The troposphere as an oxidizing medium

- Oxidation cleans the atmosphere of environmentally harmful gases:
 - Greenhouse gases such as methane, halocarbons
 - Toxic gases such as CO, benzene
 - Ozone-depleting gases such as hydrochlorofluorocarbons (HCFCs)
- Where the oxidation takes place affects patterns of deposition:
 - Acid rain
 - Nitrogen, mercury deposition

Main tropospheric oxidant: the OH radical
$$H \longrightarrow O_2^{\bullet}$$

Source: $O_3 + hv \rightarrow O_2 + O(^1D)$
 $O(^1D) + H_2O \rightarrow 2OH$
Sink: $OH + X \rightarrow products$

where X is almost any non-radical reduced species

Lifetime:

$$\tau_{OH} = \frac{1}{\sum_{i} k_i [X_i]} \sim 1 \text{ s} \quad \Rightarrow \text{ concentrations of OH are low, variable}$$

Principal OH sinks:

CO, methane, other volatile organic compounds (VOCs)

CO observed from space:
 50-200 ppb

Sources: fuel combustion, open fires, VOC oxidation

- Methane observed from space: 1700-1900 ppb Sources: wetlands, livestock, oil/gas production, landfills, coal mines...
- Formaldehyde (HCHO) observed from space: product of VOC oxidation

Non-methane VOC sources: vegetation, fuel combustion, open fires, industry

Methylchloroform as a proxy for global tropospheric OH

Methylchloroform (CH₃CCl₃):

- Uniquely anthropogenic (industrial solvent), banned by Montreal Protocol
- Removed from troposphere by oxidation by OH, transport to troposphere Mass balance equation for troposphere (T):

Several reasons to care about tropospheric ozone

Closing the tropospheric ozone budget requires a large chemical source in troposphere

A large tropospheric source is needed to balance the loss

Tropospheric NO_x: critical agent for ozone production

Sources: fuel combustion, open fires, lightning, soils

Tropospheric NO₂ columns measured from satellite

Production of tropospheric ozone by oxidation of CO and VOCs catalyzed by HO_x and NO_x radicals

Initiation: production of HO_x radicals

 $O_3 + hv \rightarrow O_2 + O(^1D)$ $O(^1D) + H_2O \rightarrow 2OH$

Propagation: oxidation of CO (simplest case) in presence of NO_x $CO + OH \xrightarrow{O_2} CO_2 + HO_2$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + hv \xrightarrow{O_2} NO + O_3$ Net: $CO + 2O_2 \rightarrow CO_2 + O_3$

Termination: loss of HO_x radicals

 $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ $OH + NO_2 + M \rightarrow HNO_3 + M$ followed by H_2O_2 and HNO_3 deposition HO_x and NO_x radicals catalyze ozone production in troposphere, but loss in the stratosphere – why the difference?

In stratosphere,

$$OH + O_3 \rightarrow HO_2 + O_2$$
$$HO_2 + O_3 \rightarrow OH + 2O_2$$
$$Net: 2O_3 \rightarrow 3O_2$$

$$NO + O_3 \rightarrow NO_2 + O_2$$
$$NO_2 + O \rightarrow NO + O_2$$
$$Net: O_3 + O \rightarrow 2O_2$$

In troposphere,

 $CO + OH \xrightarrow{O_2} CO_2 + HO_2$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + hv \xrightarrow{O_2} NO + O_3$ $Net: CO + 2O_2 \rightarrow CO_2 + O_3$

- CO/O_3 and NO/O_3 ratios are much higher in troposphere than stratosphere
- O concentrations are very low in troposphere

Methane oxidation cascade follows same schematic as CO

$$CH_{4} + OH \xrightarrow{O_{2}} CH_{3}O_{2} + H_{2}O$$

$$CH_{3}O_{2} + NO \rightarrow CH_{3}O + NO_{2}$$

$$CH_{3}O_{2} + NO \rightarrow CH_{2}O + NO_{2}$$

$$CH_{3}O + O_{2} \rightarrow CH_{2}O + HO_{2}$$

$$CH_{2}O + OH \xrightarrow{O_{2}} CO_{2} + HO_{2}$$

$$CO + OH \xrightarrow{O_{2}} CO_{2} + HO_{2}$$

$$HO_{2} + NO \rightarrow OH + NO_{2}$$

$$NO_{2} + hv \xrightarrow{O_{2}} NO + O_{3}$$

$$Net: CH_{4} + 8O_{2} \rightarrow CO_{2} + 4O_{3} + 2H_{2}O$$

$$Covidation # Covidation # Covidation # CH_{4} + SO_{2} + CO_{2} + CO_{$$

- Expanded HO_x family: HO_x = OH + HO₂ + CH₃O₂ + CH₃O
- Oxidation of methane by above mechanism produces four ozone molecules

Questions

- 1. How do you expect recovery of the stratospheric ozone layer to affect tropospheric OH concentrations?
- 2. Maximum photon flux during summer results in a seasonal maximum of ozone in polluted regions but a seasonal minimum of ozone in very clean regions. Why is that?

