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Abstract

In this paper we study simplicial complexes as higher dimensional graphs in order
to produce algebraic statements about their facet ideals. We introduce a large class
of square-free monomial ideals with Cohen-Macaulay quotients, and a criterion for the
Cohen-Macaulayness of facet ideals of simplicial trees. Along the way, we generalize
several concepts from graph theory to simplicial complexes.

1 Introduction

From the point of view of commutative algebra, the focus of this paper is on finding square-
free monomial ideals that have Cohen-Macaulay quotients. In [Vi1] Villarreal proved a
criterion for the Cohen-Macaulayness of edge ideals of graphs that are trees. Edge ideals
are square-free monomial ideals where each generator is a product of two distinct variables
of a polynomial ring. These ideals have been studied extensively by Villarreal, Vasconcelos
and Simis among others. In [Fa] we studied a generalization of this concept; namely the
facet ideal of a simplicial complex. By generalizing the definition of a “tree” to simplicial
complexes, we extended the results of [SVV] from the class of edge ideals to all square-free
monomial ideals.

Below we investigate the structure of simplicial complexes in order to show that Villar-
real’s Cohen-Macaulay criterion for graph-trees extends to simplicial trees (Corollary 8.3).
This is of algebraic and computational significance, as it provides an effective criterion for
Cohen-Macaulayness that works for a large class of square-free monomial ideals. We intro-
duce a condition on a simplicial complex that ensures the Cohen-Macaulayness of its facet
ideal, and a method to build a Cohen-Macaulay ideal from any given square-free mono-
mial ideal. Along the road to the algebraic goal, this study sheds light on the beautiful
combinatorial structure of simplicial complexes.

The paper is organized as follows: Sections 2 to 4 review the basic definitions and
cover the elementary properties of trees. In Section 5 we draw comparisons between graph
theory and simplicial complex theory, and prove a generalized version of König’s Theorem
in graph theory for simplicial complexes. We then go on to prove a structure theorem
for unmixed trees in Section 6. We introduce the notion of a grafted simplicial complex
in Section 7, and show that for simplicial trees, being grafted and being unmixed are
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equivalent conditions. The notion of grafting brings us to Section 8, where we prove that
grafted simplicial complexes are Cohen-Macaulay, from which it follows that a simplicial
tree is unmixed if and only if it is Cohen-Macaulay.

2 Definitions and notation

In this section we define the basic notions that we will use later in the paper. Some of
the proofs that appeared earlier in [Fa] have been omitted here; we refer the reader to the
relevant sections of [Fa] when that is the case.

Definition 2.1 (simplicial complex, facet and more). A simplicial complex ∆ over
a set of vertices V = {v1, . . . , vn} is a collection of subsets of V , with the property that
{vi} ∈ ∆ for all i, and if F ∈ ∆ then all subsets of F are also in ∆ (including the empty
set). An element of ∆ is called a face of ∆, and the dimension of a face F of ∆ is defined
as |F | − 1, where |F | is the number of vertices of F . The faces of dimensions 0 and 1 are
called vertices and edges, respectively, and dim ∅ = −1.

The maximal faces of ∆ under inclusion are called facets of ∆. The dimension of the
simplicial complex ∆ is the maximal dimension of its facets; in other words

dim ∆ = max{dim F | F ∈ ∆}.

We denote the simplicial complex ∆ with facets F1, . . . , Fq by

∆ = 〈F1, . . . , Fq〉

and we call {F1, . . . , Fq} the facet set of ∆.
A simplicial complex with only one facet is called a simplex.

Definition 2.2 (subcollection). By a subcollection of a simplicial complex ∆ we mean a
simplicial complex whose facet set is a subset of the facet set of ∆.

Definition 2.3 (connected simplicial complex). A simplicial complex ∆ = 〈F1, . . . , Fq〉
is connected if for every pair i, j, 1 ≤ i < j ≤ q, there exists a sequence of facets

Ft1 , . . . , Ftr

of ∆ such that Ft1 = Fi, Ftr = Fj and

Fts ∩ Fts+1
6= ∅

for s = 1, . . . , r − 1.

An equivalent definition is stated on page 222 of [BH]: ∆ as above is disconnected if its
vertex set V can be partitioned as V = V1 ∪ V2, where V1 and V2 are nonempty subsets of
V , such that no facet of ∆ has vertices in both V1 and V2. Otherwise ∆ is connected.

Definition 2.4 (facet ideal, non-face ideal). Let ∆ be a simplicial complex over n
vertices labeled v1, . . . , vn. Let k be a field, x1, . . . , xn be indeterminates, and R be the
polynomial ring k[x1, . . . , xn].
(a) We define F(∆) to be the ideal of R generated by all the square-free monomials xi1 . . . xis ,
where {vi1 , . . . , vis} is a facet of ∆. We call F(∆) the facet ideal of ∆.
(b) We define N (∆) to be the ideal of R generated by all the square-free monomials
xi1 . . . xis , where {vi1 , . . . , vis} is not a face of ∆. We call N (∆) the non-face ideal or
the Stanley-Reisner ideal of ∆.
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We refer the reader to [S] and [BH] for an extensive coverage of the theory of Stanley-
Reisner ideals.

Throughout this paper we often use x1, . . . , xn to denote both the vertices of ∆ and the
variables appearing in F(∆).

Definition 2.5 (facet complex, non-face complex). Let I = (M1, . . . ,Mq) be an ideal
in a polynomial ring k[x1, . . . , xn], where k is a field and M1, . . . ,Mq are square-free mono-
mials in x1, . . . , xn that form a minimal set of generators for I.
(a) We define δF (I) to be the simplicial complex over a set of vertices v1, . . . , vn with facets
F1, . . . , Fq, where for each i, Fi = {vj | xj |Mi, 1 ≤ j ≤ n}. We call δF (I) the facet complex
of I.
(b) We define δN (I) to be the simplicial complex over a set of vertices v1, . . . , vn, where
{vi1 , . . . , vis} is a face of δN (I) if and only if xi1 . . . xis /∈ I. We call δN (I) the non-face
complex or the Stanley-Reisner complex of I.

Facet ideals give a one-to-one correspondence between simplicial complexes and square-
free monomial ideals.

Notice that given a square-free monomial ideal I in a polynomial ring k[x1, . . . , xn], the
vertices of δF (I) are those variables that divide a monomial in the generating set of I; this set
may not necessarily include all elements of {x1, . . . , xn}. The fact that some extra variables
may appear in the polynomial ring does not affect the algebraic or combinatorial structure
of δF (I). On the other hand, if ∆ is a simplicial complex, being able to consider the facet
ideals of its subcomplexes as ideals in the same ring simplifies many of our discussions.

Example 2.6. Let ∆ be the simplicial complex below.

u x v

zy

Here N (∆) = (yv, zu, uv), F(∆) = (xyu, xyz, xzv) are ideals in the polynomial ring
k[x, y, z, u, v].

Example 2.7. If I = (xy, xz) ⊆ k[x, y, z], then δN (I) is the 1-dimensional simplicial
complex:

zy

x

and δF (I) is the simple graph

zy

x

In this special case I is also called the edge ideal of the graph δF (I) (this terminology is
due to Villarreal; see [Vi1]).

We now generalize some notions from graph theory to simplicial complexes.
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Definition 2.8 (minimal vertex cover, vertex covering number, unmixed). Let ∆
be a simplicial complex with vertex set V and facets F1, . . . , Fq. A vertex cover for ∆ is a
subset A of V , with the property that for every facet Fi there is a vertex v ∈ A such that
v ∈ Fi. A minimal vertex cover of ∆ is a subset A of V such that A is a vertex cover, and
no proper subset of A is a vertex cover for ∆. The smallest cardinality of a vertex cover of
∆ is called the vertex covering number of ∆ and is denoted by α(∆).

A simplicial complex ∆ is unmixed if all of its minimal vertex covers have the same
cardinality.

Note that a simplicial complex may have several minimal vertex covers.

