CHAPTER 6: BIOGEOCHEMICAL CYCLES

THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS

- Most abundant elements: oxygen (in solid earth!), iron (core), silicon (mantle), hydrogen (oceans), nitrogen, carbon, sulfur…
- The elemental composition of the Earth has remained essentially unchanged over its 4.5 Gyr history
	- Extraterrestrial inputs (e.g., from meteorites, cometary material) have been relatively unimportant
	- Escape to space has been restricted by gravity
- *• Biogeochemical cycling* of these elements between the different reservoirs of the Earth system determines the composition of the Earth's atmosphere and oceans, and the evolution of life

HISTORY OF EARTH'S ATMOSPHERE

Evolution of oxygen and ozone over Earth's history

Comparing the atmospheres of Earth and Venus

BIOGEOCHEMICAL CYCLING OF ELEMENTS: examples of major processes

Physical exchange, redox chemistry, biochemistry are involved

Change in molecular form of an element by redox reactions

An atom minimizes energy by filling lowest-energy orbitals in its outermost (valence) electron shell: this is done by acquiring or donating electrons through bonding First valence shell has 2 electrons; second has 8; third has 18 (but 8 low-energy),…

In periodic table, atomic number gives number of electrons in neutral/unbound atom: this corresponds to oxidation state zero (0) for that element. Oxidation state becomes negative if atom acquires electrons, positive if it donates.

Some handy rules:

- A neutral molecule has total oxidation number 0
- Bound oxygen has oxidation state -2
- Bound hydrogen has oxidation state +1

Periodic table of elements showing atomic numbers

OXIDATION STATES OF NITROGEN

N has 5 electrons in valence shell \Rightarrow 9 oxidation states from –3 to +5

Increasing oxidation number (nitrogen is oxidized)

Decreasing oxidation number (nitrogen is reduced)

Questions

- 1. Although volcanoes don't emit O_2 they do emit a lot of oxygen (as H_2O and CO_2). Both H₂O and CO₂ photolyze in the upper atmosphere. Photolysis of H₂O eventually results in production of atmospheric $O₂$ and this is thought to be responsible for the presence of $O₂$ in the atmosphere before the onset of photosynthesis. However, photolysis of $CO₂$ does not result in production of $O₂$. Why this difference?
- 2. How many net molecules of $O₂$ are needed to oxidize N₂ to HNO₃?

Elementary vs. stoichiometric reactions

An **elementary reaction** is one that arises from the actual collision of reactants, from which the kinetics can be deduced:

$$
\begin{array}{ccc}\n\begin{pmatrix}\nA \\
B\n\end{pmatrix} & A + B \rightarrow C + D \\
\hline\nB\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\nA + B \rightarrow C + D \\
\hline\n\end{array}\n\begin{array}{ccc}\nd[A] \\
\hline\end{array}\n=\frac{d[B]}{dt} = \frac{d[C]}{dt} = \frac{d[D]}{dt} = k[A][B]
$$

A **stoichiometric reaction** is one that describes the net outcome of a reaction sequence, without any information on kinetics or mechanism. For example, combustion of a hydrocarbon C_xH_y is described stoichiometrically by

$$
C_xH_y + (x+y/4) O_2 \rightarrow x CO_2 + y/2 H_2O
$$

THE NITROGEN CYCLE: MAJOR PROCESSES

Ammonia formation by Haber-Bosch process (1909)

 N_2 + $3H_2$ $\frac{100 \text{ rad of 2}}{2}$ 2NH₃ high *T, p* metal catalyst

enabled 20th century population growth through fertilizer production

Fritz Haber **Carl Bosch** Carl Bosch

BOX MODEL OF THE NITROGEN CYCLE

Global human perturbation to nitrogen cycle

Global anthropogenic N fixation now exceeds natural:

Population, billions

Resulting N deposition (NH₄⁺, NO₃⁻) modifies ecosystem function, C storage

Annual N deposition

Zhang et al. [2012]

N₂O: LOW-YIELD PRODUCT OF BACTERIAL NITRIFICATION AND DENITRIFICATION

Important as

- **source of NO_x radicals in stratosphere**
- **greenhouse gas**

FAST OXYGEN CYCLE: ATMOSPHERE-BIOSPHERE

• Source of O₂: photosynthesis

 $nCO_2 + nH_2O \rightarrow (CH_2O)_n + nO_2$

• Sink: respiration/decay $(CH_2O)_n + nO_2 \rightarrow nCO_2 + nH_2O$ **O2 CO o[rgC](http://iconbazaar.com/bars/contributed/pg04.html) litter orgC Net photosynthesis by green plants: 200 Pg O/yr decay O2 lifetime: 6000 years 1.2×106 Pg O**

…but abundance of organic carbon in biosphere/soil/ocean reservoirs is too small to control atmospheric O₂ levels

SLOW OXYGEN CYCLE: ATMOSPHERE-LITHOSPHERE

Questions

- 1. Denitrification seems at first glance to be a terrible waste for the biosphere, jettisoning precious fixed nitrogen back to the atmospheric $N₂$ reservoir. In fact, denitrification is essential for maintaining life in the interior of continents. Why?
- 2. Would shutting down of photosynthesis eventually deplete atmospheric O_2 ?

