CHAPTER 6: BIOGEOCHEMICAL CYCLES

THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS

- Most abundant elements: oxygen (in solid earth!), iron (core), silicon (mantle), hydrogen (oceans), nitrogen, carbon, sulfur...
- The elemental composition of the Earth has remained essentially unchanged over its 4.5 Gyr history
 - Extraterrestrial inputs (e.g., from meteorites, cometary material) have been relatively unimportant
 - Escape to space has been restricted by gravity
- Biogeochemical cycling of these elements between the different reservoirs of the Earth system determines the composition of the Earth's atmosphere and oceans, and the evolution of life

HISTORY OF EARTH'S ATMOSPHERE

Evolution of oxygen and ozone over Earth's history

Comparing the atmospheres of Earth and Venus

	Venus	Earth
Radius (km)	6100	6400
Surface pressure (atm)	91	1
CO ₂ (mol/mol)	0.96	3x10 ⁻⁴
N ₂ (mol/mol)	3.4x10 ⁻²	0.78
O ₂ (mol/mol)	6.9x10 ⁻⁵	0.21
H ₂ O (mol/mol)	3x10 ⁻³	1x10 ⁻²

BIOGEOCHEMICAL CYCLING OF ELEMENTS: examples of major processes

Physical exchange, redox chemistry, biochemistry are involved

Change in molecular form of an element by redox reactions

An atom minimizes energy by filling lowest-energy orbitals in its outermost (valence) electron shell: this is done by acquiring or donating electrons through bonding First valence shell has 2 electrons; second has 8; third has 18 (but 8 low-energy),...

In periodic table, atomic number gives number of electrons in neutral/unbound atom: this corresponds to oxidation state zero (0) for that element. Oxidation state becomes negative if atom acquires electrons, positive if it donates.

Some handy rules:

- A neutral molecule has total oxidation number 0
- Bound oxygen has oxidation state -2
- Bound hydrogen has oxidation state +1

Periodic table of elements showing atomic numbers

OXIDATION STATES OF NITROGEN

N has 5 electrons in valence shell \Rightarrow 9 oxidation states from –3 to +5

Increasing oxidation number (nitrogen is oxidized)

-3	0	+1	+2	+3	+4	+5
NH ₃ Ammonia NH ₄ + Ammonium R ₁ N(R ₂)R ₃ Organic N	N ₂ Dinitrogen	N ₂ O Nitrous oxide	NO Nitric oxide	HONO Nitrous acid NO ₂ - Nitrite	NO ₂ Nitrogen dioxide	HNO ₃ Nitric acid NO ₃ ⁻ Nitrate

Decreasing oxidation number (nitrogen is reduced)

Questions

- 1. Although volcanoes don't emit O_2 they do emit a lot of oxygen (as H_2O and CO_2). Both H_2O and CO_2 photolyze in the upper atmosphere. Photolysis of H_2O eventually results in production of atmospheric O_2 and this is thought to be responsible for the presence of O_2 in the atmosphere before the onset of photosynthesis. However, photolysis of CO_2 does not result in production of O_2 . Why this difference?
- 2. How many net molecules of O_2 are needed to oxidize N_2 to HNO_3 ?

Elementary vs. stoichiometric reactions

An **elementary reaction** is one that arises from the actual collision of reactants, from which the kinetics can be deduced:

A **stoichiometric reaction** is one that describes the net outcome of a reaction sequence, without any information on kinetics or mechanism. For example, combustion of a hydrocarbon C_xH_y is described stoichiometrically by

$$C_xH_y + (x+y/4) O_2 \rightarrow x CO_2 + y/2 H_2O$$

THE NITROGEN CYCLE: MAJOR PROCESSES

Ammonia formation by Haber-Bosch process (1909)

 $N_2 + 3H_2 \xrightarrow{high T, p} 2NH_3$

enabled 20th century population growth through fertilizer production

Fritz Haber

Carl Bosch

BOX MODEL OF THE NITROGEN CYCLE

Global human perturbation to nitrogen cycle

Global anthropogenic N fixation now exceeds natural:

Resulting N deposition (NH_4^+ , NO_3^-) modifies ecosystem function, C storage

Annual N deposition

Zhang et al. [2012]

N₂O: LOW-YIELD PRODUCT OF BACTERIAL NITRIFICATION AND DENITRIFICATION

Important as

- source of NO_x radicals in stratosphere
- greenhouse gas

FAST OXYGEN CYCLE: ATMOSPHERE-BIOSPHERE

Source of O₂: photosynthesis

 $nCO_2 + nH_2O \rightarrow (CH_2O)_n + nO_2$

 Sink: respiration/decay $(CH_2O)_n + nO_2 \rightarrow nCO_2 + nH_2O$ O₂ lifetime: 6000 years CO 1.2×10⁶ Pg O Net photosynthesis by green plants: 200 Pg O/yr orgC decay

...but abundance of organic carbon in biosphere/soil/ocean reservoirs is too small to control atmospheric O₂ levels

SLOW OXYGEN CYCLE: ATMOSPHERE-LITHOSPHERE

Questions

- Denitrification seems at first glance to be a terrible waste for the biosphere, jettisoning precious fixed nitrogen back to the atmospheric N₂ reservoir. In fact, denitrification is essential for maintaining life in the interior of continents. Why?
- 2. Would shutting down of photosynthesis eventually deplete atmospheric O_2 ?