Definition 2.9 (independent set, independence number). Let ∆ be a simplicial
complex. A set {F1, . . . , Fu} of facets of ∆ is called an independent set if Fi ∩ Fj = ∅
whenever i 6= j. The maximum possible cardinality of an independent set of facets in ∆,
denoted by β(∆), is called the independence number of ∆. An independent set of facets
which is not a proper subset of any other independent set is called a maximal independent
set of facets.

Example 2.10. If ∆ is the simplicial complex

x

y

z

u

v

then β(∆) = 2. Also, ∆ is unmixed as its minimal vertex covers, listed below, all have
cardinality equal to two:

{x, u}, {y, u}, {y, v}, {z, u}, {z, v}

This, by the way, is an example of a “grafted” tree (see Definitions 3.5 and 7.1). We
show later in the paper that all grafted trees are unmixed.

The graph δF (I) in Example 2.7 however is not unmixed. This is because {x} and {y, z}
are both minimal vertex covers for δF (I) of different cardinalities. In this case α(δF (I)) =
β(δF (I)) = 1. The same argument shows that the simplicial complex in Example 2.6 is not
unmixed.

The following is an easy but very useful observation; see Proposition 1 in [Fa] for a
proof.

Proposition 2.11. Let ∆ be a simplicial complex over n vertices labeled x1, . . . , xn. Con-
sider the ideal I = F(∆) in the polynomial ring R = k[x1, . . . , xn] over a field k. Then
an ideal p = (xi1 , . . . , xis) of R is a minimal prime of I if and only if {xi1 , . . . , xis} is a
minimal vertex cover for ∆.

We say that a simplicial complex ∆ over a set of vertices x1, . . . , xn is Cohen-Macaulay
if for a given field k, the quotient ring

k[x1, . . . , xn]/F(∆)

is Cohen-Macaulay. It follows directly from Proposition 2.11, or from an elementary duality
with Stanley-Reisner theory discussed in Corollary 2 of [Fa], that in order for ∆ to be Cohen-
Macaulay, it has to be unmixed.

4



Proposition 2.12 (A Cohen-Macaulay simplicial complex is unmixed). Suppose
that ∆ is a simplicial complex with vertex set x1, . . . , xn. If k[x1, . . . , xn]/F(∆) is Cohen-
Macaulay, then ∆ is unmixed.

Discussion 2.13. It is worth observing that for a square-free monomial ideal I, there is
a natural way to construct δN (I) and δF (I) from each other using the structure of the
minimal primes of I. To do this, consider the vertex set V consisting of all variables that
divide a monomial in the generating set of I. The following correspondence holds:

F = facet of δN (I) ←→ V \ F = minimal vertex cover of δF (I)

Also
I =

⋂

p

where the intersection is taken over all prime ideals p of k[V ] that are generated by a
minimal vertex cover of δF (I) (or equivalently, primes p that are generated by V \F , where
F is a facet of δN (I); see [BH] Theorem 5.1.4).

Regarding the dimension and codimension of I, note that by Theorem 5.1.4 of [BH] and
the discussion above, setting R = k[V ] as above, we have

dim R/I = dim δN (I) + 1 = |V | − vertex covering number of δF (I)

and
height I = vertex covering number of δF (I).

We illustrate all this through an example.

Example 2.14. For I = (xy, xz), where δF (I) and δN (I) are drawn in Example 2.7, we
have:

facets of δN (I) minimal vertex covers of δF (I)

{x} {y, z}
{y, z} {x}

Note that I = (x) ∩ (y, z), and

dim k[x, y, z]/(xy, xz) = 2

as asserted in Discussion 2.13 above.

A notion crucial to the rest of the paper is “removing a facet”. We want the removal
of a facet from a simplicial complex to correspond to dropping a generator from its facet
ideal. We record this definition.

Definition 2.15 (facet removal). Suppose ∆ is a simplicial complex with facets F1, . . . , Fq

and F(∆) = (M1, . . . ,Mq) its facet ideal in R = k[x1, . . . , xn]. The simplicial complex
obtained by removing the facet Fi from ∆ is the simplicial complex

∆ \ 〈Fi〉 = 〈F1, . . . , F̂i, . . . , Fq〉.

Note that F(∆ \ 〈Fi〉) = (M1, . . . , M̂i, . . . ,Mq).
Also note that the vertex set of ∆ \ 〈Fi〉 is a subset of the vertex set of ∆.

Example 2.16. let ∆ be the simplicial complex in Example 2.10 with facets F = {x, y, z},
G = {y, z, u} and H = {u, v}. Then ∆ \ 〈F 〉 = 〈G,H〉 is a simplicial complex with vertex
set {y, z, u, v}.
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3 Trees

In [Fa] we extended the notion of a “tree” from graphs to simplicial complexes. The con-
struction, at the time, was motivated by two factors: the restriction to graphs should
produce the classic graph-theoretical definition of a tree, and the new structure should fit
into a machinery that proves that the facet ideal of a tree satisfies Sliding Depth condition
(Theorem 1 of [Fa]).

The resulting definition not only satisfies those two properties, but as we prove later
in this paper, it also generalizes graph-trees in the sense of Cohen-Macaulayness, which
confirms that algebraically this in fact is the optimal way to extend the definition of a tree.

Recall that a connected graph is a tree if it has no cycles; for example, a triangle is not
a tree. An equivalent definition states that a connected graph is a tree if every subgraph
has a leaf, where a leaf is a vertex that belongs to only one edge of the graph. This latter
description is the one that we adapt, with a slight change in the definition of a leaf, to the
class of simplicial complexes.

Definition 3.1 (leaf, joint, universal set). Suppose that ∆ is a simplicial complex. A
facet F of ∆ is called a leaf if either F is the only facet of ∆, or there exists a facet G in
∆ \ 〈F 〉, such that

F ∩ F ′ ⊆ F ∩G

for every facet F ′ ∈ ∆ \ 〈F 〉.
In other words, F is a leaf of ∆ if it intersects ∆ \ 〈F 〉 in a face of ∆ \ 〈F 〉.
The set of all G as above is denoted by U∆(F ) and called the universal set of F in ∆.

If G ∈ U∆(F ) and F ∩G 6= ∅, then G is called a joint of F .

Another way to describe a leaf is the following: (with assumptions as above) F is a leaf
if either F is the only facet of ∆ or the intersection of F with the simplicial complex ∆\〈F 〉
is a face of ∆ \ 〈F 〉.

Definition 3.2 (free vertex). A vertex of a simplicial complex ∆ is free if it belongs to
exactly one facet of ∆.

In order to be able to quickly identify a leaf in a simplicial complex, it is important to
notice that a leaf must have a free vertex. This follows easily from Definition 3.1: otherwise,
a leaf F would be contained in its joints, which would contradict the fact that a leaf is a
facet.

Example 3.3. The simplicial complex in example 2.6 has two leaves: {x, y, u} and {x, z, v}.
The one below has no leaves, because every vertex is shared by at least two facets.

Example 3.4. In the simplicial complex below with facets F1 = {a, b, c}, F2 = {a, c, d}
and F3 = {b, c, d, e}, the only candidate for a leaf is the facet F3 (as it is the only facet with
a free vertex), but neither one of F1 ∩ F3 or F2 ∩ F3 is contained in the other, so there are
no leaves.
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b c
d

e

a

Definition 3.5 (tree). Suppose that ∆ is a connected simplicial complex. We say that
∆ is a tree if every nonempty subcollection of ∆ (including ∆ itself) has a leaf.

Equivalently, a connected simplicial complex ∆ is a tree if every nonempty connected
subcollection of ∆ has a leaf.

Definition 3.6 (forest). A simplicial complex ∆ with the property that every connected
component of ∆ is a tree is called a forest. In other words, a forest is a simplicial complex
with the property that every nonempty subcollection has a leaf.

The simplicial complex in Example 2.6 above is a tree, whereas the ones in Examples 3.3
and 3.4 are not, as they have no leaves.

Here is a slightly less straightforward example:

Example 3.7. The simplicial complex on the left is not a tree, because although all three
facets {x, y, u}, {x, v, z} and {y, z, w} are leaves, if one removes the facet {x, y, z}, the
remaining simplicial complex (on the right) has no leaf.

x
u

z w

y

v

remove {x, y, z}
- x

u

z w

y

v

Notice that in the case that ∆ is a graph, Definition 3.5 agrees with the definition of a
tree in graph theory, with the difference that now the term “leaf” refers to an edge, rather
than a vertex.

