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1 Introduction

In this paper we study monomial ideals using the operation “polarization” to first
turn them into square-free monomial ideals. Various forms of polarization appear
throughout the literature and have been used for different purposes in algebra and
algebraic combinatorics (for example, Weyman [17], Fröberg [8], Schwartau [13],
or Rota and Stein [11]). One of the most useful features of polarization is that the
chain of substitutions that turn a given monomial ideal into a square-free one can
be described in terms of a regular sequence (Fröberg [8]). This fact allows many
properties of a monomial ideal to transfer to its polarization. Conversely, to study
a given monomial ideal, one could examine its polarization. The advantage of this
latter approach is that there are many combinatorial tools dealing with square-free
monomial ideals. One of these tools is Stanley-Reisner theory: Schwartau’s thesis
[13] and the book by Stückrad and Vogel [15] discuss how the Stanley-Reisner
theory of square-free monomial ideals produces results about general monomial
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ideals using polarization. Another tool for studying square-free monomial ideals,
which will be our focus here, is facet ideal theory, developed by the author in [5],
[6] and [7].

The paper is organized as follows. In Section 2 we define polarization and in-
troduce some of its basic properties. In Section 3 we introduce facet ideals and
its features that are relevant to this paper. In particular, we introduce simplicial
trees, which correspond to square-free monomial ideals with exceptionally strong
algebraic properties. Section 4 extends the results of facet ideal theory to general
monomial ideals. Here we study a monomial ideal I whose polarization is a tree,
and show that many of the properties of simplicial trees hold for such ideals. This
includes Cohen-Macaulayness of the Rees ring of I (Corollary 4.8), I being sequen-
tially Cohen-Macaulay (Corollary 4.12), and several inductive tools for studying
such ideals, such as localization (see Section 4.1).

Appendix A is an independent study of primary decomposition in a sequentially
Cohen-Macaulay module. We demonstrate how in a sequentially Cohen-Macaulay
module M, every submodule appearing in the filtration of M can be described in
terms of the primary decomposition of the 0-submodule of M. This is used to
prove Proposition 4.11.

2 Polarization

Definition 2.1 Let R = k[x1, . . . ,xn] be a polynomial ring over a field k. Suppose
M = x1

a1 . . .xn
an is a monomial in R. Then we define the polarization of M to be

the square-free monomial

P (M) = x1,1x1,2 . . .x1,a1 x2,1 . . .x2,a2 . . .xn,1 . . .xn,an

in the polynomial ring S = k[xi, j | 1 ≤ i ≤ n,1 ≤ j ≤ ai].
If I is an ideal of R generated by monomials M1, . . . ,Mq, then the polarization

of I is defined as:
P (I) =

(P (M1), . . . ,P (Mq)
)

which is a square-free monomial ideal in a polynomial ring S.

Here is an example of how polarization works.

Example 2.2 Let J = (x1
2,x1x2,x2

3) ⊆ R = k[x1,x2]. Then

P (J) = (x1,1x1,2,x1,1x2,1,x2,1x2,2x2,3)

is the polarization of J in the polynomial ring

S = k[x1,1,x1,2,x2,1,x2,2,x2,3]



Note that by identifying each xi with xi,1, one can consider S as a polynomial
extension of R. Exactly how many variables S has will always depend on what
we polarize. Therefore, as long as we are interested in the polarizations of finitely
many monomials and ideals, S remains a finitely generated algebra.

Below we describe some basic properties of polarization, some of which appear
(without proof) in [15]. Here we record the proofs where appropriate.

Proposition 2.3 (basic properties of polarization) Suppose that R = k[x1, . . . ,xn]

is a polynomial ring over a field k, and I and J are two monomial ideals of R.

1. P (I + J) = P (I)+P (J);

2. For two monomials M and N in R, M | N if and only if P (M) | P (N);

3. P (I ∩ J) = P (I)∩P (J);

4. If p =(xi1 , . . . ,xir ) is a (minimal) prime containing I, then P (p) is a (minimal)
prime containing P (I);

5. If p′ = (xi1,e1 , . . . ,xir ,er) is a prime over P (I), then p = (xi1 , . . . ,xir) is a prime
over I. Moreover, if p′ has minimal height (among all primes containing
P (I)), then p must have minimal height as well (among all primes containing
I);

6. height I = height P (I);

Proof:

1. Follows directly from Definition 2.1.

2. Suppose that M = x1
b1 . . .xn

bn and N = x1
c1 . . .xn

cn , and suppose that

P (M) = x1,1 . . .x1,b1 . . .xn,1 . . .xn,bn

and
P (N) = x1,1 . . .x1,c1 . . .xn,1 . . .xn,cn .

If M | N, then bi ≤ ci for all i, which implies that P (M) | P (N). The converse
is also clear using the same argument.

3. Suppose that I = (M1, . . . ,Mq) and J = (N1, . . . ,Ns) where the generators are
all monomials. If U = x1

b1 . . .xn
bn is a monomial in I ∩ J, then for some

generator Mi of I and N j and J, we have Mi |U and N j | U , hence by part 2,
P (Mi) | P (U) and P (N j) | P (U), which implies that P (U) ∈ P (I)∩P (J).
Conversely, if U ′ is a monomial in P (I)∩ P (J), then for some generator
Mi = x1

b1 . . .xn
bn of I and N j = x1

c1 . . .xn
cn and J we have P (Mi) | U ′ and



P (N j) | U ′. This means that lcm(P (Mi),P (N j)) | U ′. It is easy to see
(by an argument similar to the one in part 2) that lcm(P (Mi),P (N j)) =

P (lcm(Mi,N j)). Since lcm(Mi,N j) is one of the generators of I∩J, it follows
that P (lcm(Mi,N j)) is a generator of P (I ∩ J) and hence U ′ ∈ P (I ∩ J).

4. If p = (xi1 , . . . ,xir ) is a minimal prime over I = (M1, . . . ,Mq), then for each of
the xi j there is a Mt such that xi j | Mt , and no other generator of p divides Mt .
The same holds for the polarization of the two ideals: P (p) = (xi1,1, . . . ,xir ,1)

and P (I) = (P (M1), . . . ,P (Mt)), and so P (p) is minimal over P (I).

5. Suppose that p′ = (xi1 ,e1 , . . . ,xir ,er) is a prime lying over P (I). Then for every
generator Mt of I, there is a xi j ,e j in p′ such that xi j ,e j | P (Mt). But this implies
that xi j | Mt , and therefore I ⊆ p = (xi1 , . . . ,xir ).
Now suppose that p′ has minimal height r over P (I), and there is a prime
ideal q over I with height q < r. This implies (from part 4) that P (q), which
is a prime of height less than r, contains P (I), which is a contradiction.

6. This follows from parts 4 and 5.

Example 2.4 It is not true that every minimal prime of P (I) comes from a minimal
prime of I. For example, let I = (x2

1,x1x2
2). Then

P (I) = (x1,1x1,2,x1,1x2,1x2,2).

