
Local Cohomology and the Cohen-Macaulay property

Abstract

These lectures represent an extended version of the contents of a one hour introductory talk prepared
by Florian Enescu and Sara Faridi for the Minnowbrook workshop to assist the lectures of one of the main
speakers, Paul Roberts.

Part of this talk was given earlier at the 2004 Utah mini-course onClassical problems in commutative
algebraby the first author. The notes for that talk have been been typed and prepared by Bahman Engheta
and we used part of them quite extensively in preparing this version. We would like to thank Bahman for
his work.

The references listed at the end were used in depth in preparing these notes and the authors make no
claim of originality. Moreover, the reader is encouraged to consult these references for more details and
many more results that were omitted due to time constraints.

1 Injective modules and essential extensions

Throughout, letR be a commutative Noetherian ring.

Definition 1 (injective module). An R-moduleE is calledinjectiveif one of the following equivalent con-
ditions hold.

1. Given anyR-module monomorphismf : N →M , every homomorphismu : N → E can be extended
to a homomorphismg : M → E, i.e. g f = u.

0 N M

E

w w
f

u
u

�
�
��

g

2. For each idealJ of R, any homomorphismu : J → E can be extended to a homomorphismR→ E.

3. The functorHom( , E) is exact.

Example 2. From part 2 of Definition 1 it follows thatQ andQ/Z are injectiveZ-modules.

Definition 3 (divisible module). An R-moduleM is calleddivisible if for everym ∈ M andM -regular
elementr ∈ R, there is anm′ ∈M such thatm = rm′.

Exercise 4. An injectiveR-module is divisible. The converse holds ifR is a principal ideal domain; see the
example above.

A note on existence: IfR→ S is a ring homomorphism andE is an injectiveR-module, thenHomR(S,E)
is an injectiveS-module. [TheS-module structure is given bys ·ϕ( ) := ϕ(s ).] In particular,HomZ(R,Q)
is an injectiveR-module and anyR-module can be embedded in an injectiveR-module.

We now show how to embed a given module into a minimal injective module.

Definition 5 (essential extension).LetM ⊆ N beR-modules. We say thatN is anessential extensionof
M if one of the following equivalent conditions holds:

a) M ∩N ′ 6= 0 ∀ 0 6= N ′ ⊆ N.
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b) ∀ 0 6= n ∈ N ∃ r ∈ R such that 0 6= rn ∈M .

c) ∀ N ϕ→ Q, if ϕ|M is injective, thenϕ is injective.

If additionallyM 6= N , then we say thatN is aproperessential extension ofM .

More generally, an injective mapM
h→ N is called anessential extensionif in the conditions above we

replaceM by h(M).

Example 6. If R is a domain andQ(R) its fraction field, thenR ⊆ Q(R) is an essential extension.

Example 7. Let (R,m, k) be a local ring andN anR-module such that every element ofN is annihilated by
some power of the maximal idealm. Let Soc(N) := AnnN (m) denote the socle ofN (which is ak-vector
space). ThenSoc(N) ⊆ N is an essential extension.

Exercise 8. AnR-moduleN is Artinian if and only ifSoc(N) is finite dimensional (as ak-vector space) and
Soc(N) ⊆ N is essential.

Exercise 9. Let M be a submodule ofN . Use Zorn’s lemma to show that there is a maximal submodule
N ′ ⊆ N containingM such thatM ⊂ N ′ is an essential extension.

Definition 10 (maximal essential extension).If M ⊆ N is an essential extension such thatN has no proper
essential extension, thenM ⊆ N is called amaximal essential extension.

The following proposition characterizes injective modules in terms of essential extensions.

Proposition 11. a) AnR-moduleE is injective if and only if it has no proper essential extension.

b) LetM be anR-module andE an injectiveR-module containingM . Then any maximal essential
extensionN ofM withN ⊆ E is a maximal essential extension. In particular,N is injective and thus
a direct summand ofE.

c) If M ⊆ E andM ⊆ E′ are two maximal essential extensions, then there is an isomorphismE ∼= E′

that fixesM .

Definition 12 (injective hull). A maximal essential extension of anR-moduleM is called aninjective hull
of M , denotedER(M).

Proposition 11 states that every moduleM has a unique injective hull up to isomorphism. Moreover, if
M ⊆ E whereE is an injective module, thenM has a maximal essential extensionER(M) that is contained
in E, andER(M) is a direct summand ofE.