4 Basic properties of trees

Lemma 4.1 (A tree has at least two leaves). Let ∆ be a tree of two or more facets.
Then ∆ has at least two leaves.

Proof. Suppose that ∆ has q facets F1, . . . , Fq where q ≥ 2. We prove the lemma by
induction on q.

The case q = 2 follows from the definition of a leaf.
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To prove the general case suppose that F1 is a leaf of ∆ and G1 ∈ U∆(F1). Consider the
subcomplex ∆′ = 〈F2, . . . , Fq〉 of ∆. By induction hypothesis ∆′ has two distinct leaves;
say F2 and F3 are those leaves. At least one of F2 and F3 must be different from G1; say
F2 6= G1. We show that F2 is a leaf for ∆.

Let G2 ∈ U∆′(F2). Given any facet Fi with i 6= 1, 2, we already know by the fact that
F2 is a leaf of ∆′

Fi ∩ F2 ⊆ G2 ∩ F2.

We need to verify this for i = 1.
Since F1 is a leaf for ∆ and F2 6= F1,

F2 ∩ F1 ⊆ G1 ∩ F1.

Intersecting both sides of this inclusion with F2, we obtain

F2 ∩ F1 ⊆ G1 ∩ F1 ∩ F2 ⊆ G1 ∩ F2 ⊆ G2 ∩ F2

where the last inclusion holds because G1 6= F2 and F2 is a leaf of ∆′.
It follows that F2, as well as F1, is a leaf for ∆.

A promising property of trees from an algebraic point of view is that they behave well
under localization, i.e. the localization of a tree is a forest. This property is in particular
useful when making inductive arguments on trees, as localization usually corresponds to
reducing the number of vertices of a simplicial complex. Before proving this, we first
determine what the localization of a simplicial complex precisely looks like.

Discussion 4.2 (On the localization of a simplicial complex). Suppose that

∆ = 〈F1, . . . , Fq〉

is a simplicial complex over the vertex set V = {x1, . . . , xn}. Let p be a prime ideal of
k[x1, . . . , xn] generated by a subset of {x1, . . . , xn} that contains I = F(∆) (We show later
in the proof of Lemma 4.5 that this is the main case that we need to study). We would like
to see what the simplicial complex associated to Ip looks like.

So
p = (xi1 , . . . , xir ).

Now suppose
I = (M1, . . . ,Mq)

where each Mi is the monomial corresponding to the facet Fi. It follows that

Ip = (M ′
1, . . . ,M

′
q)

where each M ′
i is obtained by dividing Mi by the product of all the variables in V \

{xi1 , . . . , xir} that appear in Mi. Some of the monomials in the generating set of Ip are
redundant after this elimination, so without loss of generality we can write:

Ip = (M ′
1, . . . ,M

′
t) (1)

where M ′
t+1, . . . ,M

′
q are the redundant monomials.
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We use the notation δF (Ip) to indicate the simplicial complex associated to the monomial
ideal with the same generating set as the one described for Ip in (1), in the polynomial ring
k[xi1 , . . . , xir ]. It follows that:

δF (Ip) = 〈F ′
1, . . . , F

′
t 〉

where for each i,
F ′

i = Fi ∩ {xi1 , . . . , xir}

and F ′
t+1, . . . , F

′
q each contain at least one of F ′

1, . . . , F
′
t . This simplicial complex is called

the localization of ∆ at the prime ideal p.
Note that every minimal vertex cover A of ∆ that is contained in {xi1 , . . . , xir} remains

a minimal vertex cover of δF (Ip), as the minimal prime over I generated by the elements of
A remains a minimal prime of Ip.

Moreover if ∆ is unmixed then δF (Ip) is also unmixed. Algebraically, this is easy to
see, as the height of the minimal primes of Ip remain the same. One can also see it from
a combinatorial argument: If B ⊆ {xi1 , . . . , xir} is a minimal vertex cover for δF (Ip), then
B covers all facets F ′

1, . . . , F
′
t , and therefore F ′

t+1, . . . , F
′
q, as well. Therefore B covers all of

F1, . . . , Fq, and so has a subset B ′ of cardinality α(∆) that is a minimal vertex cover for ∆,
and so B′ must cover δF (Ip) as well. Therefore B ′ = B.

We have thus shown that:

Lemma 4.3 (Localization of an unmixed simplicial complex is unmixed). Let ∆
be an unmixed simplicial complex with vertices x1, . . . , xn, and let I = F(∆) be the facet
ideal of ∆ in the polynomial ring R = k[x1, . . . , xn] where k is a field. Then for any prime
ideal p of R, δF (Ip) is unmixed with α(δF (Ip)) = α(∆).

We examine a specific case:

Example 4.4. Let ∆ be the simplicial complex below with I = (xyu, xyz, xzv) its facet
ideal in the polynomial ring R = k[x, y, z, u, v].

u x v

zy

Let p = (u, x, z) be a prime ideal of R. Then Ip = (xu, xz, xz) = (xu, xz). The tree
δF (Ip), shown below, has minimal vertex covers {x} and {u, z}, which are the generating
sets for the minimal primes of Ip.

u
x

z

If q = (y, z, v) then Iq = (y, yz, zv) = (y, zv) which corresponds to the forest δF (Iq)
drawn below with minimal vertex covers {y, z} and {y, v}.

zy

v
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Example 4.4 above also demonstrates the following lemma.

Lemma 4.5 (Localization of a tree is a forest). Let ∆ be a tree with vertices x1, . . . , xn,
and let I = F(∆) be the facet ideal of ∆ in the polynomial ring R = k[x1, . . . , xn] where k
is a field. Then for any prime ideal p of R, δF (Ip) is a forest.

Proof. The first step is to show that it is enough to prove this for prime ideals of R generated
by a subset of {x1, . . . , xn}. To see this, assume that p is a prime ideal of R and that p′

is another prime of R generated by all xi ∈ {x1, . . . , xn} such that xi ∈ p (recall that
the minimal primes of I are generated by subsets of {x1, . . . , xn}). So p′ ⊆ p. If I =
(M1, . . . ,Mq), then

Ip′ = (M1
′, . . . ,Mq

′)

where for each i, Mi
′ is the image of Mi in Ip′ . In other words, Mi

′ is obtained by dividing
Mi by the product of all the xj such that xj |Mi and xj /∈ p′. But xj /∈ p′ implies that
xj /∈ p, and so it follows that Mi

′ ∈ Ip. Therefore Ip′ ⊆ Ip. On the other hand since p′ ⊆ p,
Ip ⊆ Ip′ , which implies that Ip′ = Ip (the equality and inclusions of the ideals here mean
equality and inclusion of their generating sets).

We now prove the theorem for p = (xi1 , . . . , xir). Following the setup in Discussion 4.2,
we let

∆ = 〈F1, . . . , Fq〉

Ip = (M ′
1, . . . ,M

′
t)

∆′ = δF (Ip) = 〈F ′
1, . . . , F

′
t 〉.

for some t ≤ q.
To show that ∆′ is a forest, we need to show that every nonempty subcollection of ∆′

has a leaf.
Let

∆′
1 = 〈F ′

j1
, . . . , F ′

js
〉

be a subcollection of ∆′ where F ′
j1

, . . . , F ′
js

are distinct facets. If s = 1, F ′
j1

is obviously a
leaf and so we are done; so suppose s > 1. Consider the corresponding subcollection

∆1 = 〈Fj1 , . . . , Fjs
〉

of ∆, which has a leaf, say Fj1 . So there exists G ∈ ∆1 \ 〈Fj1〉, such that

Fj1 ∩ F ⊆ Fj1 ∩G

for every facet F ∈ 〈Fj2 , . . . , Fjs
〉. Now since each of the F ′

ju
is a nonempty facet of ∆′

1 and
G′ 6= F ′

j1
, the same statement holds in ∆′

1; so

F ′
j1
∩ F ′ ⊆ F ′

j1
∩G′

for every facet F ′ ∈ ∆′
1 \ 〈F

′
j1
〉. This implies that F ′

j1
is a leaf for ∆′

1.
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5 Simplicial complexes as higher dimensional graphs

In this section we study simplicial complexes as graphs with higher dimension, drawing
results that will help us later in inductive arguments on unmixed trees.

