NATURAL pH OF RAIN

• Equilibrium with natural $CO₂$ (280 ppmv) results in a rain pH of 5.7:

$$
CO_{2}(g) \xrightarrow{H_{2}O} CO_{2} \cdot H_{2}O \qquad K_{H} = 3 \times 10^{-2} \text{ M atm}^{-1}
$$

\n
$$
CO_{2} \cdot H_{2}O \xrightarrow{=HCO_{3}^{-}} HCO_{3}^{-} + H^{+} \qquad K_{1} = 9 \times 10^{-7} \text{ M}
$$

\n
$$
HCO_{3}^{-} \xrightarrow{=HCO_{3}^{2-}} H^{+} \qquad K_{2} = 7 \times 10^{-10} \text{ M}
$$

\n
$$
\Rightarrow [H^{+}] = (K_{1}K_{H}P_{CO_{2}})^{1/2}
$$

• This pH can be modified by natural acids $(H₂SO₄, HNO₃, RCOOH...)$ and bases (NH₃, CaCO₃) \Rightarrow natural rain has a pH in range 5-7

"Acid rain" refers to rain with $pH < 5$ \Rightarrow damage to ecosystems

Mean pH of precipitation, 1990

National Acid Deposition Program

Ionic composition of precipitation (late 1980s)

Ion	Rural New York State	Southwest Minnesota
NO ₃	25	24
Cl^-	4	4
HCO ₃	0.1	10
Sum anions	74	84
H^+ (pH)	46 (4.34)	0.5(6.31)
NH_{4}	8.3	38
	7	29
Ca^{2+} Mg ²⁺ K ⁺	1.9 [°]	6
	0.4	2.0
Na ⁺	5	14
Sum cations	68	89

Table 13-1 Median Concentrations of Ions (μ eq l⁻¹) in Precipitation at Two Typical Sites in the United States

Mean pH of precipitation, 2015

t.

Total nitrogen deposition (nitrate and ammonium)

- Nitrogen deposition exceeds critical loads in much of the country
- About half is nitrate, half is ammonium
- \cdot NO_x emissions are decreasing but ammonia emissions are not

Zhang et al. [2012], Ellis et al. [2013]

Environmental mercury and the role of the atmosphere

Mercury from fish consumption: a global environmental issue

EPA reference dose (RfD) : 0.1 μ g kg⁻¹ d⁻¹ (about 2 fish meals per week)

Electronic structure of mercury

Mass number = 80: $1s^2$ 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶ 5d¹⁰ 6s²

- Filling of subshells makes elemental Hg(0) stable, liquid, volatile
- Mercury can also shed its two outer electrons (6s²) and be present as Hg(II) (mercuric) compounds $\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}$ $\frac{1}{\sqrt{6\pi}}\int_{0}^{\infty}$ 6s²

Biogeochemical cycle of mercury

Global transport of mercury through the atmosphere

Present-day emission of mercury to atmosphere from coal and mining

Atmospheric concentrations

Observed variability of atmospheric Hg implies an atmospheric lifetime against deposition of about 0.5 years

UNEP [2013]; Horowitz et al. [2017]

Mercury wet deposition is controlled by global transport

EPA deposition data (circles), model (background)

Florida T-storm

Highest mercury deposition in US is along the Gulf Coast, where thunderstorms scavenge globally transported mercury from high altitudes

Selin and Jacob [2008]

Atmospheric redox chemistry of mercury: driver of mercury deposition

- Oxidation of Hg(0) by OH is too slow
- Oxidation by Br atoms is currently thought to dominate

 $Hg + Br + M \longrightarrow HgBr + M$

 $HgBr+X+M \rightarrow HgBrX+M$ $X \equiv OH, Br, Cl, NO_2, HO_2$

Hg(II) likely photolyzes but speciation is uncertain

Speciation may change by cycling through aerosols and clouds, formation of Hg(II)-organic complexes has been proposed

Saiz-Lopez et al., submitted

Current view of atmospheric Hg budget

Horowitz et al., 2017

UNEP Minimata Convention on Mercury (2013)

- Requires best available technology for coal-fired power plants
- Mercury mining to be banned in 15 years
- Regulation of mercury use in artisanal gold mining

"Grasshopper effect" keeps mercury in environment for decades

Fate of an atmospheric pulse emitted at time zero:

Amos et al. [2014]

Thus mercury pollution is in large part a legacy problem

The dominance of Asian emissions is a recent development

Streets et al. , 2011

Who is responsible for mercury in the present-day ocean?

Amos et al. [2013]

What can we hope from the Minimata Convention?

Zeroing human emissions right now would decrease ocean mercury by 50% by 2100, while keeping emissions constant would increase it by 40%

Amos et al. [2013, 2014]

The wild card of climate change: potential mobilization of the large soil mercury pool

Atmosphere: 5,000 tons

Increasing soil respiration

Global soils: 270,000 tons mercury **Communication Communication** Oceans: 330,000 tons

Climate change may be as important as emission controls for the future of environmental mercury in the century ahead.