 (Goto-Watanabe). With notations as above, assume tILﬁA (M) = ﬂ{;}B (N) = 0 for
4 =20,1. Then for alli > 0, we have the following isomorphism:

Hy (M §N) = (Hy,, (M) §N) @ (Mg Hy (N) © (Srismiri Hy, (M) § Hy, (N)).
Corollary 35. Let A and B as above and assume th#in(A4) = d, dim(B) = e. Then
1. Ifd,e > 1,thendim(Af B) =d+e— 1.

2. Ifd,e > 2andif A, B are Cohen-Macaulay, theA t B is Cohen-Macaulay if and onlyﬂﬁm (A) B =
AtHy,(B) =0.

3. Ifd = 1ande > 2, then if A, B are Cohen-Macaulay thed § B is Cohen-Macaulay if and only if
Hy, (A)tB=0.

4. Ifd =e =1, andif A, B are Cohen-Macaulay, theA ¢ B is Cohen-Macaulay .

This corollary is a source of examples of nhormal rings that are not Cohen-Macaul&yBiare normal
and Cohen-Macaulay, thetitt B is normal as a direct summand in a normal riigp x B. But oftenA 4B
is not Cohen-Macaulay. Him(A) = d > 2,dim(B) = e > 2, thenﬂZlA(A) tB=AtH, (B)=0isa
restrictive condition equivalent 1@(A) < 0, a(B) < 0. For exampleA = k[z,y, z]/(z* + y* + 2%), then
thea-invariant of A is 0, and hence, for any Cohen-Macaulay riBgA # B is not Cohen-Macaulay.

Two recent papers dealing with Segre products and local cohomology are [Si, SW], where in [SW] an
example of a normal, but not Cohen-Macaulay ring, obtained as above as a Segre product is studied in detalil.
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