3. Simple models

A model is a simplified representation of a complex system enabling prediction of the system behavior within acceptable error

"All models are wrong, but some are useful"

Building an atmospheric chemistry model

What processes control atmospheric concentrations?

"What goes up must come down"...but transport and chemistry can happen in between

One-box model

Nitrogen dioxide (NO₂) has atmospheric lifetime \sim 1 day: strong gradients away from combustion source regions

Satellite observations of NO₂ columns

Carbon monoxide (CO) has atmospheric lifetime ~ 2 months: mixing around latitude bands

Satellite observations

Mopitt - spring

CO mixing ratio (ppbv) @ 850 hPa

no data 50 100 150 200 >

250

CO₂ has atmospheric lifetime ~ 100 years: global mixing

Using a box model to quantify CO₂ sinks

On average, only 60% of emitted CO_2 remains in the atmosphere – but there is large interannual variability in this fraction

Special case: constant source, first-order sink

If *S*, *k* are constant over $t \gg \tau$, then $dm/dt \rightarrow 0$ and $m \rightarrow S/k$: quasi steady state

Questions

1. The Montreal Protocol to protect the ozone layer banned worldwide production of the chlorofluorocarbon CFC-12 in 1996. CFC-12 is removed from the atmosphere by photolysis with a lifetime of 100 years. How long will it take for CFC-12 concentrations to drop to half of present-day values?

2. Consider a pollulance entrued in an urban airshed of 100 km dimension. The pollulant can be removed from the airshed by oxidation, precipitation scavenging, or export. The lifetime against oxidation is 1 day. It rains once a week. The wind is 20 km/h. Which is the dominant pathway for removal?

TWO-BOX MODEL

defines spatial variation between two domains

Mass balance equation: $\frac{dm_1}{dt} = E_1 + P_1 - L_1 - D_1 - k_{12}m_1 + k_{21}m_2$ (similar equation for dm_2/dt)

system of two coupled ordinary differential equations (or algebraic equations if system is assumed to be at steady state)

Applications of 2-box model

Interhemispheric exchange

Stratosphere-troposphere exchange

Research models solve mass balance equation in 3-D assemblage of gridboxes

Solve mass balance equation for individual gridboxes

A different approach: follow air parcel moving with the wind (puff model)

...no transport terms! (they're implicit in the trajectory)

Application to a diluting pollution plume:

Application: transport and evolution of fire plumes

Fire plumes over southern California

Sulfur dioxide (SO₂) from Aleutian volcano eruption (8/8/2008)

Kasatochi volcano

Altitude: 314 m Latitude: 52.16°N Longitude: 175.51° W