Definition 13 (injective resolution). LetM be anR-module. SetE−1 := M andE0 := ER(M). Induc-
tively defineEn := ER(En−1

/im(En−2)). Then the acyclic complex

I : 0 → E0 → E1 → · · · → En → · · ·

is called aninjective resolutionof M , where the maps are given by the composition

En−1 → En−1/im(En−2) ↪→ ER(En−1/im(En−2)).

Conversely, an acyclic complexI of injectiveR-modules is a minimal injective resolution ofM if

• M = ker(E0 → E1),

• E0 = ER(M),

• En = ER(im(En−1 → En)).

For a Noetherian ringR one can give a specific description of eachEi appearing in the injective resolution
of M as a direct sum ofER(R/p) for p ∈ SpecR. We refer interested reader to the sources mentioned in the
references for more on this.
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2 Local cohomology

Definition 14 (I-torsion). Given an idealI ⊆ R and anR-moduleM , setΓI(M) :=
⋃

n(0 :M In). The
covariant functorΓI( ) over the category ofR-modules is called theI-torsion functor, and for a homomor-
phismf : M → N , ΓI(f) is given by the restrictionf

∣∣
ΓI(M)

.

Proposition 15. ΓI( ) is a left exact functor.

Proof. Let

0 → L
f→M

g→ N → 0
be a short exact sequence. We want to show that

0 → ΓI(L)
ΓI(f)−→ ΓI(M)

ΓI(g)−→ ΓI(N)

is an exact sequence.
Exactness atΓI(L): ΓI(f) is injective as it is the restriction of the injective mapf . Exactness atΓI(M):

It is clear thatim(ΓI(f)) ⊆ ker(ΓI(g)). Conversely, letm ∈ ker(ΓI(g)). Thenm ∈ ker(g) and therefore
m = f(l) for somel ∈ L. It remains to show thatl ∈ ΓI(L). Asm ∈ ΓI(M), we haveIkm = 0 for some
integerk. Thenf(Ikl) = Ikf(l) = Ikm = 0. As f is injective,Ikl = 0 andl ∈ ΓI(L).

Exercise 16.ΓI = ΓJ if and only if
√
I =

√
J .

Definition 17 (local cohomology). The i-th local cohomology functorHi
I( ) is defined as thei-th right

derived functor ofΓI( ). More precisely, given anR-moduleM , let I be an injective resolution ofM :

I : 0 → E0 d0

→ E1 d1

→ · · · → En dn

→ · · ·

Apply ΓI( ) to I and obtain the complex:

ΓI(I) : 0 → ΓI(E0) → ΓI(E1) → · · · → ΓI(En) → · · ·

Then setH0
I (M) := ΓI(M) andHi

I(M) := ker(ΓI(di))/ im(ΓI(di−1)) for i > 0. Note thatHi
I( ) is a

covariant functor.

Clearly, ifE is an injectiveR-module, thenHi
I(E) = 0 for i > 0.

Proposition 18. 1) If 0 → L → M → N → 0 is a short exact sequence, then we have an induced long
exact sequence

0 → H0
I (L) → H0

I (M) → H0
I (N) →

H1
I (L) → H1

I (M) → H1
I (N) → · · ·

2) Given a commutative diagram with exact rows:

0 L M N 0

0 L′ M ′ N ′ 0

w w

u

w

u

w

u
w w w w

then we have the following commutative diagram with exact rows:

· · · Hi
I(M) Hi

I(N) Hi+1
I (L) · · ·

· · · Hi
I(M

′) Hi
I(N

′) Hi+1
I (L′) · · ·

w w

u

w

u

w

u
w w w w

3)
√
I =

√
J if and only if Hi

I( ) = Hi
J( ).

4) Localization: LetS ⊆ R be a multiplicatively closed set. ThenS−1 ΓI(M) = ΓS−1I(S−1M) and the
same holds for the higher local cohomology modules.
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2.1 Alternate construction of local cohomology

An alternate way of constructing the local cohomology modules: Consider the moduleHomR(R/In,M) ∼=
(0 :M In). Now, if n > m, then one has a natural mapR/In → R/Im, forming an inverse system. Applying
HomR( ,M), we get a direct system of maps:

lim−→n HomR(R/In,M) ∼=
⋃
n

(0 :M In) = ΓI(M).

