CHAPTER 6: BIOGEOCHEMICAL CYCLES

THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS

Most abundant elements: oxygen (in solid earth!), iron (core), silicon
(mantle), hydrogen (oceans), nitrogen, carbon, sulfur...

The elemental composition of the Earth has remained essentially
unchanged over its 4.5 Gyr history

— Extraterrestrial inputs (e.g., from meteorites, cometary material)
have been relatively unimportant

— Escape to space has been restricted by gravity

- Biogeochemical cycling of these elements between the different
reservoirs of the Earth system determines the composition of the Earth’s
atmosphere and oceans, and the evolution of life



HISTORY OF EARTH’S ATMOSPHERE
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Evolution of oxygen and ozone over Earth’s history

A_?) gfe‘"—
e P
z e 2
1007} § ,’ 3 S»
) 3o
- s 2 o
8 / = c 050
% ,’ S8
2 O =
—2 g l / ,ﬂ_ﬂ
107 - I Q

g |

2y 4%
E'l /
m |

1073

Precambrian
- [0,) <5X% 1077 PAL

Ground level oxygen concentration or ozone column
abundance as fraction of present atmospheric level

before life
10—4 1 1 1 L L
g€ 8 8 g
Millions

Great moments in evolution



Comparing the atmospheres of Earth and Venus

Venus Earth
Radius (km) 6100 6400
Surface pressure (atm) 91 1
CO, (mol/mol) 0.96 3x10-4
N, (mol/mol) 3.4x10-2 0.78
O, (mol/mol) 6.9x10-5 0.21
H,O (mol/mol) 3x10-3 1x10-2




BIOGEOCHEMICAL CYCLING OF ELEMENTS:
examples of major processes
Physical exchange, redox chemistry, biochemistry are involved
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Change in molecular form of an element by redox reactions

Redox reaction: oxidant + reductant — products

| want electrons! | want to get rid of electrons!

Let’s do it!

An atom minimizes energy by filling lowest-energy orbitals in its outermost (valence)
electron shell: this is done by acquiring or donating electrons through bonding
First valence shell has 2 electrons; second has 8; third has 18 (but 8 low-energy),...

In periodic table, atomic number gives number of electrons in neutral/unbound atom:
this corresponds to oxidation state zero (0) for that element. Oxidation state becomes
negative if atom acquires electrons, positive if it donates.

Some handy rules:

* A neutral molecule has total oxidation number O
« Bound oxygen has oxidation state -2

* Bound hydrogen has oxidation state +1
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OXIDATION STATES OF NITROGEN

N has 5 electrons in valence shell =9 oxidation states from —3 to +5

< [=]
Increasing oxidation number (nitrogen is oxidized) |
>

-3 0 +1 +2 +3 +4 +5
NH, N, N,O NO HONO NO, HNO,
Ammonia |Dinitrogen |Nitrous Nitric oxide |Nitrous acid |Nitrogen |Nitric acid
NH,* oxide NO.- dioxide |NO,
Ammonium Nitrite Nitrate
R;N(R)R;
Organic N
<

Decreasing oxidation number (nitrogen is reduced)




Questions

1. Although volcanoes don't emit O, they do emit a lot of oxygen (as H,O and CO.,).
Both H,O and CO, photolyze in the upper atmosphere. Photolysis of H,O
eventually results in production of atmospheric O, and this is thought to be
responsible for the presence of O, in the atmosphere before the onset of
photosynthesis. However, photolysis of CO, does not result in production of O.,.
Why this difference?

2. How many net molecules of O, are needed to oxidize N, to HNO,?



Elementary vs. stoichiometric reactions

An elementary reaction is one that arises from the actual collision of reactants, from
which the kinetics can be deduced:

@\:/'@ A+B - C+D
B)— () _dl4] __d[B) _dIC] _dID] _,

dt dt dt dt

[A][B]

A stoichiometric reaction is one that describes the net outcome of a reaction
sequence, without any information on kinetics or mechanism. For example,
combustion of a hydrocarbon C,H, is described stoichiometrically by

CH, + (x+y/4) O, = x CO, +y/2 H,0



THE NITROGEN CYCLE: MAJOR PROCESSES
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Ammonia formation by Haber-Bosch process (1909)

high T, p

metal catalyst

enabled 20t century population growth through fertilizer production

Fritz Haber Carl Bosch




BOX MODEL OF THE NITROGEN CYCLE
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Global human perturbation to nitrogen cycle

Global anthropogenic N fixation now exceeds natural:
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N,O: LOW-YIELD PRODUCT OF BACTERIAL
NITRIFICATION AND DENITRIFICATION

Important as
- source of NO, radicals in stratosphere

- greenhouse gas
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FAST OXYGEN CYCLE: ATMOSPHERE-BIOSPHERE

- Source of O,: photosynthesis
nCO, + nH,0 - (CH,0),+ n0,

- Sink: respiration/decay
(CH,0),+n0O,—~> nCO,+ nH,0

CO. G O, lifetime: 6000 years
p

1.2x106Pg O
Net photosynthesis 40
by green plants: 2

200 Pg O/yr
orgC
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..but abundance of organic carbon in biosphere/soil/ocean
reservoirs is too small to control atmospheric O, levels

CO,
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SLOW OXYGEN CYCLE: ATMOSPHERE-LITHOSPHERE

0,: 1.2x106 Pg O
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2»\\/

0, lifetime: 3 million years

o) CO,

2
Fe,O ;unoff atheW
H,SO, /7 FeS, { orgC

OCEAN
orgC CONTINENT
burial
C()2 orgC: 1x107Pg C
A FeS,: 5x10¢ Pg S
Vo I microbes .
SEDIMENTS orgC FeSZ/ Compression

subduction



Questions

1. Denitrification seems at first glance to be a terrible waste for the biosphere,
jettisoning precious fixed nitrogen back to the atmospheric N, reservoir. In

fact, denitrification is essential for maintaining life in the interior of
continents. Why?