The ideal (x1,2,x2,1) is a minimal prime over P (I), but the corresponding prime
(x1,x2) is not a minimal prime of I (however, if we had taken any minimal prime
of minimal height of P (I), e.g. (x1,1), then the corresponding prime over I would
have been minimal; this is part 5 above).

For a monomial ideal I in a polynomial ring R = k[x1, . . . ,xn] as above, there is
a unique irredundant irreducible decomposition of the form

I = q1 ∩ . . .∩qm

where each qi is a primary ideal generated by powers of the variables x1, . . . ,xn

(see [16, Theorem 5.1.17]).

Proposition 2.5 (polarization and primary decomposition) Let I be a monomial
ideal in a polynomial ring R = k[x1, . . . ,xn], and let P (I) be the polarization of I in
S = k[xi, j ] as described in Definition 2.1.



1. If I = (xi1
a1 , . . . ,xir

ar) where the a j are positive integers, then

P (I) =
⋂

1≤c j≤a j
1≤ j≤r

(xi1,c1 , . . . ,xir ,cr )

2. If I = (xi1 , . . . ,xir )
m, where 1 ≤ i1, . . . , ir ≤ n and m is a positive integer, then

P (I) has the following irredundant irreducible primary decomposition:

P (I) =
⋂

1≤c j≤m
Σc j≤m+r−1

(xi1,c1 , . . . ,xir ,cr )

3. Suppose that I = q1 ∩ . . .∩qm is the unique irredundant irreducible primary
decomposition of I, such that for each i = 1, . . . ,m,

qi = (x1
ai

1 , . . . ,xn
ai

n),

where the ai
j are nonnegative integers, and if ai

j = 0 we assume that x j
ai

j = 0.

Then P (I) has the following irreducible primary decomposition (some primes
might be repeated).

P (I) =
⋂

1≤i≤m

⋂

1≤c j≤ai
j

1≤ j≤n

(x1,c1 , . . . ,xn,cn)

where when ai
j = 0, we assume that c j = x j,0 = 0.

Proof:

1. We know that

P (I) = (xi1,1 . . .xi1,a1 , . . . ,xi1,1 . . .xi1,ar).

Clearly the minimal primes of P (I) are (xi1,c1 , . . . ,xir ,cr ) for all c j ≤ a j . This
settles the claim.

2. Assume, without loss of generality, that I = (x1, . . . ,xr)
m. So we can write

I =
(

x1
b1 . . .xr

br | 0 ≤ bi ≤ m, b1 + · · ·+br = m
)

so that

P (I) =
(

x1,1 . . .x1,b1 . . .xr,1 . . .xr,br | 0 ≤ bi ≤ m, b1 + · · ·+br = m
)

.



We first show that P (I) is contained in the intersection of the ideals of the
form (x1,c1 , . . . ,xr,cr ) described above. It is enough to show this for each
generator of P (I). So we show that

U = x1,1 . . .x1,b1 . . .xr,1 . . .xr,br ∈ I = (x1,c1 , . . . ,xr,cr )

where 0 ≤ bi ≤m, b1 + · · ·+br = m, 1 ≤ c j ≤m and c1 + · · ·+cr ≤m+r−1.
If for any i, bi ≥ ci, then it would be clear that U ∈ I .
Assume bi ≤ ci −1 for i = 1, . . . ,r−1. It follows that

m−br = b1 + · · ·+br−1
≤ c1 + · · ·+ cr−1 − (r−1)
≤ m+ r−1− cr − (r−1)
= m− cr

which implies that br ≥ cr, hence U ∈ I .
So far we have shown one direction of the inclusion.
To show the opposite direction, take any monomial

U ∈
⋂

(x1,c1 , . . . ,xr,cr )

where 1 ≤ c j ≤ m and c1 + · · ·+ cr ≤ m+ r−1.
Notice that for some i ≤ r, xi,1 | U; this is because U ∈ (x1,1, . . . ,xr,1).
We write U as

U = x1,1 . . .x1,b1 . . .xr,1 . . .xr,br U′

where U ′ is a monomial, and the bi are nonnegative integers such that for
each j < bi, xi, j | U (if xi,1 6 | U then set bi = 0). We need to show that it is
possible to find such bi so that b1 + · · ·+br = m.
Suppose b1 + · · ·+br ≤ m−1, and xi,bi+1 6 | U for 1 ≤ i ≤ r. Then

b1 + · · ·+br + r ≤ m+ r−1,

hence
U ∈ (x1,b1+1, . . . ,xr,br+1)

implying that xi,bi+1 | U for some i, which is a contradiction.
Therefore b1, . . . ,br can be picked so that they add up to m, and hence U ∈

P (I); this settles the opposite inclusion.

3. This follows from part 1 and Proposition 2.3 part 3.



Corollary 2.6 (polarization and associated primes) Let I be a monomial ideal
in a polynomial ring R = k[x1, . . . ,xn], and let P (I) be its polarization in S =

k[xi, j ] as described in Definition 2.1. Then (xi1 , . . . ,xir ) ∈ AssR(R/I) if and only
if (xi1,c1 , . . . ,xir ,cr ) ∈ AssS(S/P (I)) for some positive integers c1, . . . ,cr. Moreover,
if (xi1 ,c1 , . . . ,xir ,cr)∈AssS(S/P (I)), then (xi1,b1 , . . . ,xir ,br )∈AssS(S/P (I)) for all b j

such that 1 ≤ b j ≤ c j .

Example 2.7 Consider the primary decomposition of J = (x1
2,x2

3,x1x2):

J = (x1,x2
3)∩ (x1

2,x2).

By Proposition 2.5, P (J) = (x1,1x1,2,x2,1x2,2x2,3,x1,1x2,1) will have primary decom-
position

P (J) = (x1,1,x2,1)∩ (x1,1,x2,2)∩ (x1,1,x2,3)∩ (x1,2,x2,1).

A very useful property of polarization is that the final polarized ideal is related
to the original ideal via a regular sequence. The proposition below, which looks
slightly different here than the original statement in [8], states this fact.

Proposition 2.8 (Fröberg [8]) Let k be a field and

R = k[x1, . . . ,xn]/(M1, . . . ,Mq),

where M1, . . . ,Mq are monomials in the variables x1, . . . ,xn, and let

N1 = P (M1), . . . ,Nq = P (Mq)

be a set of square-free monomials in the polynomial ring

S = k[xi, j | 1 ≤ i ≤ n,1 ≤ j ≤ ai]

such that for each i, the variable xi,ai appears in at least one of the monomials
N1, . . . ,Nq. Then the sequence of elements

xi,1 − xi, j where 1 ≤ i ≤ n and 1 < j ≤ ai (1)

forms a regular sequence in the quotient ring

R′ = S/(N1, . . . ,Nq)

and if J is the ideal of R′ generated by the elements in (1), then

R = R′/J.