As one might guess (or hope), it is also the case that

lim−→n Exti
R(R/In,M) ∼= Hi

I(M).

This follows from the theory of negative strongly connected functors – see [R].

Definition 19 (strongly connected functors). Let R,R′ be commutative rings. A sequence of covariant
functors{T i}i>0 from the category ofR-modules to the category ofR′-modules is said to benegative
(strongly) connectedif

(i) Any short exact sequence0 → L→M → N → 0 induces a long exact sequence

0 → T 0(L) → T 0(M) → T 0(N) →
T 1(L) → T 1(M) → T 1(N) → · · ·

(ii) For any commutative diagram with exact rows

0 L M N 0

0 L′ M ′ N ′ 0

w w

u

w

u

w

u
w w w w

there is a chain map between the long exact sequences given in (i).

Definition 20 (natural equivalence of functors). Let T andU be two covariant functors from a categoryC
to a categoryD. A natural transformationψ from T toU associates to every objectX in C a morphismψX :
T (X) → U(X) in D, such that for every morphismf : X → Y in C we haveψY oT (f) = U(f)oψX . If, for
every objectX in C, the morphismψX is an isomorphism inD, thenψ is said to be anatural equivalence.

Theorem 21. Letψ0 : T 0 → U0 be a natural equivalence, where{T i}i>0, {U i}i>0 are strongly connected.
If T i(E) = U i(E) = 0 for all i > 0 and injective modulesE, then there is a natural equivalence of functors
ψ = {ψi}i>0 : {T i}i → {U i}i.

The above theorem implies thatlim−→n Exti
R(R/In,M) ∼= Hi

I(M).

Remark 22. i) One can replace the sequence of{In} by any decreasing sequence of ideals{Jt} which
are cofinal with{In}, i.e. ∀ t ∃n such thatIn ⊆ Jt and∀n ∃ t such thatJt ⊆ In.

ii) Every element ofHi
I(M) is killed by some power ofI, as everym ∈ Hi

I(M) is the image of some
Exti

R(R/In,M) which is killed byIn.

iii) For anyx ∈ R, the homomorphismM
·x−→M induces a homomorphismHi

I(M) ·x−→ Hi
I(M).

Proposition 23. Let M be a finitely generatedR-module andI ⊆ R an ideal. ThenIM = M ⇐⇒
Hi

I(M) = 0 ∀ i. If IM 6= M , thenmin{i | Hi
I(M) 6= 0} = depthI(M).
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Proof. We haveIM = M ⇐⇒ ItM = M ∀ t. SoIt +Ann(M) = R, as otherwiseIt +Ann(M) ⊆ m for
somem ∈ max-Spec(R). SinceIt + Ann(M) annihilatesExti

R(R/It,M), we haveExti
R(R/It,M) = 0

and thereforeHi
I(M) = 0.

It suffices to assume now thatIM 6= M . Setd := depthI(M) and letx1, . . . , xd be a maximalM -
regular sequence inI. We show by induction ond thatHi

I(M) = 0 for i < d andHd
I (M) 6= 0.

If d = 0, that is, ifdepthI(M) = 0, then there is an0 6= m ∈M killed by I. Som ∈ H0
I (M) 6= 0. Now

let d > 1 and setx := x1. Consider the short exact sequence

0 →M
·x→M →M/xM → 0

and the induced long exact sequence

· · · → Hi−1
I (M/xM) → Hi

I(M) ·x→ Hi
I(M) → · · ·

If i < d, thenHi−1
I (M/xM) = 0 by induction hypothesis andx is a nonzerodivisor onHi

I(M). As all
elements ofHi

I(M) are killed by some power ofI, we conclude thatHi
I(M) = 0.

It remains to show thatHd
I (M) 6= 0. This follows from the induction hypothesis and the long exact

sequence
· · · ·x→ Hd−1

I (M) → Hd−1
I (M/xM) → Hd

I (M) ·x→ · · ·

which yield0 6= Hd−1
I (M/xM) ↪→ Hd

I (M).

2.2 The Koszul interpretation

Let K,L be two complexes ofR-modules with differentialsd′, d′′, respectively. One can define the complex
M := K ⊗ L via Mk :=

⊕
i+j=k Ki ⊗ Lj with differentiald(ai ⊗ bj) := d′(ai) ⊗ bj + (−1)iai ⊗ d′′(bj)

whereai ∈ Ki, bj ∈ Lj . Similarly, if K(1), . . . ,K(n) aren complexes, thenK(1) ⊗ · · · ⊗ K(n) is defined
inductively as(K(1) ⊗ · · · ⊗K(n−1))⊗K(n).