Lemma 5.1. If ∆ is a simplicial complex that has a leaf F with joint G, then α(∆\ 〈G〉) =
α(∆).

Proof. Suppose α(∆) = r. Let ∆′ = ∆ \ 〈G〉 and let A be a vertex cover of minimal
cardinality for ∆′, which implies that |A| ≤ r, as any vertex cover of ∆ has a subset that
is a vertex cover of ∆′. Since F is a facet of ∆′, there exists a vertex x ∈ A that belongs
to F . If x is a free vertex of F , we may replace it by a non-free vertex of F to get a vertex
cover A′′ of ∆′, with a subset A′ that is a minimal vertex cover of ∆′, and so |A′| ≤ |A|.
But now A′ is a minimal vertex cover for all of ∆, and so |A′| = |A| = r which implies that
α(∆′) = α(∆) = r.

Corollary 5.2. If the simplicial complex ∆ is a tree and G ∈ ∆ is a joint, then α(∆\〈G〉) =
α(∆).

This means that in a tree with more than one facet, it is always possible to remove a
facet without reducing the vertex covering number. Moreover we show in Proposition 6.6
that if ∆ is an unmixed tree with a joint G, then ∆ \ 〈G〉 is also unmixed. As a result,
one can use induction on the number of facets of an unmixed tree. Note that all these
arguments remain valid for a forest.

We are now ready to extend König’s theorem from graph theory.

Theorem 5.3 (A generalization of König’s theorem). If ∆ is a simplicial complex
that is a tree (forest) and α(∆) = r, then ∆ has r independent facets, and therefore α(∆) =
β(∆) = r.

Proof. We use induction on the number of facets q of ∆. If q = 1, then there is nothing to
prove since α(∆) = β(∆) = 1.

Suppose that the theorem holds for forests with less than q facets and let ∆ be a forest
with q facets. If every connected component of ∆ has only one facet, our claim follows
immediately. Otherwise, by Corollary 5.2 one can remove a joint of ∆ to get a forest ∆ ′

with α(∆′) = r, and so by induction hypothesis ∆′ has r independent facets, which are also
independent facets of ∆; so α(∆) ≤ β(∆). On the other hand it is clear that α(∆) ≥ β(∆),
and so the assertion follows.

6 The structure of an unmixed tree

This section is the combinatorial core of the paper. Here we give a precise description of
the structure of an unmixed tree. It turns out that a tree is unmixed if and only if it is
“grafted” (see Definition 7.1). The notion of grafting is what eventually builds a bridge
between unmixed and Cohen-Macaulay trees.

Below V (∆) stands for the vertex set of ∆.

Lemma 6.1. Let ∆ be an unmixed simplicial complex. Suppose that α(∆) = β(∆) = r, and
{F1, . . . , Fr} is a maximal independent set of facets of ∆. Then every vertex of ∆ belongs
to one of the Fi. In other words, the vertex set of ∆ is the disjoint union of the vertex sets
of the Fi:

V (∆) = V (F1) ∪ . . . ∪ V (Fr)

11



Proof. Let x be an vertex of ∆ that does not belong to any of the Fi. Then one can find
a minimal vertex cover A of ∆ containing x (this is always possible). But then A must
contain one vertex of each of the Fi as well, which implies that |A| ≥ r + 1. Since ∆ is
unmixed, this is not possible.

Remark 6.2. Lemma 6.1 does not hold in general for any unmixed simplicial complex.
Take, for example, the case of a complete graph G over 5 vertices labeled x, y, z, u, v (every
pair of vertices of G are connected by an edge). This graph is unmixed with α(G) = 4 and
β(G) = 2. However, {xy, uv} is a maximal independent set of facets and the fifth vertex
z of G is missing from the vertex set of the graph 〈xy, uv〉, which contradicts the claim of
Lemma 6.1.

Lemma 6.1 along with Theorem 5.3 provides us with the following property for unmixed
trees.

Corollary 6.3. If ∆ is an unmixed tree with α(∆) = r, and {F1, . . . , Fr} is a maximal
independent set of facets of ∆, then V (∆) = V (F1) ∪ . . . ∪ V (Fr).

Corollary 6.4. If ∆ is an unmixed tree, then any maximal independent set of facets of
cardinality α(∆) of ∆ contains all the leaves. In particular, the leaves of an unmixed tree
are independent.

Proof. Every leaf has a free vertex, and so it follows from above that a independent set of
facets of cardinality α(∆) must contain all the leaves. The claim then follows.

Corollary 6.5. If ∆ is an unmixed tree, then a maximal independent set of facets of
cardinality α(∆) of ∆ cannot contain a joint. In particular, a joint of an unmixed tree
cannot be a leaf.

Proof. If G is a joint, it has to intersect a leaf F by definition, and as F is in every maximal
independent set of facets of cardinality α(∆), G cannot be in any.

But even more is true. For an unmixed tree ∆, there is only one maximal independent
set of facets with α(∆) elements, and that is the set consisting of all the leaves. We prove
this in Theorem 6.8.

The proposition below allows us to use induction on the number of facets of an unmixed
tree.

Proposition 6.6. Let ∆ be an unmixed tree with a leaf F , and let G be a joint of F . Then
∆′ = ∆ \ 〈G〉 is also unmixed.

Proof. We use induction on the number of vertices of ∆. Let

∆ = 〈F1, . . . , Fq〉

and
V = {x1, . . . , xn}

be the vertex set for ∆.
The case n = 1 is clear.

12



Suppose that α(∆) = r and A is a minimal vertex cover for ∆′. By Corollary 5.2
α(∆′) = r as well. If A contains any vertex of G, then it is also a minimal vertex cover for
∆ and hence of cardinality r. So suppose that

A ∩G = ∅ and |A| > r.

Claim: There is a vertex x ∈ V \ (A ∪G).

Proof of Claim: If not, then

V = A ∪G. (2)

We show that this is not possible.

Notice that for any y ∈ A there is a facet H ∈ ∆′ such that H ∩A = {y} (If no such
H existed, then A \ {y} would also be a vertex cover).

From (2) it follows that

H = (G ∩H) ∪ {y}. (3)

On the other hand using Theorem 5.3 we can assume {F1, . . . , Fr} is a maximal
independent set of facets in ∆. By Corollary 6.5

G /∈ {F1, . . . , Fr}.

As |A| > r, one of the Fi, say Fr, has to contain more than one element of A, so
suppose

A ∩ Fr = {y1, . . . , ys}

where s > 1 and y1, . . . , ys are distinct elements of A. It follows from (2) that

Fr = (Fr ∩G) ∪ {y1, . . . , ys}. (4)

From the discussion preceding (3) above, one can pick H1, . . . ,Hs to be facets of ∆′

such that

Hi = (G ∩Hi) ∪ {yi} (5)

for i = 1, . . . , s, and consider the tree

〈G,Fr ,H1, . . . ,Hs〉

which by Lemma 4.1 is supposed to have two leaves. But based on the descriptions
of Fr,H1, . . . ,Hs in (4) and (5), only one facet of this tree, namely G, could possibly
have a free vertex, which is a contradiction. This proves the claim.

We now proceed to showing that |A| > r is not possible.
Let x ∈ V \ (A∪G). We localize at the prime ideal p generated by V \ {x}, and use the

induction hypothesis.
Let

I = F(∆) and I ′ = F(∆′)

13



and let
∆p = δF (Ip) and ∆′

p = δF (I ′p)

and
From Discussion 4.2 we know that, without loss of generality, for some t ≤ q

∆p = 〈F̃1, . . . , F̃t〉

where F̃i = Fi \ {x}, and each of F̃t+1, . . . , F̃q contains at least one of F̃1, . . . , F̃t.
We also know by Lemma 4.5 that ∆p is a forest whose vertex set is a proper subset of

V .
By Lemma 4.3 ∆p is unmixed with α(∆p) = r
We now focus on ∆′

p. Besides possibly G̃, all other facets of ∆p and ∆′
p are the same.