Moreover, R is Cohen-Macaulay (Gorenstein) if and only if R′ is.



Example 2.9 Let J and R be as in Example 2.2. According to Proposition 2.8, the
sequence

x1,1 − x1,2, x2,1 − x2,2, x2,1 − x2,3

is a regular sequence in S/P (J), and

R/J = S/
(P (J)+(x1,1 − x1,2,x2,1 − x2,2,x2,1 − x2,3)

)

.

3 Square-free monomial ideals as facet ideals

Now that we have introduced polarization as a method of transforming a monomial
ideal into a square-free one, we can focus on square-free monomial ideals. In
particular, here we are interested in properties of square-free monomial ideals that
come as a result of them being considered as facet ideals of simplicial complexes.
Below we review the basic definitions and notations in facet ideal theory, as well
as some of the basic concepts of Stanley-Reisner theory. We refer the reader to [2],
[5], [6], [7], and [14] for more details and proofs in each of these topics.

Definition 3.1 (simplicial complex, facet, subcollection and more) A simplicial
complex ∆ over a set of vertices V = {v1, . . . ,vn} is a collection of subsets of V ,
with the property that {vi} ∈ ∆ for all i, and if F ∈ ∆ then all subsets of F are
also in ∆ (including the empty set). An element of ∆ is called a face of ∆, and the
dimension of a face F of ∆ is defined as |F|−1, where |F | is the number of vertices
of F . The faces of dimensions 0 and 1 are called vertices and edges, respectively,
and dim /0 = −1. The maximal faces of ∆ under inclusion are called facets of ∆.
The dimension of the simplicial complex ∆ is the maximal dimension of its facets.

We denote the simplicial complex ∆ with facets F1, . . . ,Fq by

∆ = 〈F1, . . . ,Fq〉

and we call {F1, . . . ,Fq} the facet set of ∆. A simplicial complex with only one
facet is called a simplex. By a subcollection of ∆ we mean a simplicial complex
whose facet set is a subset of the facet set of ∆.

Definition 3.2 (connected simplicial complex) A simplicial complex ∆ = 〈F1, . . . ,

Fq〉 is connected if for every pair i, j, 1 ≤ i < j ≤ q, there exists a sequence of facets
Ft1 , . . . ,Ftr of ∆ such that Ft1 = Fi, Ftr = Fj and Fts ∩Fts+1 6= /0 for s = 1, . . . ,r−1.

Definition 3.3 (facet/non-face ideals and complexes) Consider a polynomial ring
R = k[x1, . . . ,xn] over a field k and a set of indeterminates x1, . . . ,xn. Let I =

(M1, . . . ,Mq) be an ideal in R, where M1, . . . ,Mq are square-free monomials that
form a minimal set of generators for I.



• The facet complex of I, denoted by δF (I), is the simplicial complex over a set
of vertices v1, . . . ,vn with facets F1, . . . ,Fq, where for each i, Fi = {v j | x j|Mi,

1 ≤ j ≤ n}. The non-face complex or the Stanley-Reisner complex of I, de-
noted by δN (I) is be the simplicial complex over a set of vertices v1, . . . ,vn,
where {vi1 , . . . ,vis} is a face of δN (I) if and only if xi1 . . .xis /∈ I.

• Conversely, if ∆ is a simplicial complex over n vertices labeled v1, . . . ,vn, we
define the facet ideal of ∆, denoted by F (∆), to be the ideal of R generated
by square-free monomials xi1 . . .xis , where {vi1 , . . . ,vis} is a facet of ∆. The
non-face ideal or the Stanley-Reisner ideal of ∆, denoted by N (∆), is the
ideal of R generated by square-free monomials xi1 . . .xis , where {vi1 , . . . ,vis}

is not a face of ∆.

Throughout this paper we often use a letter x to denote both a vertex of ∆ and
the corresponding variable appearing in F (∆), and xi1 . . .xir to denote a facet of ∆
as well as a monomial generator of F (∆).

Example 3.4 If ∆ is the simplicial complex 〈xyz,yu,uvw〉 drawn below,

x

y u

vz
w

then F (∆) = (xyz,yu,uvw) and N (∆) = (xu,xv,xw,yv,yw,zu,zv,zw) are its facet
ideal and nonface (Stanley-Reisner) ideal, respectively.

Facet ideals give a one-to-one correspondence between simplicial complexes
and square-free monomial ideals.

Next we define the notion of a vertex cover. The combinatorial idea here comes
from graph theory. In algebra, it corresponds to prime ideals lying over the facet
ideal of a given simplicial complex.

Definition 3.5 (vertex covering, independence, unmixed) Let ∆ be a simplicial
complex with vertex set V . A vertex cover for ∆ is a subset A of V that intersects
every facet of ∆. If A is a minimal element (under inclusion) of the set of vertex
covers of ∆, it is called a minimal vertex cover. The smallest of the cardinalities of
the vertex covers of ∆ is called the vertex covering number of ∆ and is denoted by
α(∆). A simplicial complex ∆ is unmixed if all of its minimal vertex covers have
the same cardinality.

A set {F1, . . . ,Fu} of facets of ∆ is called an independent set if Fi ∩ Fj = /0
whenever i 6= j. The maximum possible cardinality of an independent set of facets
in ∆, denoted by β(∆), is called the independence number of ∆. An independent
set of facets which is not a proper subset of any other independent set is called a
maximal independent set of facets.



Example 3.6 If ∆ is the simplicial complex in Example 3.4, then the vertex covers
of ∆ are:

{x,u},{y,u},{y,v},{y,w},{z,u},{x,y,u},{x,z,u},{x,y,v}, . . . .

The first five vertex covers above (highlighted in bold), are the minimal vertex
covers of ∆. It follows that α(∆) = 2, and ∆ is unmixed. On the other hand,
{xyz,uvw} is the largest maximal independent set of facets that ∆ contains, and so
β(∆) = 2.

Definition 3.7 (Alexander dual) Let I be a square-free monomial ideal in the poly-
nomial ring k[V ] with V = {x1, . . . ,xn}, and let ∆N be the non-face complex of I (i.e.
∆N = δN (I)). Then the Alexander dual of ∆N is the simplicial complex

∆N
∨ = {F ⊂V | Fc /∈ ∆N}

where Fc is the complement of the face F in V .
We call the nonface ideal of ∆N

∨ the Alexander dual of I and denote it by I∨.

3.1 Simplicial Trees

Considering simplicial complexes as higher dimensional graphs, one can define the
notion of a tree by extending the same concept from graph theory. Before we define
a tree, we determine what “removing a facet” from a simplicial complex means. We
define this idea so that it corresponds to dropping a generator from the facet ideal
of the complex.