Same basic mechanism for higher VOCs but many branches

A brief cheat sheet for organic functions

RCHO	aldehyde
RC(O)R'	ketone
RC(O)-	acyl group
RC(O)C(O)R'	dicarbonyl
RO ₂	peroxy radical
ROOR'	peroxide
ROOH	hydroperoxide
ROH	hydroxy, alcohol
RC(O)CR'	epoxide (cyclic ether)
RC(O)OH	carboxylic acid
RC(O)OR'	ester
RONO ₂	nitrate

Dependence of ozone production and OH on NO_x and VOCs

Dependence of ozone production and OH on NO_x and VOCs

Dependence of ozone production and OH on NO_x and VOCs

OZONE CONCENTRATIONS vs. NO_x AND VOC EMISSIONS Sample box model calculation with detailed mechanism

GLOBAL BUDGET OF TROPOSPHERIC OZONE (Tg O , yr⁻¹)

IPCC (2007) average of 12 models

GLOBAL DISTRIBUTION OF TROPOSPHERIC OZONE

OMI satellite observations at 700-400 hPa

• Maximum values at northern midlatitudes in spring-summer due to anthropogenic pollution;

 High values in tropical regions affected by seasonal biomass burning;

Minimum values over tropical oceans
due to chemical loss

Hu et al. [2017]

Observed rise of tropospheric ozone in 20th century

thought to be due mostly to anthropogenic NO_x and methane but this is uncertain

tropospheric ozone seen from satellites

se in ozone that models cannot explain

	change, Tg yr ⁻¹	p-value
Black: OMI/MLS	0.95 +/- 0.55	0.00
Brown: IASI-FORLI	-1.01 +/- 1.17	0.09
Orange: IASI-SOFRID	-0.86 +/- 0.95	0.07
Purple: GOME/OMI	0.68 +/- 0.39	0.00
Blue: OMI-RAL	1.02 +/- 0.79	0.01
Green: SCIAMACHY	1.33 +/- 1.04	0.01

	change, Tg yr ⁻¹	p-value
Black: OMI/MLS	0.83 +/- 0.64	0.01
Brown: IASI-FORLI	-1.14 +/- 1.14	0.05
Orange: IASI-SOFRID	-0.56 +/- 0.97	0.26
Purple: GOME/OMI	0.80 +/- 0.40	0.00
Blue: OMI-RAL	1.83 +/- 0.84	0.00
Green: SCIAMACHY	0.34 +/- 1.48	0.65

Cooper et al. [2017]

TRENDS IN GLOBALTROPOSPHERIC OH inferred from methylchloroform observations

But current models have no skill in simulating observed OH trends

Lightning NO_x is the dominant factor of interannual variability in models

Better understanding of OH changes is needed!

Holmes et al., ACP2013

Questions

- 1. If the methane source to the atmosphere were to double, would the methane concentration (a) double, (b) less than double, (c) more than double?
- 2. Atmospheric measurements of the H_2O_2/HNO_3 concentration ratio offer a simple diagnostic of whether ozone production in a polluted environment is NO_x -limited or NO_x -saturated. Why?

Methane: 2nd anthropogenic greenhouse gas after CO₂

Radiative forcing of climate referenced to emissions, 1750-2011

- Methane is 60% as important as CO₂ in explaining past warming
- Atmospheric lifetime of methane is 9 years, much shorter than CO₂ (> 100 years)
 Methane is most relevant as a near-term (~20 years) climate forcer
 Methane and CO₂ emissions should not be "equivalent" in climate policy
- Reducing methane emissions has air quality co-benefits and can make money

Complexity of methane sources

EPA anthropogenic methane inventory for the US

Waste

Maasakkers et al. [2016]

CH, emissions (Mg a⁻¹ km⁻²)

Methane fits and starts over past 40 years

Methane fits and starts over past 40 years

- Uptick since 2006 has been attributed to oil/gas, livestock, wetlands, OH...
- ...but it represents only 3% change in sources or sinks, on top of a factor 2.5 increase since preindustrial times that we don't understand!

Using atmospheric methane observations to improve emission inventories

Sometimes methane is easy to observe by remote sensing...

...but generally it's much harder!

Observing methane atmospheric columns from space

GOSAT (JAXA), 2009- ; TROPOMI (ESA), 2017 launch

geoCARB (NASA), in formulation

GOSAT satellite methane observations (2010-2013)

Challenge of observing methane point sources at the facility scale: they are many and small and variable

of methane plumes in Four Corners Frankenberg et al. [2016] GHGSat space-based observation of point sources Effective pixel resolution of 50x50 m² over selected 12x12 km² scenes

Lom Pangar Dam, Cameroon April 20th, 2017 GHGSat-D excess CH₄ column measurement

Lom Pangar Dam, Cameroon April 20th, 2017 GHGSat-D excess CH₄ column measurement

Lom Pangar Dam, Cameroon April 20th, 2017 GHGSat-D excess CH₄ column measurement

0

2

3

4 km