Increase in atmospheric CO₂ from fossil fuel combustion

Rising atmospheric CO₂ vs. latitude, 2001-2012

https://www.esrl.noaa.gov/gmd/ccgg/globalview/

Temperature and CO₂ records in Antarctic ice cores

Vostok ice core (East Antarctica)

CO₂ over the last 60 million years

IPCC [2014]

INTERANNUAL TREND IN CO₂ INCREASE

On average, only 60% of emitted CO_2 remains in the atmosphere – but there is large interannual variability in this fraction

Equilibrium constants

If we have a forward reaction $A + B \rightarrow C + D$ (rate constant k_f)

then we must have the backward reaction $C + D \rightarrow A + B$ (rate constant k_b)

If the backward reaction is negligible then the forward reaction is said *irreversible*

If the backward reaction is significant then the forward reaction is said reversible.

If the backward reaction is fast then the species may be in *equilibrium*:

$$A + B \xrightarrow{\leftarrow} C + D \qquad \frac{d[A]}{dt} = k_b[C][D] - k_f[A][B] = 0 \Rightarrow \frac{[C][D]}{[A][B]} = \frac{k_f}{k_b} = \underset{\text{equilibrium constant}}{K_b}$$

Ionic dissociation reactions in water are fast and best described by equilibrium constants:

AB \longrightarrow A⁺ + B⁻

EQUILIBRIUM PARTITIONING OF CO₂ BETWEEN ATMOSPHERE AND GLOBAL OCEAN

Equilibrium for present-day ocean:

$$F = \frac{N_{CO2}(g)}{N_{CO2}(g) + N_{CO2}(aq)} = \frac{1}{1 + \frac{V_{oc}PK_{\rm H}}{N_a} \left(1 + \frac{K_1}{[{\rm H}^+]} + \frac{K_1K_2}{[{\rm H}^+]^2}\right)} = 0.03$$

⇒ only 3% of total inorganic carbon is currently in the atmosphere

But $CO_2(g) \nearrow \Rightarrow [H^+] \nearrow \Rightarrow F \nearrow$... positive feedback to increasing CO_2

Pose problem differently: how does a CO_2 <u>addition</u> *dN* partition between the atmosphere and ocean at equilibrium (whole ocean)?

$$f = \frac{dN_{CO2}(g)}{dN_{CO2}(g) + dN_{CO2}(aq)} = \frac{1}{1 + \frac{V_{oc}PK_{\rm H}K_{\rm I}K_{\rm 2}}{N_a\beta\left[{\rm H}^+\right]^2}} = 0.28$$

 \Rightarrow 28% of added CO₂ remains in atmosphere!

ADDITIONAL LIMITATION OF CO₂ UPTAKE: SLOW OCEAN TURNOVER (~ 200 years)

Uptake by oceanic mixed layer only (V_{OC} = 3.6x10¹⁶ m³) would give *f* = 0.94 (94% of added CO₂ remains in atmosphere)

MEAN COMPOSITION OF SEAWATER

Equilibrium calculation for [Alk] = 2.3×10^{-3} M

LIMIT ON OCEAN UPTAKE OF CO₂: CONSERVATION OF ALKALINITY

Charge balance in the ocean: $[HCO_3^{-}] + 2[CO_3^{2-}] = [Na^+] + [K^+] + 2[Mg^{2+}] + 2[Ca^{2+}] - [Cl^-] - 2[SO_4^{2-}] - [Br^-]$

The alkalinity [Alk] \approx [HCO₃⁻] + 2[CO₃²⁻] = 2.3x10⁻³M is the excess base relative to the CO₂-H₂O system

It is <u>conserved</u> upon addition of CO_2 \Rightarrow uptake of CO_2 is limited by the existing $ev_2(y) \rightarrow CO_3^{-2}$; $H_2O \longrightarrow 2HCO_3^{-2}$

Increasing OAIK requires to Bogotution of sediments: ...Which takes place over a time scale of thousands of years

Observed ocean acidification

Data: Mauna Loa (ftp://aftp.emdLnoaa.gov/products/trends/co2/co2_mm_mlo.txt) ALOHA (http://hahana.soest.hawaii.edu/hot/products/HOT_surface_CO2.txt) Ref: J.E. Dore et al, 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA 106:12235-12240.

LAND-ATMOSPHERE CARBON CYCLING: MAJOR PROCESSES

Land-atmosphere global carbon cycling

Inventories in PgC Flows in PgC a⁻¹

Reforestation in action:

Harvard Forest in Petersham, central Mass. - then and now

Decrease in O₂ as constraint on land uptake of CO₂

IPCC [2014]

Current net uptake of CO_2 by biosphere (1.4 Pg C yr⁻¹) is small residual of large atmosphere-biosphere exchange

Carbon budget, 1750 present

IPCC, 2014

Year

Future projections of CO₂ emissions

IPCC Representative Concentration Pathways (RCP)

There is hope: CO₂ emissions are flattening out globally, decreasing in developed countries

Global Carbon Project

Questions

- 1. From the standpoint of controlling atmospheric CO₂, is it better to heat your home with a wood stove or by natural gas?
- 2. You wish to fly from Boston to California on a commercial flight that consumes 100,000 lbs of jet fuel for the trip. The company offers as an extra charge on your ticket to make your personal trip carbon-neutral by planting trees. Does this seem practical, in terms of the number of trees that would need to be planted? And is this a reasonable long-term proposition for mitigating your personal "carbon footprint"?