Definition 3.8 (facet removal) Suppose ∆ is a simplicial complex with facets F1,

. . . ,Fq and F (∆) = (M1, . . . ,Mq) its facet ideal in R = k[x1, . . . ,xn]. The simplicial
complex obtained by removing the facet Fi from ∆ is the simplicial complex

∆\ 〈Fi〉 = 〈F1, . . . , F̂i, . . . ,Fq〉

and F (∆\ 〈Fi〉) = (M1, . . . ,M̂i, . . . ,Mq).

The definition that we give below for a simplicial tree is one generalized from
graph theory. See [5] and [6] for more on this concept.

Definition 3.9 (leaf, joint) A facet F of a simplicial complex is called a leaf if
either F is the only facet of ∆, or for some facet G ∈ ∆\ 〈F〉 we have

F ∩ (∆\ 〈F〉) ⊆ G.

If F ∩G 6= /0, the facet G above is called a joint of the leaf F .



Equivalently, a facet F is a leaf of ∆ if F ∩ (∆\ 〈F〉) is a face of ∆\ 〈F〉.

Example 3.10 Let I = (xyz,yzu,zuv). Then F = xyz is a leaf, but H = yzu is not,
as one can see in the picture below.

F ∩ (∆\ 〈F〉) =

x

z

y

∩

y

z u

v

= y

z

H ∩ (∆\ 〈H〉) = z

y

u ∩ z y u

 vx

= z

y

u

Definition 3.11 (tree, forest) A connected simplicial complex ∆ is a tree if every
nonempty subcollection of ∆ has a leaf. If ∆ is not necessarily connected, but every
subcollection has a leaf, then ∆ is called a forest.

Example 3.12 The simplicial complexes in examples 3.4 and 3.10 are both trees,
but the one below is not because it has no leaves. It is an easy exercise to see that a
leaf must contain a free vertex, where a vertex is free if it belongs to only one facet.

One of the most powerful properties of simplicial trees from the point of view of
algebra is that they behave well under localization. This property makes it easy to
use induction on the number of vertices of a tree for proving its various properties.

Lemma 3.13 (Localization of a tree is a forest) Let I ⊆ k[x1, . . . ,xn] be the facet
ideal of a simplicial tree, where k is a field. Then for any prime ideal p of k[x1, . . . ,xn],
δF (Ip) is a forest.

Proof: See [6, Lemma 4.5].

4 Properties of monomial ideals via polarization

For the purpose of all discussions in this section, unless otherwise stated, let I be
a monomial ideal in the polynomial ring R = k[x1, . . . ,xn] over a field k, whose
polarization is the square-free monomial ideal P (I) in the polynomial ring

S = k[xi, j | 1 ≤ i ≤ n,1 ≤ j ≤ ai].



We assume that the polarizing sequence (as described in (1) in Proposition 2.8) is

ν = ν1, . . . ,νv

which is a regular sequence in S/P (I) and

R/I = S/
(P (I)+(ν)

)

.

4.1 Monomial ideals whose polarization is a simplicial tree

A natural question, and one that this paper is mainly concerned with, is what prop-
erties of facet ideals of simplicial trees can be extended to general (non-square-free)
monomial ideals using polarization? In other words, if for a monomial ideal I in a
polynomial ring P (I) is the facet ideal of a tree (Definition 3.11), then what prop-
erties of P (I) are inherited by I?

The strongest tool when dealing with square-free monomial ideals is induction–
either on the number of generators, or the number of variables in the ambient poly-
nomial ring. This is particularly the case when the facet complex of the ideal is
a tree, or in some cases when it just has a leaf. In this section we show that via
polarization, one can extend these tools to monomial ideals in general. For a given
monomial ideal I, we show that if P (I) is the facet ideal of a tree, and p is a prime
ideal containing I, then P (Ip) is the facet ideal of a forest (Theorem 4.1); this al-
lows induction on number of variables. Similarly, Theorem 4.3 provides us with a
way to use induction on number of generators of I.

Theorem 4.1 (localization and polarization) If P (I) is the facet ideal of a tree,
and p is a prime ideal of R containing I, then P (Ip) is the facet ideal of a forest.

Proof: The first step is to show that it is enough to prove this for prime ideals of R
generated by a subset of {x1, . . . ,xn}. To see this, assume that p is a prime ideal of
R containing I, and that p′ is another prime of R generated by all xi ∈ {x1, . . . ,xn}

such that xi ∈ p (recall that the minimal primes of I are generated by subsets of
{x1, . . . ,xn}; see [16, Corollary 5.1.5]). So p′ ⊆ p. If I = (M1, . . . ,Mq), then

Ip′ = (M1
′, . . . ,Mq

′)

where for each i, Mi
′ is the image of Mi in Ip′ . In other words, Mi

′ is obtained by
dividing Mi = x1

a1 . . .xn
an by the product of all the x j

a j such that x j /∈ p′. But x j /∈ p′

implies that x j /∈ p, and so it follows that Mi
′ ∈ Ip. Therefore Ip′ ⊆ Ip. On the other

hand since p′ ⊆ p, Ip ⊆ Ip′ , which implies that Ip′ = Ip (the equality and inclusions
of the ideals here mean equality and inclusion of their generating sets).

Now suppose I = (M1, . . . ,Mq), and p = (x1, . . . ,xr) is a prime containing I.
Suppose that for each i, we write Mi = M′

i .M
′′
i , where

M′
i ∈ k[x1, . . . ,xr] and M′′

i ∈ k[xr+1, . . . ,xn]



so that
Ip = (M′

1, . . . ,M
′
t),

where without loss of generality M ′
1, . . . ,M

′
t is a minimal generating set for Ip.

We would like to show that the facet complex ∆ of P (Ip) is a forest. Suppose
that, again without loss of generality,

I′ = (P (M′
1), . . . ,P (M′

s))

is the facet ideal of a subcollection ∆′ of ∆. We need to show that ∆′ has a leaf.
If s = 1, then there is nothing to prove. Otherwise, suppose that P (M1) repre-

sents a leaf of the tree δF (P (I)), and P (M2) is a joint of P (M1). Then we have

P (M1)∩P (Mi) ⊆ P (M2) f or all i ∈ {2, . . . ,s}.

Now let xe, f be in P (M′
1)∩P (M′

i) for some i ∈ {2, . . . ,s}. This implies that

(i) xe, f ∈ P (M1)∩P (Mi) ⊆ P (M2), and

(ii) e ∈ {1 . . . ,r}

From (i) and (ii) we can conclude that xe, f ∈ P (M′
2), which proves that P (M ′

1) is a
leaf for ∆′.

Remark 4.2 It is not true in general that if p is a (minimal) prime of I, then P (Ip) =

P (I)P (p). For example, if I = (x1
3,x1

2x2) and p = (x1), then Ip = (x1
2) so P (Ip) =

(x1,1x1,2), but P (I)P (p) = (x1,1).

Another feature of simplicial trees is that they satisfy a generalization of König’s
theorem ([6, Theorem 5.3]). Below we explain how this property, and another prop-
erty of trees that is very useful for induction, behave under polarization.

