NATURAL pH OF RAIN

• Equilibrium with natural CO_2 (280 ppmv) results in a rain pH of 5.7:

$$CO_{2}(g) \xleftarrow{H_{2}O} CO_{2} \bullet H_{2}O \qquad K_{H} = 3 \times 10^{-2} \text{ M atm}^{-1}$$

$$CO_{2} \bullet H_{2}O \xleftarrow{HCO_{3}^{-}} + H^{+} \qquad K_{1} = 9 \times 10^{-7} \text{ M}$$

$$HCO_{3}^{-} \xleftarrow{CO_{3}^{2-}} + H^{+} \qquad K_{2} = 7 \times 10^{-10} \text{ M}$$

$$\Rightarrow [H^{+}] = (K_{1}K_{H}P_{CO_{2}})^{1/2}$$

• This pH can be modified by natural acids (H_2SO_4 , HNO_3 , RCOOH...) and bases (NH_3 , $CaCO_3$) \Rightarrow natural rain has a pH in range 5-7

"Acid rain" refers to rain with pH < 5 \Rightarrow damage to ecosystems

Mean pH of precipitation, 1990

National Acid Deposition Program

Ionic composition of precipitation (late 1980s)

Ion	Rural New York State	Southwest Minnesota			
SO42-	45	46			
NO ₃ ⁻	25	24			
Cl-	4	4			
HCO ₃ ⁻	0.1	10			
Sum anions	74	84			
H+ (pH)	46 (4.34)	0.5 (6.31)			
NH4	8.3	38			
Ca ²⁺	7	29			
Mg ²⁺	1.9	6			
K ⁺	0.4	2.0			
Na ⁺	5	14			
Sum cations	68	89			

Table 13-1 Median Concentrations of Ions $(\mu eq l^{-1})$ in Precipitation at Two Typical Sites in the United States

Mean pH of precipitation, 2015

5

Total nitrogen deposition (nitrate and ammonium)

- Nitrogen deposition exceeds critical loads in much of the country
- About half is nitrate, half is ammonium
- ${\scriptstyle \bullet}$ NO_x emissions are decreasing but ammonia emissions are not

Zhang et al. [2012], Ellis et al. [2013]

Environmental mercury and the role of the atmosphere

Mercury from fish consumption: a global environmental issue

EPA reference dose (RfD): 0.1 µg kg⁻¹ d⁻¹ (about 2 fish meals per week)

Electronic structure of mercury

Group #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	•	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
	Lantha Lanthai	nides noids)	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
	** Acti (Actin	inides noids)	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Mass number = 80: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^{10} 6s^2$

- Filling of subshells makes elemental Hg(0) stable, liquid, volatile
- Mercury can also shed its two outer electrons (6s²) and be present as Hg(II) (mercuric) compounds

Biogeochemical cycle of mercury

Global transport of mercury through the atmosphere

Present-day emission of mercury to atmosphere from coal and mining

Atmospheric concentrations

Observed variability of atmospheric Hg implies an atmospheric lifetime against deposition of about 0.5 years

UNEP [2013]; Horowitz et al. [2017]

Mercury wet deposition is controlled by global transport

EPA deposition data (circles), model (background)

Florida T-storm

Highest mercury deposition in US is along the Gulf Coast, where thunderstorms scavenge globally transported mercury from high altitudes

Selin and Jacob [2008]

Atmospheric redox chemistry of mercury: driver of mercury deposition

- Oxidation of Hg(0) by OH is too slow
- Oxidation by Br atoms is currently thought to dominate

 $Hg+Br+M \longrightarrow HgBr+M$

 $HgBr+X+M \rightarrow HgBrX+M$ X = OH, Br, Cl, NO₂, HO₂

Hg(II) likely photolyzes but speciation is uncertain

Speciation may change by cycling through aerosols and clouds, formation of Hg(II)-organic complexes has been proposed

Saiz-Lopez et al., submitted

Current view of atmospheric Hg budget

Horowitz et al., 2017

UNEP Minimata Convention on Mercury (2013)

- Requires best available technology for coal-fired power plants
- Mercury mining to be banned in 15 years
- Regulation of mercury use in artisanal gold mining

"Grasshopper effect" keeps mercury in environment for decades

Fate of an atmospheric pulse emitted at time zero:

Amos et al. [2014]

Thus mercury pollution is in large part a legacy problem

The dominance of Asian emissions is a recent development

Streets et al. , 2011

Who is responsible for mercury in the present-day ocean?

Amos et al. [2013]

What can we hope from the Minimata Convention?

Zeroing human emissions right now would decrease ocean mercury by 50% by 2100, while keeping emissions constant would increase it by 40%

Amos et al. [2013, 2014]

The wild card of climate change: potential mobilization of the large soil mercury pool

Atmosphere: 5,000 tons

Increasing soil respiration

Global soils: 270,000 tons mercury

Oceans: 330,000 tons

Climate change may be as important as emission controls for the future of environmental mercury in the century ahead.