To anyx ∈ R one can associate complexes

K•(x;R) : 0 → R
·x→ R→ 0 or K•(x;R) : 0 → R

·x→ R→ 0

where the degrees of the componentsR, from left to right, are 1, 0 forK•(x;R) and 0,1 forK•(x;R).
Given a sequencex = x1, . . . , xn of elements inR, we define the (homological) Koszul complex

K•(x;R) :=
⊗n

i=1K•(xi;R), and cohomological Koszul complexK•(x;R) :=
⊗n

i=1K
•(xi;R).

For anR-moduleM we defineK•(x;M) := K•(x;R) ⊗M andK•(x;M) := K•(x;R) ⊗M . The
following isomorphism holds:K•(x;M) ∼= HomR(K•(x;R),M).

Let x ∈ R andM anR-module. Consider the complex

M
·x→M

·x→M → · · ·

and setN := ker(M →Mx) andM ′ := M/N . Note thatN = H0
xR(M). Then

lim−→(M ·x→M
·x→M → · · · ) ∼=

lim−→(M ′ ·x→M ′ ·x→M ′ → · · · ) =

lim−→(M ′ ⊆ x−1M ′ ⊆ · · · ⊆ x−tM ′ ⊆ · · · ) ∼= M ′
x
∼= Mx.

Notation: Wheneverx = x1, . . . , xn denotes a sequence of elements inR, we will denote byxt the
sequence of the individual powersxt

1, . . . , x
t
n

Forx ∈ R we have a chain map of complexesK•(xt;R) → K•(xt+1;R) via the commutative diagram

K•(xt;R) : 0 R R 0

K•(xt+1;R) : 0 R R 0

w w
·xt

u
id

w

u
·x

w w
·xt+1

w

(1)
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By tensoring these maps for all thexi, and then tensoring withM , we getK•(xt;M) → K•(xt+1;M).
Take the direct limit and denote the resulting complex byK•(x∞;M). We can look atHi(K•(x∞;M)) =
lim−→tH

i(K•(xt;M)) for which we simply writeHi(x∞;M).

Theorem 24. If I = (x1, . . . , xn) andM is anR-module, then there is a canonical isomorphismHi(x∞;M) ∼=
Hi

I(M).

Consider the case wherex = x1, . . . , xn is anR-regular sequence. It is known thatK•(xt;R) is a projec-
tive resolution ofR/xtR. Apply HomR( ,M) and note that on the one handK•(xt;M) givesH•(xt;M)
while on the other hand we getExt•R(R/xt;M). Now take the direct limit:Hi(x∞;M) ∼= Hi

I(M).

Discussion 25 (The Čech complex and a detailed look atK•(x∞;M)). Letx ∈ R. ThenK0(x∞;R) = R
andK1(x∞;R) = Rx. (Recall diagram (1).) SoK•(x∞;R) =

⊗n
i=1(0 → R→ Rxi

→ 0), that is,

Kj(x∞;R) =
⊕
|S|=j

Rx(S)

whereS ⊆ {1, . . . , n} andx(S) =
∏
i∈S

xi. Similarly,Kj(x∞;M) =
⊕

|S|=j Mx(S). The mapRx(S) →

Rx(T ), where|T | = |S| + 1, is the zero map unlessS ⊂ T , in which case it is the localization map times
(−1)a wherea is the number of elements inS preceding the element inT \ S.

Exercise 26.Let x, y, z ∈ R. Write down the maps in

0 → R→ Rx ⊕Ry ⊕Rz → Rxy ⊕Ryz ⊕Rzx → Rxyz → 0.

Discussion 25 and Theorem 24 imply the following.

Corollary 27. If I ⊆ R is an ideal which can be generated byn elements up to radical, thenHi
I(R) = 0 for

i > n.

Remark 28. The modules occurring inK•(x∞;R) are flat.

3 Properties of local cohomology

Proposition 29. LetR andS be Noetherian rings.

1. LetR→ S be a ring homomorphism,I an ideal ofR, andM anS-module. ThenHi
I(M) ∼= Hi

IS(M)
asS-modules.