Recall that for a simplicial complex ∆, α(∆) and β(∆) are the vertex covering
number and the independence number of ∆, respectively (Definition 3.5). For sim-
plicity of notation, if I = (M1, . . . ,Mq) is a monomial ideal, we let β(I) denote the
maximum cardinality of a subset of {M1, . . . ,Mq} consisting of pairwise coprime
elements (so β(∆) = β(F (∆)) for any simplicial complex ∆).

Theorem 4.3 (joint removal and polarization) Suppose M1, . . . ,Mq are monomi-
als that form a minimal generating set for I, and P (I) is the facet ideal of a sim-
plicial complex ∆. Assume that ∆ has a leaf, whose joint corresponds to P (M1).
Then, if we let I ′ = (M2, . . . ,Mq), we have

height I = height I ′.



Proof: If G is the joint of ∆ corresponding to P (M1), then P (I ′) = F (∆ \ 〈G〉).
From [6, Lemma 5.1] it follows that α(∆) = α(∆ \ 〈G〉), so that height P (I) =

height P (I ′), and therefore height I = height I ′.

Theorem 4.4 Suppose M1, . . . ,Mq are monomials that form a minimal generating
set for I, and P (I) is the facet ideal of a simplicial tree ∆. Then height I = β(I).

Proof: We already know that height I = height P (I) = α(∆). It is also clear that
β(I) = β(P (I)), since the monomials in a subset {Mi1 , . . . ,Mir} of the generating
set of I are pairwise coprime if and only if the monomials in {P (Mi1), . . . ,P (Mir)}

are pairwise coprime. On the other hand, from [6, Theorem 5.3] we know that
α(∆) = β(∆). Our claim follows immediately.

We demonstrate how to apply these theorems via an example.

Example 4.5 Suppose I = (x1
3,x1

2x2x3,x3
2,x2

3x3). Then

P (I) = (x1,1x1,2x1,3,x1,1x1,2x2,1x3,1,x3,1x3,2,x2,1x2,2x2,3x3,1)

is the facet ideal of the following simplicial complex (tree) ∆.

x x
1,1

x
2,3

x
3,2

x
2,22,1

x
x

1,2

3,1
x

1,3

Now α(∆) = height I = 2 because the prime of minimal height over I is (x1,x3).
From Theorem 4.4 it follows that β(I) = 2. This means that you can find a set of two
monomials in the generating set of I that have no common variables: for example
{x1

3,x3
2} is such a set.

Since the monomials x1
2x2x3 and x2

3x3 polarize into joints of ∆, by Theo-
rem 4.3 the ideals

I, (x1
3,x3

2,x2
3x3), (x1

3,x1
2x2x3,x3

2), and (x1
3,x3

2)

all have the same height.



We now focus on the Cohen-Macaulay property. In [6] we showed that for
a simplicial tree ∆, F (∆) is a Cohen-Macaulay ideal if and only if ∆ is an un-
mixed simplicial complex. The condition unmixed for ∆ is equivalent to all min-
imal primes of the ideal F (∆) (which in this case are all the associated primes of
F (∆)) having the same height. In general, an ideal all whose associated primes
have the same height (equal to the height of the ideal) is called an unmixed ideal.

It now follows that

Theorem 4.6 (Cohen-Macaulay criterion for trees) Let P (I) be the facet ideal
of a simplicial tree ∆. Then R/I is Cohen-Macaulay if and only if I is unmixed.

Proof: From Proposition 2.8, R/I is Cohen-Macaulay if and only if S/P (I) is
Cohen-Macaulay. By [6, Corollary 8.3], this is happens if and only if P (I) is un-
mixed. Corollary 2.6 now proves the claim.

If R is a ring and J is an ideal of R, then the Rees ring of R along J is defined
as

R [Jt] = ⊕n∈NJntn.

Rees rings come up in the algebraic process of “blowing up” ideals. One reason
that trees were defined as they are, is that their facet ideals produce normal and
Cohen-Macaulay Rees rings ([5]).

Proposition 4.7 If S[P (I)t] is Cohen-Macaulay, then so is R[It]. Conversely, if we
assume that R and S are localized at their irrelevant maximal ideals, then R[It]
being Cohen-Macaulay implies that S[P (I)t] is Cohen-Macaulay.

Proof: Suppose that ν1, . . . ,νv is the polarizing sequence as described before. For
i = 1, . . . ,v−1 let

Ri = S/(ν1, . . . ,νi), Ii = P (I)/(ν1, . . . ,νi), Rv = R and Iv = I.

Notice that S[P (I)t] and R[It] are both domains. Also note that for each i,

S[P (I)t]/(ν1, . . . ,νi) = Ri[Iit]

is the Rees ring of the monomial ideal Ii in the polynomial ring Ri, and is therefore
also a domain. Therefore νi+1 is a regular element in the ring S[P (I)t]/(ν1, . . . ,νi),
which means that ν1, . . . ,νv is a regular sequence in S[P (I)t].

Similarly, we see that

R[It] = S[P (I)t]/(ν1, . . . ,νv).

[2, Theorem 2.1.3] now implies that if S[P (I)t] is Cohen-Macaulay, then so is
R[It]. The converse follows from [2, Exercise 2.1.28].



Corollary 4.8 (Rees ring of a tree is Cohen-Macaulay) Suppose that P (I) is the
facet ideal of a simplicial tree. Then the Rees ring R[It] of I is Cohen-Macaulay.

Proof: This follows from the Proposition 4.7, and from [5, Corollary 4], which
states that the Rees ring of the facet ideal of a simplicial tree is Cohen-Macaulay.

4.2 Polarization of sequentially Cohen-Macaulay ideals

The main result of this section is that if the polarization of a monomial ideal I
is the facet ideal of a tree, then I is a sequentially Cohen-Macaulay ideal. The
theorem that implies this fact (Proposition 4.11) is interesting in its own right. For
a square-free monomial ideal J, Eagon and Reiner [4] proved that J is Cohen-
Macaulay if and only if its Alexander dual J∨ has a linear resolution. Herzog and
Hibi [9] then defined componentwise linear ideals and generalized their result, so
that a square-free monomial ideal J is sequentially Cohen-Macaulay if and only if
J∨ is componentwise linear (see [9] or [7]). But even though Alexander duality
has been generalized to all monomial ideals from square-free ones, the criterion
for sequential Cohen-Macaulayness does not generalize: it is not true that if I is
any monomial ideal, then I is sequentially Cohen-Macaulay if and only of I∨ is a
componentwise linear ideal; see Miller [10]. We show that the statement is true if
I∨ is replaced by P (I)∨.

Definition 4.9 ([14, Chapter III, Definition 2.9]) Let M be a finitely generated Z-
graded module over a finitely generated N-graded k-algebra, with R0 = k. We say
that M is sequentially Cohen-Macaulay if there exists a finite filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M

of M by graded submodules Mi satisfying the following two conditions.