Increase in atmospheric $CO₂$ from fossil fuel combustion

IPCC [2007, 2014]

Rising atmospheric CO₂ vs. latitude, 2001-2012

https://www.esrl.noaa.gov/gmd/ccgg/globalview/

Temperature and CO₂ records in Antarctic ice cores

Vostok ice core (East Antarctica)

CO2 over the last 60 million years

IPCC [2014]

INTERANNUAL TREND IN CO₂ INCREASE

On average, only 60% of emitted CO₂ remains in the atmosphere – but **there is large interannual variability in this fraction**

Equilibrium constants

If we have a forward reaction $A + B \rightarrow C + D$ (rate constant k_f)

then we must have the backward reaction $C + D \rightarrow A + B$ (rate constant k_b)

If the backward reaction is negligible then the forward reaction is said *irreversible*

If the backward reaction is significant then the forward reaction is said *reversible.*

If the backward reaction is fast then the species may be in *equilibrium*:

$$
A + B \xrightarrow{\bullet} C + D \qquad \frac{d[A]}{dt} = k_b [C][D] - k_f [A][B] = 0 \Rightarrow \frac{[C][D]}{[A][B]} = \frac{k_f}{k_b} = K
$$
equilibrium constant constant

Ionic dissociation reactions in water are fast and best described by equilibrium constants:

 $AB \longrightarrow A^+ + B^-$

EQUILIBRIUM PARTITIONING OF CO₂ BETWEEN ATMOSPHERE AND GLOBAL OCEAN

Equilibrium for present-day ocean:

$$
F = \frac{N_{CO2}(g)}{N_{CO2}(g) + N_{CO2}(aq)} = \frac{1}{1 + \frac{V_{oc}PK_{H}}{N_a} \left(1 + \frac{K_1}{[H^+]} + \frac{K_1K_2}{[H^+]^2}\right)} = 0.03
$$

 \Rightarrow **only 3% of total inorganic carbon is currently in the atmosphere**

But CO₂(g) \rightarrow \Rightarrow [H+] \rightarrow \Rightarrow **F** \rightarrow *m.* positive feedback to increasing CO₂

Pose problem differently: how does a CO₂ addition *dN* **partition between the atmosphere and ocean at equilibrium (whole ocean)?**

$$
f = \frac{dN_{CO2}(g)}{dN_{CO2}(g) + dN_{CO2}(aq)} = \frac{1}{1 + \frac{V_{oc}PK_{H}K_{1}K_{2}}{N_{a}\beta\left[H^{+}\right]^{2}}} = 0.28
$$

 \Rightarrow 28% of added CO₂ remains in atmosphere!

ADDITIONAL LIMITATION OF CO₂ UPTAKE: SLOW OCEAN TURNOVER (~ 200 years)

Uptake by oceanic mixed layer only (V_{OC} = 3.6x10¹⁶ m³) would give $f = 0.94$ (94% of added $CO₂$ remains in atmosphere)

MEAN COMPOSITION OF SEAWATER

for [Alk] = $2.3x10^{-3}$ **M**

LIMIT ON OCEAN UPTAKE OF CO₂: Equilibrium calculation CONSERVATION OF ALKALINIT

Charge balance in the ocean: $[HCO₃]+2[CO₃²]=[Na⁺]+[K⁺]+2[Mg²⁺]+$ 2[Ca²⁺] - [Cl⁻] – 2[SO₄²⁻] – [Br⁻]

 $\mathsf{The}\text{ }$ *alkalinity* $[\mathsf{Alk}] \approx [\mathsf{HCO}_{3}] + 2[\mathsf{CO}_{3}^{2}] = \frac{1}{2}$ **2.3x10-3M is the excess base relative to the** CO₂-H₂O system

It is conserved upon addition of CO₂ \Rightarrow **uptake of CO₂ is limited by the existing** Cov_2^3 + CO3 Cov_3^3 + H_2^3 O Cov_3^2

Increasing AIK Teg Gires + Co3 of ution of sediments:
...WHICH takes place over a time scale **of thousands of years**

Observed ocean acidification

Data: Mauna Loa (ftp://aflp.cmdl.noaa.gov/products/trcnds/co2/co2_nnn_mlo.txt) ALOHA (http://hahana.socst.hawaii.edu/hot/products/HOT_surface_CO2.txt) Ref: J.E. Dore et al. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA 106:12235-12240.

LAND-ATMOSPHERE CARBON CYCLING: MAJOR PROCESSES

Land-atmosphere global carbon cycling

Inventories in PgC Flows in PgC a-1

Reforestation in action:

Harvard Forest in Petersham, central Mass. – then and now

Decrease in O₂ as constraint on land uptake of CO₂

IPCC [2014]

Current net uptake of CO₂ by biosphere (1.4 Pg C yr⁻¹) is **small residual of large atmosphere-biosphere exchange**

Carbon budget, 1750 present

IPCC, 2014

Year

Future projections of CO₂ emissions

IPCC Representative Concentration Pathways (RCP)

There is hope: CO₂ emissions are flattening out globally, decreasing in developed countries

Global Carbon Project

Questions

- 1. From the standpoint of controlling atmospheric $CO₂$, is it better to heat your home with a wood stove or by natural gas?
- 2. You wish to fly from Boston to California on a commercial flight that consumes 100,000 lbs of jet fuel for the trip. The company offers - as an extra charge on your ticket - to make your personal trip carbon-neutral by planting trees. Does this seem practical, in terms of the number of trees that would need to be planted? And is this a reasonable long-term proposition for mitigating your personal "carbon footprint"?