We show why this is true.
Let F̃i ∈ ∆′

p. Then clearly

F̃j 6⊆ F̃i for all Fj ∈ ∆′, j 6= i.

On the other hand, as G̃ = G and G 6⊆ Fi, we have

G̃ 6⊆ F̃i

and so F̃i ∈ ∆p.
Conversely, if F̃i ∈ ∆p, then

F̃j 6⊆ F̃i for all Fj ∈ ∆, j 6= i

which implies the same for all Fj ∈ ∆′, and therefore F̃i ∈ ∆′
p.

So there are two possible scenarios:

Case 1. If G̃ /∈ ∆p, then
∆p = ∆′

p

which implies that A is also a minimal vertex cover of ∆p, which is unmixed, and
hence |A| = r; a contradiction.

Case 2. If G̃ ∈ ∆p then
F̃ ∈ ∆p.

If not, then for some facet H of ∆, we have H̃ ⊆ F̃ , so H ∩F 6= ∅ and therefore, since
G is a joint of the leaf F ,

H ∩ F ⊆ G ∩ F

which immediately results in
H̃ ⊆ G̃

which is not possible.

In fact, F̃ remains a leaf in ∆p, since if H̃ is a facet of ∆p such that H̃ ∩ F̃ 6= ∅, then

∅ 6= H ∩ F ⊆ G ∩ F =⇒ H̃ ∩ F̃ ⊆ G̃ ∩ F̃

and so G̃ is a joint of ∆p.

Now by the induction hypothesis,

∆′
p = ∆p \ 〈G̃〉

is an unmixed forest. This again implies that |A| = r; a contradiction.
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Example 6.7. Although not obvious at a first glance, Proposition 6.6 does not necessar-
ily hold if G is not a tree. The following example of an unmixed graph G with a leaf
demonstrates this point.

y

G:

w

v

z

x

u

G’:

u z

x

w

v

y

The graph G above was taken from the table of unmixed graphs in [Vi2]. The minimal
vertex covers of G, all of cardinality 3, are {w, z, y}, {v, x, u}, and {v, z, y}. But once one
removes the joint {v, z}, G′ has minimal vertex covers {w, y, z} and {w, y, x, u} of different
cardinalities, and is therefore not unmixed.

Theorem 6.8 (Structure theorem for unmixed trees). Suppose that ∆ is an unmixed
tree with more than one facet such that α(∆) = r. Then ∆ can be written as

∆ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉

with the following properties:

(i) F1, . . . , Fr are all the leaves of ∆;

(ii) {G1, . . . , Gs} ∩ {F1, . . . , Fr} = ∅;

(iii) For i 6= j, Fi ∩ Fj = ∅;

(iv) If a facet H ∈ ∆ is not a leaf, then it does not contain a free vertex.

Proof. If we prove (i), then parts (ii), (iii) and (iv) will follow from (i), Corollary 6.4 and
Corollary 6.3.

We prove part (i) by induction on the number of facets q of ∆. If q > 1, then q ≥ 3 (if ∆
is a tree of two facets, both facets must be leaves by Lemma 4.1, and since ∆ is connected,
we can get minimal vertex covers of cardinalities one and two, which means that ∆ is not
unmixed).

So the base case for induction is when q = 3. In this case, let F1 and F2 be the two
disjoint leaves of ∆, and let G1 be the third facet. Since ∆ is connected and unmixed, G1

cannot be a leaf (because the leaves are pairwise disjoint). So G1 is a joint for both F1 and
F2 and this settles the case q = 3.

For the general case, suppose that G is a joint of ∆. By Corollary 6.5, G is not a leaf.
By Corollary 5.2 and Proposition 6.6, if we remove G, the forest ∆′ = ∆ \ 〈G〉 is unmixed
and α(∆′) = r. By the induction hypothesis,

∆′ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉 (6)
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where conditions (i) to (iv) are satisfied. It is easy to see from condition (iv) that if F is a
leaf of ∆, then it will still be a leaf of ∆′ (because it has a free vertex).

Our goal is to show that the converse is true, that is, to show that F1, . . . , Fr are all the
leaves of ∆.

We have the following presentation for ∆:

∆ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉 ∪ 〈G〉. (7)

There are two cases to consider.

Case 1. G is the only joint of ∆.

Suppose, without loss of generality, that for some e, F1, . . . , Fe−1 are leaves of ∆ and
Fe, . . . , Fr are not leaves of ∆. Remove F1, . . . , Fe−1 from ∆ to obtain the forest

∆′′ = 〈Fe, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉 ∪ 〈G〉.

By Lemma 4.1, ∆′′ has at least two leaves. Neither one of G1, . . . , Gs could be a leaf,
because neither one of them has a free vertex. To see this, note that by the induction
hypothesis on ∆′ and part (iv) of the theorem, G1, . . . , Gs do not have free vertices
in ∆′, and hence they cannot have free vertices in ∆. As facets of ∆′′, they still do
not have free vertices, because as G is the only joint of ∆,

Gi ∩ Fj ⊆ G ∩ Fj ⊆ G for 1 ≤ i ≤ s and 1 ≤ j ≤ e− 1.

Since G is a facet of ∆′′ the removal of F1, . . . , Fe−1 does not free any vertices of
G1, . . . , Gs.

This implies that at least one of Fe, . . . , Fr is a leaf of ∆′′. Suppose that Fe is a leaf.
Then there exists a facet G′ ∈ ∆′′ such that

H ∩ Fe ⊆ G′ ∩ Fe for all H ∈ ∆′′ \ 〈Fe〉.

Since Fi ∩ Fe = ∅ for i = 1, . . . e− 1, it follows that

H ∩ Fe ⊆ G′ ∩ Fe for all H ∈ ∆ \ 〈Fe〉

and so Fe is a leaf of ∆, which is a contradiction.

Case 2. ∆ has another joint G′ distinct from G.

Consider the presentation of ∆ as in (7). As {F1, . . . , Fr} is a maximal independent
set of facets in ∆, it cannot contain G′ (Corollary 6.5). Therefore

G′ ∈ {G1, . . . , Gs}.

We show that, say, F1 is a leaf of ∆.

Consider the two unmixed forests

∆′ = ∆ \ 〈G〉 and ∆′′ = ∆ \ 〈G′〉.

We already know from before that F1 is a leaf of ∆′. From the fact that {F1, . . . , Fr}
is a maximal independent set of facets in ∆′′ and Corollary 6.4 and the induction
hypothesis, it follows that F1 is also a leaf of ∆′′.
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So, by the definition of a leaf, there is a facet, say G1, in ∆′, such that

H ∩ F1 ⊆ G1 ∩ F1 for all H 6= G,F1. (8)

and a facet G2 ∈ ∆′′ such that

H ∩ F1 ⊆ G2 ∩ F1 for all H 6= G′, F1. (9)

The possible scenarios are the following.

(a) G1 6= G′ or G2 6= G.

Suppose G1 6= G′. In this case G1 ∈ ∆′′, and so because of (9)

G1 ∩ F1 ⊆ G2 ∩ F1

which with (8) and (9) implies that

H ∩ F1 ⊆ G2 ∩ F1 for all H 6= F1

hence F1 is a leaf of ∆. The case G2 6= G is identical.

(b) G1 = G′ and G2 = G.

In this case, Statements (8) and (9), respectively, translate into

{

H ∩ F1 ⊆ G′ ∩ F1 for all H 6= G,F1

H ∩ F1 ⊆ G ∩ F1 for all H 6= G′, F1

(10)

If F1 is not a leaf of ∆, it follows from (10) that







G ∩ F1 6⊆ G′ ∩ F1

G′ ∩ F1 6⊆ G ∩ F1

H ∩ F1 ⊆ (G ∩G′) ∩ F1 for all H 6= G,G′, F1

(11)

By (11) there exist

x ∈ (G ∩ F1) \G′ and y ∈ (G′ ∩ F1) \G. (12)

Claim: There is a minimal vertex cover for ∆ \ 〈G,G′, F1〉 that avoids all the
vertices in G, G′ and F1.