(a) Each quotient Mi/Mi−1 is Cohen-Macaulay.

(b) dim (M1/M0) < dim (M2/M1) < .. . < dim (Mr/Mr−1), where dim denotes
Krull dimension.

We define a componentwise linear ideal in the square-free case using [9, Propo-
sition 1.5].

Definition 4.10 (componentwise linear) Let I be a square-free monomial ideal in
a polynomial ring R. For a positive integer k, the k-th square-free homogeneous
component of I, denoted by I[k] is the ideal generated by all square-free monomials
in I of degree k. The ideal I above is said to be componentwise linear if for all k,
the square-free homogeneous component I[k] has a linear resolution.



For our monomial ideal I, let Q (I) denote the set of primary ideals appear-
ing in a reduced primary decomposition of I. Suppose that h = height I and
s = max{height q | q ∈ Q (I)}, and set

Ii =
⋂

q∈Q (I)
height q≤s−i

q.

So we have the following filtration for R/I (we assume that all inclusions in the
filtration are proper; if there is an equality anywhere, we just drop all but one of the
equal ideals).

0 = I = I0 ⊂ I1 ⊂ . . . ⊂ Is−h ⊂ R/I. (2)

If R/I is sequentially Cohen-Macaulay, then by Theorem A.4, (2) is the appro-
priate filtration that satisfies Conditions (a) and (b) in Definition 4.9.

For the square-free monomial ideal J = P (I), we similarly define

Q (J) = {minimal primes over J} and Ji =
⋂

p∈Q (J)
height p≤s−i

p

where the numbers h and s are the same as for I because of Proposition 2.5. It
follows from Proposition 2.5 and Corollary 2.6 that for each i, P (Ii) = Ji and the
polarization sequence that transforms Ii into Ji is a subsequence of ν = ν1, . . . ,νv.

What we have done so far is to translate, via polarization, the filtration (2) of
the quotient ring R/I into one of S/J:

0 = J = J0 ⊂ J1 ⊂ . . . ⊂ Js−h ⊂ S/J. (3)

Now note that for a given i, the sequence ν is a Ji+1/Ji-regular sequence in S,
as ν is a regular sequence in S/Ji, which contains Ji+1/Ji. Also note that

R/Ii ' S/(Ji +ν).

It follows that Ji+1/Ji is Cohen-Macaulay if and only if Ii+1/Ii is (see [2, Exer-
cise 2.1.27(c), Exercise 2.1.28, and Theorem 2.1.3]).

Proposition 4.11 The monomial ideal I is sequentially Cohen-Macaulay if and
only if P (I) is sequentially Cohen-Macaulay, or equivalently, P (I)∨ is a compo-
nentwise linear ideal.

Proof: By [7, Proposition 4.5], P (I)∨ is componentwise linear if and only if P (I)
is sequentially Cohen-Macaulay, which by the discussion above is equivalent to I
being sequentially Cohen-Macaulay.



Corollary 4.12 (Trees are sequentially Cohen-Macaulay) Let P (I) be the facet
ideal of a simplicial tree. Then I is sequentially Cohen-Macaulay.

Proof: This follows from Proposition 4.11 and by [7, Corollary 5.5], which states
that P (I)∨ is a componentwise linear ideal.

5 Further examples and remarks

To use the main results of this paper for computations on a given monomial ideal,
there are two steps. One is to compute the polarization of the ideal, which as can
be seen from the definition, is a quick and simple procedure. This has already
been implemented in Macaulay2. The second step is to determine whether the
polarization is the facet ideal of a tree, or has a leaf. Algorithms that serve this
purpose are under construction [3].

Remark 5.1 Let I = (M1, . . . ,Mq) be a monomial ideal in a polynomial ring R. If
P (I) is the facet ideal of a tree, then by Corollary 4.8, R[It] is Cohen-Macaulay.
But more is true: if you drop any generator of I, for example if you consider I ′ =
(M1, . . . ,M̂i, . . . ,Mq), then R[I ′t] is still Cohen-Macaulay. This is because P (I ′)
corresponds to the facet ideal of a forest, so one can apply the same result.

A natural question is whether one can say the same with the property “Cohen-
Macaulay” replaced by “normal”. If I is square-free, this is indeed the case. But in
general, polarization does not preserve normality of ideals.

Example 5.2 (normality and polarization) A valid question is whether Proposi-
tion 4.7 holds if the word “Cohen-Macaulay” is replaced with “normal”, given that
simplicial trees have normal facet ideals ([5])?

The answer is negative. Here is an example.
Let I = (x1

3,x1
2x2,x2

3) be an ideal of k[x1,x2]. Then I is not normal; this is
because I is not even integrally closed: x1x2

2 ∈ I as (x1x2
2)3 − x1

3x2
6 = 0, but

x1x2
2 6∈ I. Now

P (I) = (x1,1x1,2x1,3,x1,1x1,2x2,1,x2,1x2,2x2,3)

is the facet ideal of the tree

1,3

1,1

x 1,2

x 2,1

x 2,2

x 2,3x

x

which is normal by [5].



The reason that normality (or integral closure in general) does not pass through
polarization is much more basic: polarization does not respect multiplication of
ideals, or monomials. Take, for example, two monomials M and N and two mono-
mial ideals I and J, such that MN ∈ IJ. It is not necessarily true that P (M)P (N) ∈

P (I)P (J).
Indeed, let I = J = (x1x2) and M = x1

2 and N = x2
2. Then MN = x1

2x2
2 ∈ IJ.

But
P (M) = x1,1x1,2, P (N) = x2,1x2,2, and P (I) = P (J) = (x1,1x2,1)

and clearly P (M)P (N) /∈ P (I)P (J) = (x1,1
2x2,1

2).

Remark 5.3 It is useful to think of polarization as a chain of substitutions. This
way, as a monomial ideal I gets polarized, the ambient ring extends one variable at
a time. All the in-between ideals before we hit the final square-free ideal P (I) have
the same polarization.

For example let J = (x2,xy,y3) ⊆ k[x,y]. We use a diagram to demonstrate the
process described in the previous paragraph. Each linear form a− b stands for
“replacing the variable b with a”, or vice versa, depending on which direction we
are going.

J = (x2,xy,y3)
u−x
−→ J1 = (xu,uy,y3)

v−y
−→ J2 = (xu,uv,y2v)

w−y
−→ J3 = (xu,uv,yvw) .

This final square-free monomial ideal J3 is the polarization of J, and is isomor-
phic to P (J) as we defined it in Definition 2.1. Note that all ideals J, J1, J2 and
J3 have the same (isomorphic) polarization. We can classify monomial ideals ac-
cording to their polarizations. An interesting question is to see what properties do
ideals in the same polarization class have. A more difficult question is how far can
one “depolarize” a square-free monomial ideal I, where by depolarizing I we mean
finding monomial ideals whose polarization is equal to I, or equivalently, traveling
the opposite direction on the above diagram.