2. LetΛ be a directed set and{Mλ}λ∈Λ a direct system ofR-modules. Thenlim−→λH
i
I(Mλ) ∼= Hi

I(lim−→λMλ).

3. If S is flat overR, thenHi
I(M)⊗R S = Hi

IS(M ⊗R S).

4. If m ⊆ R is a maximal ideal, thenHi
m(M) ∼= Hi

mRm
(Mm).

5. If (R,m) is local, thenHi
m(M) ∼= Hi

mR̂
(R̂ ⊗R M) which is isomorphic toHi

mR̂
(M̂) if M is finitely

generated.

Proposition 30. Let I ⊆ R be an ideal which is the radical of an ideal generated by a regular sequence of
lengthn. ThenHi

I(M) ∼= Torn−i(M,Hn
I (R)) for i 6 n.

Proof. If i < depthI(R) = n, thenHi
I(R) = 0. ThereforeK•(x∞;R) gives a flat resolution ofHn

I (R),
numbered backwards:

· · · → Kn−1 → Kn → Hn
I (R) = Kn/ im(dn−1) → 0.

On the one handTorR
n−i(M,Hn

I (R)) = Hi(K•(x∞;R)⊗R M) by definition ofTor. On the other hand, by
the preceding theorem,Hi(K•(x∞;R)⊗R M) ∼= Hi

I(M).
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Corollary 31. Let(R,m, k) be a Cohen-Macaulay local ring of dimensionn. ThenHi
m(M) ∼= TorR

n−i(M,Hn
m(R)).

Proof. The maximal idealm is the radical of an ideal generated by a(ny) regular sequence of lengthn.

Theorem 32 (Grothendieck’s Theorems).

(Vanishing Theorem)LetI ⊆ R be an ideal andM anR-module. ThenHi
I(M) = 0 for i > dim(M).

(Non-Vanishing Theorem)Let (R,m, k) be a local ring andM a finitely generatedR-module. Then
Hi

m(M) 6= 0 for i = dim(M).

Proof of 1. We may assume thatR is local with maximal idealm. Further, asM is the direct limit of its
finitely generated submodules, we may also assume thatM is finitely generated. SetS := R/Ann(M)
so thatn := dim(M) = dim(S). The maximal ideal ofS is generated byn elements up to radical, so
Hi

mS(M) = 0 for i > n.
We want to show thatHi

I(M) = 0 for i > dim(M). By induction, we assume the theorem is true for
all finitely generated modules of dimension less thann. We leave the casen = 0 as an exercise and assume
n > 0.

Note that if a module isI-torsion, then all its higher local cohomology modules vanish. So, asΓI(M) is
I-torsion, without loss of generalityΓI(M) 6= M . Also, the long exact sequence induced by

0 → ΓI(M) →M → M/ΓI(M) → 0

yields thatHi
I(M) ∼= Hi

I(M/ΓI(M)) for all i > 0. Hence, by passing toM/ΓI(M), we may assume that
M 6= 0 is I-torsionfree. It follows thatI contains anM -regular elementr. (OtherwiseI is contained in the
union of the associated primes ofM , and by prime avoidanceI is contained in one of those primes which is
of the form(0 :R m) for some0 6= m ∈M . That isIm = 0 — a contradiction.)

Let i > n and lett be an integer. Consider the short exact sequence

0 →M
·rt

→M → M/rtM → 0

and the induced long exact sequence

· · · → Hi−1
I (M/rtM) → Hi

I(M) ·rt

→ Hi
I(M) → · · ·

Sincedim(M/rtM) < dim(M),Hi−1
I (M/rtM) = 0 by induction hypothesis andrt is a nonzerodivisor

onHi
I(M). But any element ofHi

I(M) is killed by a power ofI. As r ∈ I, that impliesHi
I(M) = 0.

Remark 33. If dim(R) = n andM is anR-module, thenHn
I (M) ∼= M ⊗R Hn

I (R). This follows from the
fact thatHn

m(−) is a right exact functor, a consequence of Grothedieck’s Vanishing Theorem.