Proof of Claim: We first show that there is no facet of ∆ \ 〈G,G′, F1〉 that
has all its vertices in G ∪G′. Suppose that H is such a facet:

H = (H ∩G) ∪ (H ∩G′) (13)

and consider the tree
∆1 = 〈G,G′, F1,H〉.

By Lemma 4.1, ∆1 must have two leaves. Note that H cannot be a leaf,
since because of (13) it has no free vertices. If F1 is a leaf, then it cannot
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have G or G′ as its joint, since that violates the first two conditions in (11),
and so H must be its joint. But then it follows that

G ∩ F1 ⊆ H ∩ F1.

This implies that x ∈ H (where x is defined in (12)), which along with the
third part of (11), results in x ∈ G′, which is a contradiction.
So G and G′ are the two leaves of ∆1. Consider G first. If G′ is a joint for
G, it follows that

F1 ∩G ⊆ G′ ∩G ⊆ G′

which contradicts (11).
If H is a joint of G, then

F1 ∩G ⊆ H ∩G

which implies that x ∈ H, but this again means x ∈ G′ (because of (11)),
which is a contradiction. So F1 is the only possible joint for G.
With an identical argument for G′, it follows that F1 is a joint for both G
and G′ in ∆1, and therefore

H ∩G ⊆ F1 ∩G and H ∩G′ ⊆ F1 ∩G′

which along with (13) implies that

H ⊆ F1

which is impossible since H and F1 are both facets of ∆.
So we have shown that every facet of ∆ other than G, G′ and F1, has at least
one vertex outside G and G′ (and therefore by the third condition in (11),
outside F1).
For each facet H of ∆ \ 〈G,G′, F1〉, pick a vertex z ∈ H that avoids all
three facets G, G′ and F1. The set of these vertices is a vertex cover for
∆ \ 〈G,G′, F1〉, and so it has a subset that is a minimal vertex cover. This
proves the claim.

Now let A be a minimal vertex cover for ∆\〈G,G′, F1〉 that avoids all the vertices
in G, G′ and F1. Since ∆ \ 〈G,G′, F1〉 has r− 1 independent facets, |A| ≥ r− 1.
Now A∪{x, y} is a minimal vertex cover for ∆ with more than r vertices, which
contradicts the fact that ∆ is unmixed with vertex covering number equal to r
(Note that x and y do not belong to any facet of ∆ \ 〈G,G′, F1〉, as this would
contradict the third condition in (11)).

So both cases 1 and 2 lead to contradictions, therefore all of F1, . . . , Fr must be leaves
of ∆, which proves the theorem.

Example 6.9. The simplicial complex ∆ shown below is an unmixed tree, satisfying prop-
erties (i) to (iv) of Theorem 6.8.
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It is important to notice that Theorem 6.8 does not suggest that every facet in an
unmixed tree is either a leaf or a joint (See Example 6.10 below). On the other hand two
different leaves in an unmixed tree may share a joint, as is the case with the unmixed graph
〈xy, yz, zu〉. For these reasons the two numbers r and s in the statement of Theorem 6.8
that count the number of leaves and non-leaves, respectively, do not seem to have any
particular relationship to one another.

Example 6.10. The following simplicial complex, which is the facet complex of the ideal

(xu, uvew, zvew, efw, efg, fgy)

is an unmixed tree with a facet {e, f, w} that is neither a leaf nor a joint. In fact, the two
leaves {x, u} and {z, v, e, w} share a joint {u, v, e, w}.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���

�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
������������������������������������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�


�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

x w

u

z v

e

g

y

f

Above, for simplicity, an n-dimensional facet (simplex) is drawn as a shaded polygon
with n + 1 vertices. The picture in 3D is as follows:
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7 Grafting simplicial complexes

All that we proved in the previous section about unmixed trees can be put into one
definition– namely that of a grafted tree. In fact, the method of grafting works as an
effective way to build an unmixed simplicial complex from any given simplicial complex
by adding new leaves (Theorem 7.6). It turns out that a grafted simplicial complex is
Cohen-Macaulay (Theorem 8.2).
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Definition 7.1 (grafting). A simplicial complex ∆ is a grafting of the simplicial complex
∆′ = 〈G1, . . . , Gs〉 with the simplices F1, . . . , Fr (or we say that ∆ is grafted) if

∆ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉

with the following properties:

(i) V (∆′) ⊆ V (F1) ∪ . . . ∪ V (Fr);

(ii) F1, . . . , Fr are all the leaves of ∆;

(iii) {G1, . . . , Gs} ∩ {F1, . . . , Fr} = ∅;

(iv) For i 6= j, Fi ∩ Fj = ∅;

(v) If Gi is a joint of ∆, then ∆ \ 〈Gi〉 is also grafted.

Note that a simplicial complex that consists of only one facet or several pairwise disjoint
facets is indeed grafted, as it could be considered as a grafting of the empty simplicial
complex. It is easy to check that conditions (i) to (v) above are satisfied in this case.

It is also clear that the union of two or more grafted simplicial complexes is itself grafted.

Remark 7.2. Condition (v) above implies that if F is a leaf of a grafted ∆, then all the
facets H that intersect F have embedded intersections; in other words if H ∩F and H ′ ∩F
are both nonempty, then

H ∩ F ⊆ H ′ ∩ F or H ′ ∩ F ⊆ H ∩ F.

This implies that there is a chain of intersections

H1 ∩ F ⊇ . . . ⊇ Ht ∩ F

where H1, . . . ,Ht are all the facets of ∆ that intersect F .

Remark 7.3. Condition (v) in Definition 7.1 can be replaced by “∆\ 〈Gi〉 is grafted for all
i = 1, . . . , s”. This is because even if Gi is not a joint of ∆, ∆ \ 〈Gi〉 satisfies properties (i),
(iii) and (iv), and it satisfies (ii) and (v) because of Remark 7.2, and so ∆ \ 〈Gi〉 is grafted.

Remark 7.4 (A grafting of a tree is also a tree). If ∆′ in Definition 7.1 is a tree, then
∆ is also a tree. To see this, consider any subcollection ∆′′ of ∆. If ∆′′ contains Fi for some
i, then by remarks 7.2 and 7.3 Fi is a leaf of ∆′′. If ∆′′ contains neither of the Fi, then it
is a subcollection of the tree ∆′, which implies that ∆′′ has a leaf.

The “suspension” of a graph, as defined in [Vi1], is also a grafting of that graph.

Example 7.5. The tree 〈F1, F2, G1, G2〉 that appeared in Example 6.9 above is a grafting
of the tree 〈G1, G2〉 with the leaves F1 and F2. In fact, there may be more than one way to
graft a given simplicial complex. For example, some possible ways of grafting 〈G1, G2〉 are
shown below:
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Theorem 7.6 (A grafted simplicial complex is unmixed). Let

∆ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉

be a grafting of the simplicial complex 〈G1, . . . , Gs〉 with the simplices F1, . . . , Fr. Then ∆
is unmixed, and α(∆) = r.

Proof. If 〈G1, . . . , Gs〉 is the empty simplicial complex, the claim is immediate, so we assume
that it is nonempty.

We argue by induction on the number of facets q of ∆. The first case to consider is
q = 3. In this case, ∆ must have at least two leaves, as if there were only one leaf F1, i.e.
if ∆ = 〈F1〉 ∪ 〈G1, G2〉, then by Condition (i) of Definition 7.1 we would have G1 ⊆ F1 and
G2 ⊆ F1, which is impossible. So ∆ = 〈F1, F2〉∪ 〈G1〉, where G1 ⊆ F1∪F2 and F1∩F2 = ∅.
It is now easy to see that ∆ is unmixed with α(∆) = 2.

Suppose ∆ has q > 3 facets, and let G1 be a joint of the leaf F1. By Part (v) of
Definition 7.1 ∆′ = ∆ \ 〈G1〉 is also grafted, and therefore by the induction hypothesis
unmixed with α(∆′) = r.