A Appendix: Primary decomposition in a sequentially
Cohen-Macaulay module

The purpose of this appendix is to study, using basic facts about primary decompo-
sition of modules, the structure of the submodules appearing in the (unique) filtra-
tion of a sequentially Cohen-Macaulay module M. The main result (Theorem A.4)
states that each submodule appearing in the filtration of M is the intersection of all
primary submodules whose associated primes have a certain height and appear in
an irredundant primary decomposition of the 0-submodule of M. Similar results,



stated in a different language, appear in [12]; the author thanks Jürgen Herzog for
pointing this out.

We first record two basic lemmas that we shall use later (the second one is an
exercise in Bourbaki [1]). Throughout the discussions below, we assume that R is
a finitely generated algebra over a field, and M is a finite module over R.

Lemma A.1 Let Q 1, . . . ,Q t ,P all be primary submodules of an R-module M, such
that Ass(M/Q i) = {qi} and Ass(M/P ) = {p}. If Q 1 ∩ . . .∩Q t ⊆ P and Q i 6⊆ P
for some i, then there is a j 6= i such that q j ⊆ p.

Proof: Let x ∈ Q i \P . For each j not equal to i, pick the positive integer m j such
that q

m j
j x ⊆ Q j. So we have that

q
m1
1 . . .q

mi−1
i−1 q

mi+1
i+1 . . .qmt

t x ⊆ Q 1 ∩ . . .∩Q t ⊆ P =⇒ q
m1
1 . . .q

mi−1
i−1 q

mi+1
i+1 . . .qmt

t ⊆ p

where the second inclusion is because x /∈ P . Hence for some j 6= i, q j ⊆ p.

Lemma A.2 Let M be an R-module and N be a submodule of M. Then for every
p ∈ Ass(M/N), if p 6⊇ Ann(N), then p ∈ Ass(M).

Proof: Since p ∈ Ass(M/N), there exists x ∈ M \N such that p = Ann(x); in other
words px ⊆ N. Suppose Ann(N) 6⊆ p, and let y ∈ Ann(N) \ p. Now ypx = 0, and
so p ⊆ Ann(yx) in M. On the other hand, if z ∈ Ann(yx), then zyx = 0 ⊆ N and so
zy ∈ p. But y /∈ p, so z ∈ p. Therefore p ∈ Ass(M).

Suppose M is a sequentially Cohen-Macaulay module with filtration as in Def-
inition 4.9. We adopt the following notation. For a given integer j, we let

Ass(M) j = {p ∈ Ass(M) | height p = j}.

Suppose that all the j where Ass(M) j 6= /0 form the sequence of integers

0 ≤ h1 < .. . < hc ≤ dim R

so that Ass(M) =
⋃

1≤ j≤c Ass(M)h j .

Proposition A.3 For all i = 0, . . . ,r−1, we have

1. Ass(Mi+1/Mi)∩Ass(M) 6= /0;

2. Ass(M)hr−i ⊆ Ass(Mi+1/Mi) and c = r;

3. If p ∈ Ass(Mi+1), then height p ≥ hr−i;



4. If p ∈ Ass(Mi+1/Mi), then Ann(Mi) 6⊆ p;

5. Ass(Mi+1/Mi) ⊆ Ass(M);

6. Ass(Mi+1/Mi) = Ass(M)hr−i;

7. Ass(M/Mi) = Ass(M)≤hr−i;

8. Ass(Mi+1) = Ass(M)≥hr−i .

Proof:

1. We use induction on the length r of the filtration of M. The case r = 1 is clear,
as we have a filtration 0 ⊂ M, and the assertion follows. Now suppose the
statement holds for sequentially Cohen-Macaulay modules with filtrations of
length less than r. Notice that Mr−1 that appears in the filtration of M in
Definition 4.9 is also sequentially Cohen-Macaulay, and so by the induction
hypothesis, we have

Ass(Mi+1/Mi)∩Ass(Mr−1) 6= /0 for i = 0, . . . ,r−2

and since Ass(Mr−1) ⊆ Ass(M) it follows that

Ass(Mi+1/Mi)∩Ass(M) 6= /0 for i = 0, . . . ,r−2.

It remains to show that Ass(M/Mr−1)∩Ass(M) 6= /0.
For each i, Mi−1 ⊂ Mi, so we have ([1] Chapter IV)

Ass(M1) ⊆ Ass(M2) ⊆ Ass(M1)∪Ass(M2/M1) (4)

The inclusion M2 ⊆ M3 along with the inclusions in (4) imply that

Ass(M2) ⊆ Ass(M3) ⊆ Ass(M2)∪Ass(M3/M2)
⊆ Ass(M1)∪Ass(M2/M1)∪Ass(M3/M2).

If we continue this process inductively, at the i-th stage we have

Ass(Mi) ⊆ Ass(Mi−1)∪Ass(Mi/Mi−1)
⊆ Ass(M1)∪Ass(M2/M1)∪Ass(M3/M2)∪ . . .∪Ass(Mi/Mi−1)

and finally, when i = r it gives

Ass(M) ⊆ Ass(M1)∪Ass(M2/M1)∪ . . .∪Ass(M/Mr−1). (5)



Because of Condition (b) in Definition 4.9, and the fact that each Mi+1/Mi is
Cohen-Macaulay (and hence all its associated primes have the same height;
see [2] Chapter 2), if for every i we pick pi ∈ Ass(Mi+1/Mi), then

hc ≥ height p0 > height p1 > .. . > height pr−1.

where the left-hand-side inequality comes from the fact that Ass(M1) ⊆

Ass(M). By our induction hypothesis, Ass(M) intersects Ass(Mi+1/Mi) for
all i ≤ r−2, and so because of (5) we conclude that

height pi = hc−i, and Ass(M)hc−i ⊆ Ass(Mi+1/Mi) for 0 ≤ i ≤ r−2.

And now Ass(M)h0 has no choice but to be included in Ass(M/Mr−1), which
settles our claim. It also follows that c = r.

2. See the proof for part 1.

3. We use induction. The case i = 0 is clear, since for every p ∈ Ass(M1) =

Ass(M1/M0) we know from part 2 that height p = hr. Suppose the statement
holds for all indices up to i−1. Consider the inclusion

Ass(Mi) ⊆ Ass(Mi+1) ⊆ Ass(Mi)∪Ass(Mi+1/Mi).

From part 2 and the induction hypothesis it follows that if p ∈ Ass(Mi+1)

then height p ≥ hr−i.

4. Suppose Ann(Mi) ⊆ p. Since
√

Ann(Mi) =
⋂

p′∈Ass(Mi) p
′, it follows that

⋂

p′∈Ass(Mi) p
′ ⊆ p, so there is a p′ ∈ Ass(Mi) such that p′ ⊆ p. But from

parts 2 and 3 above it follows that height p′ ≥ hr−i+1 and height p = hr−i,
which is a contradiction.