4 Kunneth formula and applications

We would like to discuss the local cohomology modules of a graded ring. LetR = ⊕n>0Rn be aN-graded
ring overR0 = K, whereK is an algebraically closed field. Assume thatR is finitely generated overK. Let
mR be the maximal ideal⊕n>1Rn. Do the modulesHi

mR
(R) inherit a natural grading from the ringR? The

answer is yes and we plan to explain how this goes.
Let I be a graded ideal ofR. We can consider the category of gradedR-modules and homogeneous

R-homomorphisms which is an Abelian category which has enough projective objects and injective objects
so the construction used to define the local cohomology modules can be imitated in this setting.

Let M,N be two Z-gradedR-modules. Leti be an integer and denoteHomR(M,N)i the Abelian
group ofR-linear mapsf : M → N such thatf(Mn) = Nn+i for all n. TheR-module ofhomogeneous
homomorphismsbetweenM andN is by definitionHomR(M,N) := ⊕i>0HomR(M,N)i. One can check
that, for a fixed gradedR-moduleN , HomR(−, N) defines a functor on the category of gradedR-modules.

For every gradedR-moduleN , theith right derived functor ofHomR(−, N) will be denotedExti
R(−, N).

Then,Hi
I(N) = lim−→Exti

R(R/In, N).
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SinceR/In are finitely generated for alln, thenExti
R(R/In, N) = Exti

R(R/In, N) asR-modules
(ignoring the grading on the first module). As a result, we see thatHi

I(N) has a naturalZ-grading, and, if we
ignore this grading, we recoverHi

I(N). The graded local cohomology can also be defined via Cěch or Koszul
complexes and all these approaches agree with each other. In the end, we obtain a naturally graded object
such that if we drop its grading we recover the standard local cohomology module. Important information
resides in this extra structure given by the grading on the local cohomology module and thea-invariant of a
ringR, a(R) captures some of it. By definition,a(R) = max{n : (Hd

mR
(R))n 6= 0}, whered = dim(R).

This number will become relevant in the discussion that follows.
Let A = ⊕An andB = ⊕Bn be twoN-graded rings such thatA0 = B0 = K. TheSegre productof

these two rings is the ringA ] B = ⊕nAn ⊗K Bn. This ring is naturallyN-graded and a direct summand
in the ringA ⊗K B. More generally, ifM is aZ-gradedA-module andN is aZ-gradedB-module,Segre
productof M andB is the gradedA ] B-module defined byM ] N = ⊕nMn ⊗K Nn.

Goto and Watanabe [GW] have proved a formula describing the local cohomology of the Segre product
R with support at the maximal idealmR = mA ] mB . In fact, their result is more general:

Theorem 34 (Goto-Watanabe).With notations as above, assume thatHj
mA

(M) = Hj
mB

(N) = 0 for
j = 0, 1. Then for alli > 0, we have the following isomorphism:

Hi
mR

(M ] N) ' (Hi
mA

(M) ] N)⊕ (M ] Hi
mB

(N))⊕ (⊕r+s=i+1H
r
mA

(M) ] Hs
mB

(N)).

Corollary 35. LetA andB as above and assume thatdim(A) = d, dim(B) = e. Then

1. If d, e > 1, thendim(A ] B) = d+ e− 1.

2. If d, e > 2 and ifA,B are Cohen-Macaulay, thenA ]B is Cohen-Macaulay if and only ifHd
mA

(A) ] B =
A ] He

mB
(B) = 0.

3. If d = 1 ande > 2, then ifA,B are Cohen-Macaulay thenA ] B is Cohen-Macaulay if and only if
H1

mA
(A) ] B = 0.

4. If d = e = 1, and ifA,B are Cohen-Macaulay, thenA ] B is Cohen-Macaulay .

This corollary is a source of examples of normal rings that are not Cohen-Macaulay: ifA,B are normal
and Cohen-Macaulay, thenA ] B is normal as a direct summand in a normal ringA⊗K B. But oftenA ]B
is not Cohen-Macaulay. Ifdim(A) = d > 2,dim(B) = e > 2, thenHd

mA
(A) ] B = A ] He

mB
(B) = 0 is a

restrictive condition equivalent toa(A) < 0, a(B) < 0. For example,A = k[x, y, z]/(x3 + y3 + z3), then
thea-invariant ofA is 0, and hence, for any Cohen-Macaulay ringB,A ] B is not Cohen-Macaulay.

Two recent papers dealing with Segre products and local cohomology are [Si, SW], where in [SW] an
example of a normal, but not Cohen-Macaulay ring, obtained as above as a Segre product is studied in detail.
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