Let A be a minimal vertex cover of ∆. We already know that |A| ≥ r as F1, . . . , Fr are r
independent facets of ∆. Now suppose that |A| > r . Since A is also a vertex cover for ∆ ′,
it has a subset A′ that is a minimal vertex cover of ∆′ with |A′| = r. Since A′ is a proper
subset of A, it is not a vertex cover for ∆, and therefore A′ cannot contain a vertex of G1.
So A′ contains a free vertex x of F1 (all non-free vertices of F1 are shared with G1). Now
A must contain a vertex y of G1; say y ∈ G1 ∩ F2 (y /∈ F1, since in that case x would be
redundant). So

A = A′ ∪ {y}.

On the other hand A′ must also contain a vertex of F2, say z. So F2 contributes two vertices
y and z to A; note that neither one of y or z could be a free vertex, as in that case the free
one would be redundant.

Now suppose that G2 is a joint of F2. Remove G2 from ∆ to get

∆′′ = ∆ \ 〈G2〉.
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So A has a subset A′′, |A′′| = r, that is a minimal vertex cover for ∆′′. But as A already
has exactly one vertex in each of F1, F3, . . . , Fr, the only way to get A′′ from A is to remove
one of y or z, this means that:

A′′ = A \ {y} or A′′ = A \ {z}.

In either case A′′ contains a vertex of G2, which implies that A′′ is a minimal vertex cover
for ∆; a contradiction.

Example 7.5 demonstrates Theorem 7.6: ∆ = 〈G1, G2〉 is a non-unmixed tree, which
gets grafted with some leaves to make the unmixed trees ∆′, ∆′′ and ∆′′′.

One could graft any simplicial complex, even a badly non-unmixed non-tree.

Example 7.7. Let ∆′ be the non-unmixed non-tree in Example 3.3. We could graft ∆′

with three new leaves
{x, y, v}, {u,w}, {z, e}

The resulting picture below is unmixed, and moreover, as we prove later, Cohen-
Macaulay.

x

z

yv

e

u

w

In the case of a tree theorems 6.8 and 7.6 put together with Corollary 6.3 produce a
much stronger statement:

Corollary 7.8 (A tree is unmixed if and only if grafted). Suppose the simplicial
complex ∆ is a tree. Then ∆ is unmixed if and only if ∆ is grafted.

Grafted simplicial complexes behave well under localization; in other words, the localiza-
tion of a grafted simplicial complex is also grafted. In the case of trees this follows directly
from Corollary 7.8, Lemma 4.3 and Lemma 4.5. But the statement holds more generally.

Proposition 7.9 (Localization of a grafted simplicial complex is grafted). Let
I = F(∆) where ∆ is a grafted simplicial complex with vertices labeled x1, . . . , xn. Suppose
that k is a field and p is a prime ideal of the polynomial ring k[x1, . . . , xn]. Then δF (Ip) is
a grafted simplicial complex.

Proof. With notation as in Definition 7.1, let

∆ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉.

If ∆ has only one facet, the statement of the theorem follows immediately, so assume
that ∆ has two or more facets.

As in the proof of Lemma 4.5, it is enough to assume that p is generated by a subset of
{x1, . . . , xn}, so

p = (xi1 , . . . , xih).

Following Discussion 4.2, let

∆p = δF (Ip) = 〈F ′
1, . . . , F

′
t 〉 ∪ 〈G

′
1, . . . , G

′
u〉
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where for i = 1, . . . , r and j = 1, . . . , s

F ′
i = Fi ∩ {xi1 , . . . , xih} and G′

j = Gj ∩ {xi1 , . . . , xih}

and F ′
t+1, . . . , F

′
r, G

′
u+1, . . . , G

′
s each contain at least one of

F ′
1, . . . , F

′
t , G

′
1, . . . , G

′
u. (14)

We now rename the facets of ∆p as follows. For i = 1, . . . , t, let

Hi = F ′
i .

For each i = t + 1, . . . , r, F ′
i contains one of the facets appearing in (14). But as by

definition Fi ∩ Fj = ∅ for all j 6= i, there must be some j ≤ u for which G′
j ⊆ F ′

i . For this
particular j, set

Hi = G′
j .

This choice of j is well-defined: if there were some f ≤ u distinct from j such that
G′

f ⊆ F ′
i , then it would follow from Remark 7.2 that either G′

j ⊆ G′
f or G′

f ⊆ G′
j , which

contradicts the fact that both G′
j and G′

f are facets of ∆p.
We now represent ∆p as

∆p = 〈H1, . . . ,Hr〉 ∪ 〈E1, . . . , Ev〉

where E1, . . . , Ev represent all the other facets of ∆p that were not labeled by some Hi.
Our goal is to show that ∆p is a grafting of the simplicial complex 〈E1, . . . , Ev〉 with

the simplices H1, . . . ,Hr.
It is clear by our construction that the facets H1, . . . ,Hr are pairwise disjoint. To see

this, notice that for each pair of distinct numbers i1, i2 ≤ r, there is a pair of distinct
numbers j1, j2 ≤ r such that

Hi1 ⊆ F ′
j1
⊆ Fj1 and Hi2 ⊆ F ′

j2
⊆ Fj2

and as Fj1 ∩ Fj2 = ∅,
Hi1 ∩Hi2 = ∅.

So Condition (iv) of Definition 7.1 is satisfied.
On the other hand, by Theorem 7.6 ∆ is unmixed, so by Lemma 4.3 ∆p is unmixed with

α(∆p) = α(∆) = r. We now apply Lemma 6.1 to ∆p to deduce that

V (∆p) = V (H1) ∪ . . . ∪ V (Hr),

which implies Condition (i) in Definition 7.1. This also implies that E1, . . . , Ev cannot have
free vertices, and hence cannot be leaves of ∆p.

Condition (iii) is satisfied by the construction of ∆p.
We need to show that H1, . . . ,Hr are all leaves of ∆p. If ∆p = 〈H1, . . . ,Hr〉 then

∆p is grafted by definition. So suppose that ∆p has a connected component ∆′ with two
or more facets. As ∆′ is connected, it must contain some of the Ei, and as V (∆p) =
V (H1) ∪ . . . ∪ V (Hr), ∆′ must also contain some of the Hj. So we can without loss of
generality assume that

∆′ = 〈H1, . . . ,He〉 ∪ 〈E1, . . . , Ef 〉

for some 1 ≤ e ≤ r and 1 ≤ f ≤ v.
We now show that, for example, H1 is a leaf for ∆′. There are two cases to consider:
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Case 1. H1 = F ′
i for some i such that 1 ≤ i ≤ t.

Since ∆′ is connected, it has some facets that intersect Hi; suppose that Ej1 , . . . , Ejl

are all the facets of ∆′ \ 〈H1〉 such that

H1 ∩Ejz
6= ∅

for z = 1, . . . , l.

For each z = 1, . . . , l suppose that

Ejz
= G′

mz
.

The above paragraph translates into

F ′
i ∩G′

mz
6= ∅

and hence
Fi ∩Gmz

6= ∅

for z = 1, . . . , l.

From Remark 7.2 it follows that there is some total order of inclusion on the nonempty
sets Fi ∩Gmz

; we assume that

Fi ∩Gm1
⊇ Fi ∩Gm2

⊇ . . . ⊇ Fi ∩Gml

which after intersecting each set with {xi1 , . . . , xih} turns into

F ′
i ∩G′

m1
⊇ F ′

i ∩G′
m2
⊇ . . . ⊇ F ′

i ∩G′
ml

which is equivalent to

H1 ∩Ej1 ⊇ H1 ∩Ej2 ⊇ . . . ⊇ H1 ∩Ejl

It follows that H1 is a leaf of ∆′, and in addition, Condition (v) of Definition 7.1 is
satisfied.

Case 2. H1 = G′
j for some j such that 1 ≤ j ≤ u.

In this case for some i, t < i ≤ r,

H1 = G′
j ⊆ F ′

i .

Exactly as above, let Ej1 , . . . , Ejl
be all the facets of ∆′ \ 〈H1〉 such that H1∩Ejz

6= ∅,
and let Ejz

= G′
mz

for z = 1, . . . , l.