5. From part 4 and Lemma A.2, it follows that Ass(Mi+1/Mi) ⊆ Ass(Mi+1) ⊆

Ass(M).

6. This follows from parts 2 and 5, and the fact that Mi+1/Mi is Cohen-Macaulay,
and hence all associated primes have the same height.

7. We show this by induction on e = r− i. The case e = 1 (or i = r−1) is clear,
because by part 6 we have Ass(M/Mr−1) = Ass(M)h1 = Ass(M)≤h1 .

Now suppose the equation holds for all integers up to e − 1 (namely i =

r−e+1), and we would like to prove the statement for e (or i = r−e). Since
Mi+1/Mi ⊆ M/Mi, we have

Ass(Mi+1/Mi) ⊆ Ass(M/Mi) ⊆ Ass(Mi+1/Mi)∪Ass(M/Mi+1) (6)



By the induction hypothesis and part 6 we know that

Ass(M/Mi+1) = Ass(M)≤hr−i−1 and Ass(Mi+1/Mi) = Ass(M)hr−i ,

which put together with (6) implies that

Ass(M)hr−i ⊆ Ass(M/Mi) ⊆ Ass(M)≤hr−i

We still have to show that Ass(M/Mi) ⊇ Ass(M)≤hr−i−1 .
Let

p ∈ Ass(M)≤hr−i−1 = Ass(M/Mi+1) = Ass((M/Mi)/(Mi+1/Mi)).

If p ⊇ Ann(Mi+1/Mi), then (by part 6)

p ⊇
⋂

q∈Ass(M)hr−i

q =⇒ p ⊇ q for some q ∈ Ass(M)hr−i

which is a contradiction, as height p ≤ hr−i−1 < height q. It follows from
Lemma A.2 that p ∈ Ass(M/Mi).

8. The argument is based on induction, and exactly the same as the one in part 4,
using more information; from the inclusions

Ass(Mi) ⊆ Ass(Mi+1) ⊆ Ass(Mi)∪Ass(Mi+1/Mi),

the induction hypothesis, and part 6 we deduce that

Ass(M)≥hr−i+1 ⊆ Ass(Mi+1) ⊆ Ass(M)≥hr−i+1 ∪Ass(M)hr−i ,

which put together with part 4, along with Lemma A.2 produces the equality.

Now suppose that as a submodule of M, M0 = 0 has an irredundant primary
decomposition of the form:

M0 = 0 =
⋂

1≤ j≤r

Q h j

1 ∩ . . .∩Q h j
s j (7)

where for a fixed j≤ r and e≤ s j , Q h j
e is a primary submodule of M with Ass(M/Q h j

e )=

{p
h j
e } and Ass(M)h j = {p

h j

1 , . . . ,p
h j
s j }.

Theorem A.4 Let M be a sequentially Cohen-Macaulay module with filtration as
in Definition 4.9, and suppose that M0 = 0 has a primary decomposition as in (7).
Then for each i = 0, . . . ,r−1, Mi has the following primary decomposition

Mi =
⋂

1≤ j≤r−i

Q h j

1 ∩ . . .∩Q h j
s j . (8)



Proof: We prove this by induction on r (length of the filtration). The case r = 1 is
clear, as the filtration is of the form 0 = M0 ⊂ M. Now consider M with filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M.

Since Mr−1 is a sequentially Cohen-Macaulay module of length r − 1, it satisfies
the statement of the theorem. We first show that Mr−1 has a primary decomposition
as described in (8). From part 7 of Proposition A.3 it follows that

Ass(M/Mr−1) = Ass(M)h1

and so for some ph1
e -primary submodules P h1

e of M (1 ≤ e ≤ s j), we have

Mr−1 = P h1
1 ∩ . . .∩P h1

s1 . (9)

We would like to show that Q h1
e = P h1

e for e = 1, . . . ,s1.
Fix e = 1 and assume Q h1

1 6⊂P h1
1 . From the inclusion M0 ⊂P h1

1 and Lemma A.1
it follows that for some e and j (with e 6= 1 if j = 1), we have p

h j
e ⊆ p

h1
1 . Because of

the difference in heights of these ideals the only conclusion is p
h j
e = p

h1
1 , which is

not possible. With a similar argument we deduce that Q h1
e ⊂ P h1

e , for e = 1, . . . ,s1.
Now fix j ∈ {1, . . . ,r} and e ∈ {1, . . . ,s j}. If Mr−1 = Q h j

e we are done. Other-
wise, note that for every j and p

h j
e -primary submodule Q h j

e of M,

Q h j
e ∩Mr−1

is a p
h j
e -primary submodule of Mr−1 (as /0 6= Ass(Mr−1/(Q h j

e ∩Mr−1))= Ass((Mr−1+

Q h j
e )/Q h j

e ) ⊆ Ass(M/Q h j
e ) = {p

h j
e }). So M0 = 0 as a submodule of Mr−1 has a pri-

mary decomposition

M0 ∩Mr−1 = 0 =
⋂

1≤ j≤r

(Q h j

1 ∩Mr−1)∩ . . .∩ (Q h j
s j ∩Mr−1).

From Proposition A.3 part 8 it follows that

Ass(Mr−1) = Ass(M)≥h2

so the components Q h1
t ∩Mr−1 are redundant for t = 1, . . . ,s1, so for each such t

we have
⋂

Q h j
e 6=Q h1

t

(Q h j

1 ∩Mr−1) ⊆ Q h1
t ∩Mr−1.

If Q h j
e ∩Mr−1 6⊆Q h1

t ∩Mr−1 for some e and j (with Q h j
e 6= Q h1

t ), then by Lemma A.1
for some such e and j we have p

h j
e ⊆ p

h1
t , which is a contradiction (because of the

difference of heights).



Therefore, for each t (1 ≤ t ≤ s1), there exists indices e and j (with Q h j
e 6= Q h1

t )
such that

Q h j
e ∩Mr−1 ⊆ Q h1

t ∩Mr−1.

It follows now, from the primary decomposition of Mr−1 in (9) that for a fixed t

P h1
1 ∩ . . .∩P h1

s1 ∩Q h j
e ⊆ Q h1

t .

Assume P h1
t 6⊆ Q h1

t . Applying Lemma A.1 again, we deduce that

p
h j
e ⊆ p

h1
t , or there is t ′ 6= t such that p

h1
t ′ ⊆ p

h1
t .

Neither of these is possible, so P h1
t ⊆ Q h1

t for all t.
We have therefore proved that

Mr−1 = Q h1
1 ∩ . . .∩Q h1

s1 .

By the induction hypothesis, for each i ≤ r− 2, Mi has the following primary
decomposition

Mi =
⋂

2≤ j≤r−i

(Q h j

1 ∩Mr−1)∩ . . .∩ (Q h j
s j ∩Mr−1) =

⋂

1≤ j≤r−i

Q h j

1 ∩ . . .∩Q h j
s j

which proves the theorem.
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