2. Would shutting down of photosynthesis eventually deplete atmospheric O,?



Increase in atmospheric CO, from fossil fuel combustion
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Temperature and CO, records in Antarctic ice cores
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CO, over the last 60 million years
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INTERANNUAL TREND IN CO, INCREASE

— Fossil Emissions
— Atm increase
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On average, only 60% of emitted CO, remains in the atmosphere — but
there is large interannual variability in this fraction



Equilibrium constants

If we have a forward reaction A+B —->C+D (rate constant k)

then we must have the backward reaction C + D - A+ B (rate constant k,)

If the backward reaction is negligible then the forward reaction is said irreversible
If the backward reaction is significant then the forward reaction is said reversible.

If the backward reaction is fast then the species may be in equilibrium:

d[A] _ 0= [CI[D] kK
., C+D qt =K, [CID] -k [A][B]=0 [A][B] - K, _equilibrium

constant

A+B

lonic dissociation reactions in water are fast and best described by equilibrium constants:

AB 5 A++B

‘.Q‘ 00  LATIB]

<

‘ DN A++B‘ = [AB]
00000

water molecules: “solvent cage”
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UPTAKE OF CO, BY THE OCEANS
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EQUILIBRIUM PARTITIONING OF CO,
BETWEEN ATMOSPHERE AND GLOBAL OCEAN

Equilibrium for present-day ocean:

NCO2 (g) — 1 — 003
Ncpr(g)+ Nep,(aq) 1+ V,.PKy 1+ K, + KK,
N [H'] [H'T

a

= only 3% of total inorganic carbon is currently in the atmosphere

ButCO,g) 7 = [H¥Y]” = F~
... positive feedback to increasing CO,

Pose problem differently: how does a CO, addition dN partition between
the atmosphere and ocean at equilibrium (whole ocean)?

dN,,(2) 1
f= = = =0.28
dN .,,(g) +dN,,(aq) 1+ VocPKHKlez
N_B [H+]

= 28% of added CO, remains in atmosphere!



ADDITIONAL LIMITATION OF CO, UPTAKE:
SLOW OCEAN TURNOVER (~ 200 years)

ATMOSFHERE
Obn
OCEANIC 0.2 COLDSURFACE OCEAN
MIED < WARMSURFACEOCEAIN
LAYER 14 ' 5
0.1 1.2 T i 0.4 T 0.8
INTEEMEDIATEOCEATIN deep
260 1.6 |water
formation
1 fon

Inventories in 1015 m3 water
Flows in 1015 m3 yr-1

lm

T?s
4

DEEFOCEAN
270

Uptake by oceanic mixed layer only (V.= 3.6x1016 m3)

would give f=0.94 (94% of added CO, remains in atmosphere)



MEAN COMPOSITION OF SEAWATER

Kilogram of seawater

The most
abundant ions
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L
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Sodium (Na*) 10.556 g

Other components (salinity) 34.4 g

Sulphate (S0,4%") 2.649 g

Chloride (CI") 18.980 g Magnesium (Mg?*) 1.272 g

Bicarbonate (HCO;7) 0.140 g

Calcium (Ca®*) 0.400 g
Potassium (K*) 0.380 g

Other



LIMIT ON OCEAN UPTAKE OF CO,:

Equilibrium calculation
for [AIK] = 2.3x10° M CONSERVATION OF ALKALINITY

Charge balance in the ocean:
[HCO;] + 2[CO;2] = [Na+*] + [K*] + 2[Mg?+] +
2[Ca2*] - [CI] - 2[SO,%] - [Br1]

The alkalinity [Alk] ~ [HCO,] + 2[CO,2] =
2.3x10-3M is the excess base relative to the

18 | | -CO,H,0 system
3 [HCO.], ] -

It is conserved upon addition of CO,
= uptake of CO, is limited by the existing

Ry PLER%H,0 < 2HCO,-

Ocean pH
Increa€aQ)\KfegGaesid@Bgtution of

166‘ 200 360‘ ‘ 4‘0‘0‘ 500 ﬁ?\ﬂmlgkes place over a time scale
pCO,, ppm of thousands of years




Observed ocean acidification

CO, Time Series in the North Pacific
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LAND-ATMOSPHERE CARBON CYCLING:
MAJOR PROCESSES
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Land-atmosphere global carbon cycling
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Reforestation in action:
Harvard Forest in Petersham, central Mass. — then and now




Decrease in O, as constraint on land uptake of CO,
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0, concentration, difference from standard (ppm)
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Current net uptake of CO, by biosphere (1.4 Pg C yr-) is
small residual of large atmosphere-biosphere exchange
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Carbon budget,
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CO, (ppm)

Future projections of CO, emissions

IPCC Representative Concentration Pathways (RCP)
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There is hope: CO, emissions are flattening out globally,

decreasing in developed countries
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1.

Questions

From the standpoint of controlling atmospheric CO.,, is it better to heat your home
with a wood stove or by natural gas?

You wish to fly from Boston to California on a commercial flight that consumes
100,000 lbs of jet fuel for the trip. The company offers - as an extra charge on your
ticket - to make your personal trip carbon-neutral by planting trees. Does this
seem practical, in terms of the number of trees that would need to be planted?
And is this a reasonable long-term proposition for mitigating your personal “carbon

footprint™?