As all the sets Fi ∩ Gmz
are nonempty, we follow the exact argument as above to

obtain the chain
F ′

i ∩G′
m1
⊇ F ′

i ∩G′
m2
⊇ . . . ⊇ F ′

i ∩G′
ml

As G′
j ⊆ F ′

i , we can intersect all these sets with G′
j to obtain

G′
j ∩G′

m1
⊇ G′

j ∩G′
m2
⊇ . . . ⊇ G′

j ∩G′
ml

which is equivalent to

H1 ∩Ej1 ⊇ H1 ∩Ej2 ⊇ . . . ⊇ H1 ∩Ejl

It follows that H1 is a leaf of ∆′, and also Condition (v) of Definition 7.1 is satisfied.
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8 Grafted simplicial complexes are Cohen-Macaulay

We are now ready to show that the facet ideal of a grafted simplicial complex has a Cohen-
Macaulay quotient. Besides revealing a wealth of square-free monomial ideals with Cohen-
Macaulay quotients, this result implies that all unmixed trees are Cohen-Macaulay.

Let ∆ be a grafted simplicial complex over a vertex set V = {x1, . . . , xn}. By Defini-
tion 7.1, ∆ will have the form

∆ = 〈F1, . . . , Fr〉 ∪ 〈G1, . . . , Gs〉

where α(∆) = r and F1, . . . , Fr are the leaves of ∆.
Let

R(∆) = k[x1, . . . , xn]/F(∆),

where k is a field and let
m = (x1, . . . , xn)

be the irrelevant maximal ideal.
From Discussion 2.13 we know that

dim R(∆) = n− r.

In order to show that R(∆) is Cohen-Macaulay, it is enough to show that there is a
homogeneous regular sequence in m of length n− r.

It is interesting to observe how the previous sentence follows also from Proposition 7.9:
if m is any other maximal ideal of R(∆), from the proof of Lemma 4.5 and Proposition 7.9
we see that if p = (x1, . . . , xe) is the ideal generated by all of xi that belong to m, then
Im = Ip is the facet ideal of a grafted simplicial complex over the vertex set {x1, . . . , xe}.
So one can write m = p + q where q is a prime ideal of k[xe+1, . . . , xn]. It follows that

R(∆)m = k[x1, . . . , xe]p/Ip ⊗k k[xe+1, . . . , xn]q.

As k[xe+1, . . . , xn]q is clearly Cohen-Macaulay, by Theorem 5.5.5 of [V], it is enough to
show that k[x1, . . . , xe]p/Ip is Cohen-Macaulay in order to conclude that R(∆)m is Cohen-
Macaulay. But this is again the case of localizing at the irrelevant ideal.

Now suppose that for each i ≤ r,

Fi = yix
i
1 . . . xi

ui

where yi is a free vertex of the leaf Fi, and yi, x
i
1, . . . , x

i
ui
∈ V . We wish to show that

y1 − x1
1, . . . , y1 − x1

u1
, . . . , yr − xr

1, . . . , yr − xr
ur

(15)

is a regular sequence in R(∆). This follows from the process of “polarization” that we
describe below.

Proposition 8.1 ([Fr]). Let R be the ring k[x1, . . . , xn]/(M1, . . . ,Mq), where M1, . . . ,Mq

are monomials in the variables x1, . . . , xn, and k is a field. Then there is an N ≥ n, and a
set of square-free monomials N1, . . . , Nq in the polynomial ring k[x1, . . . , xN ], such that

R = R′/(f1, . . . , fN−n)

where R′ = k[x1, . . . , xN ]/(N1, . . . , Nq) and f1, . . . , fN−n is a regular sequence of forms of
degree one in R′.
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For the purpose of our argument, it is instructive to see an outline of the proof of this
proposition.

Sketch of proof. Suppose, without loss of generality, that x1|Mi for 1 ≤ i ≤ s, and x1 6 |Mj

for s < j ≤ q.
For i = 1, . . . , s we set

M ′
i =

Mi

x1

so that we can write

I = (M1, . . . ,Mq) = (x1M
′
1, . . . , x1M

′
s,Ms+1, . . . ,Mq).

Define

I1 = (xn+1M
′
1, . . . , xn+1M

′
s,Ms+1, . . . ,Mq) ⊆ k[x1, . . . , xn, xn+1].

Then R = R1/(xn+1 − x1) where

R1 = k[x1, . . . , xn, xn+1]/I1.

It is then shown that xn+1 − x1 is a non-zerodivisor in R1. If I1 is square-free, we are
done. Otherwise one applies the same procedure to I1 continually until the ideal becomes
square-free.

What we would like to show is that Sequence (15) polarizes the ring

S = k[y1, . . . , yr]/(y
u1+1
1 , . . . , yur+1

r , E1, . . . , Es)

into the ring R(∆), where E1, . . . , Es are monomials corresponding to the facets G1, . . . , Gs,
where each vertex belonging to Fi has been replaced by the free vertex yi. In other words if

J = (y1 − x1
1, . . . , y1 − x1

u1
, . . . , yr − xr

1, . . . , yr − xr
ur

),

we wish to show that
S = R(∆)/J.

It will then follow from the proof of Proposition 8.1 (as detailed in [Fr] as well as in [Vi2])
that Sequence (15) is a regular sequence in R(∆).

Intuitively our claim is straightforward to see. The only problem that may arise is if
after applying Sequence (15) to S, we end up with a permutation of the vertices of ∆. To
prevent this from happening, we use the subtle structure of a grafted simplicial complex
(Remark 7.2) that the facets intersecting a leaf do so in an embedded (and therefore ordered)
manner. In other words, suppose for the leaf Fi, the facets H i

1, . . . ,H
i
ei

are all the facets of
∆ \ 〈Fi〉 that intersect Fi, with the ordering

Hi
1 ∩ Fi ⊆ . . . ⊆ H i

ei
∩ Fi. (16)

So in Sequence (15), we order

yi − xi
1, . . . , yi − xi

ui
(17)

such that if for any e and f , xi
e ∈ Hi

f then xi
e ∈ Hi

f+1
.

26



We now use induction on the number of facets of ∆. If we remove a joint, say G1 ∈
U∆(F1), we obtain a grafted simplicial complex

∆′ = ∆ \ 〈G1〉

over the same set of vertices x1, . . . , xn, with α(∆′) = α(∆) (Lemma 5.1). Therefore if

R(∆′) = k[x1, . . . , xn]/F(∆′)

then
dim R(∆) = dim R(∆′).

Moreover, ∆′ has F1, . . . , Fr as leaves. So by the induction hypothesis, Sequence (15)
polarizes the ring

S′ = k[y1, . . . , yr]/(y
u1+1
1 , . . . , yur+1

r , E2, . . . , Es)

into R(∆′), or in other words,
S′ = R(∆′)/J.

The induction hypothesis has ensured that after applying Sequence (15) to S ′, all facets
of ∆′ are restored to their original positions and labeling. Now it all reduces to showing
that during this polarization process, E1 turns into G1.

This is clear, as for every i, G1 ∩ Fi has its place in the ordered sequence (16), and
so if |G1 ∩ Fi| = hi, then the first hi applications of Sequence (17) restore G1 ∩ Fi before
moving on to facets that have larger intersections with Fi. As G1 has disjoint intersections
with F1, . . . , Fr, once Sequence (17) has been applied for all i, G1 is restored to its proper
position.

We have shown that:

Theorem 8.2 (Grafted simplicial complexes are Cohen-Macaulay). Let ∆ be a
grafted simplicial complex over a set of vertices labeled x1, . . . , xn, and let k be a field. Then
R(∆) = k[x1, . . . , xn]/F(∆) is Cohen-Macaulay.

Theorem 8.2 along with Proposition 2.12 and Corollary 7.8 imply that for a tree being
unmixed and being Cohen-Macaulay are equivalent conditions.

Corollary 8.3 (A tree is Cohen-Macaulay if and only if unmixed). Let ∆ be
a tree over a set of vertices x1, . . . , xn, and let k be a field. Then the quotient ring
k[x1, . . . , xn]/F(∆) is Cohen-Macaulay if and only if ∆ is unmixed.
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