Helpful Constants:

pptv = part per trillion (1×10^{-12}) ppbv = part per billion (1×10^{-9}) ppmv = part per million (1×10^{-6}) Surface area of a sphere: $A = 4\pi r^2$ $1 \text{ m}^3 = 1000 \text{ l}$ $1 \text{ hPa} = 100 \text{ Pa} = 100 \text{ N/m}^2$ Gravitational acceleration $g = 9.80 \text{ m/sec}^2$ Radius of the earth R = 6400 kmMean molecular mass of air $M_a = 28.96$ g/mole Molecular mass of CO₂: $M_{CO_2} = 44$ g/mole N_2 mixing ratio in the atmosphere $C_{N_2} = 0.78$ mol/mol O_2 mixing ratio in the atmosphere $C_{O_2} = \text{oxygen} = 0.21 \text{ mol/mol}$ Dobson Unit (DU) = 2.69×10^{20} molec/m² Mass of the atmosphere: $m_a = 4\pi R^2 P_s/g = 5.2 \times 10^{18}$ kg (surface pressure P_s in N/m^2 = Pascals) Avogadros's number $A_v = 6.02 \times 10^{23}$ (number of molecules in a mole) Ideal gas constant: R = 8.31 J/mol K

Ideal Gas Law:

Mixing ratio: $C_x = p_x/p = n_x/n_a$ (pressure, molar, or number density fraction) Moles of air in the atmosphere $N_a = m_a/M_a$ (m_a : atmospheric mass, units consistent with M_a) Moles of CO₂ atmosphere $N_{CO_2} = C_{CO_2}N_a$ (N_a number of moles in the atmosphere)

- Mass of CO₂ in the atmosphere: $m_{CO_2} = N_{CO_2} M_{CO_2}$
- Atmospheric column of x: $\int n_x dz$ (molecules/area)

Ideal gas law: PV = NRT (Pressure P Pa (N/m²), Volume V (m³), moles N, temperature T (K)) Number density of air : $[M] = n_a = A_v N/V = A_v P/RT$ (in molec/m³, V in m³, N is moles, A_v : Avogadros's number).

Number density of air : $n_a = P/(1.38 \times 10^{-19}T)$ (n_a in molec/ cm^3 , P in hPa and T in K). Species number density: $n_x = C_x A_v P/RT = C_x n_a$.

Saturated water vapor pressure $P_{h_{20},sat}(T) = 6.112 \times e^{22.49 - (6142/T)}$ (in hPa, T in K).

 $RH(\%) = 100 \times P_{h_2o}/P_{h_2o,sat(T)}$

Simple Models:

 $dm/dt = F_{in} + E + P - F_{out} - D - L$

If sources constant and all losses first order, can write: dm/dt = S - km, which has the solution, $m(t) = m(0)e^{-kt} + \frac{S}{k}(1 - e^{-kt}).$

If loss of mass m is linear (first order): L = km.

Lifetime with respect to some first order loss process: $\tau = \text{mass}/(\text{loss rate}) = 1/k$.

Mass per unit area between pressure levels p_1 and p_2 , $M = (p_2 - p_1)/g$ (p_1 and p_2 in Pa)

Puff model of a pollution plume: $d[X]/dt = E + P - L - D - k_{dil}([X] - [X]_b)$ where k_{dil} is a dilution rate constant, and $[X]_b$ is the concentration of X in the background air.

Biogeochemical cycles:

Photosynthesis: $CO_2 + H_2O + h\nu \rightarrow CH_2O + O_2$, where CH₂O represents biomass material. Burning, respiration, or decay: $CH_2O + O_2 \rightarrow CO_2 + H_2O$ Total Dissolved Inorganic Carbon: $[CO_2(aq)] = [CO_2 \cdot H_2O] + [HCO_3^-] + [CO_3^{2-}]$ Henry's Law: [X] is the molar concentration in water and P_X the pressure: $[X] = K_H P_X$. $\begin{array}{l} \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \Leftrightarrow \mathrm{CO}_2 \cdot \mathrm{H}_2\mathrm{O} \; (K_H = 0.03M/atm) \\ \mathrm{CO}_2 \cdot \mathrm{H}_2\mathrm{O} \Leftrightarrow \mathrm{HCO}_3^- + \mathrm{H}^+ \; (K_1 = 9 \times 10^{-7}M) \\ \mathrm{HCO}_3^- \Leftrightarrow \mathrm{CO}_3^{2-} + \mathrm{H}^+ \; (K_2 = 7 \times 10^{-10}M) \end{array}$

Molar fraction F of CO₂ that is in the atmosphere: $F = N_{CO_2(g)}/(N_{CO_2(g)} + N_{CO_2(aq)})$, where $N_{CO_2(g)}$ is the number of moles in the atmosphere and $N_{CO_2(aq)}$ the number of moles of inorganic carbon in the ocean.

Number of moles dissolved inorganic carbon in the ocean: $N_{CO_2(aq)} = V_{oc}[CO_2(aq)]$

Radiative Transfer:

optical depth: $\delta = n\sigma L = N\sigma$ Here N is the "column" in molecules/area, n the concentration in molecules/volume, and σ the absorption coefficient of the molecule (or more generally, any absorber or scatterer, such as an aersosol).

Fractional Transmission $T = e^{-\delta/\cos\theta}$ (where δ is the optical depth in the vertical, and θ the angle from the vertical.

$$\begin{split} F(x+dx) &= F(x) - dF_{abs} - dF_{scat} \\ \mathrm{dF}_{abs}: \text{ absorbed flux, the photon goes into the internal energy of the absorber} \\ \mathrm{dF}_{scat}: \text{ scattered flux, the photon bounces off in the forward or backward direction} \\ dF_{abs} &= n\sigma_{abs}F(x)dx \\ dF_{scat} &= n\sigma_{scat}F(x)dx \\ dF &= F(x+dx) - F(x) = -n(\sigma_{scat} + \sigma_{scat})F(x)dx \\ F(L) &= F(0)e^{-n(\sigma_{abs} + \sigma_{scat})L} \\ \delta &= ln\frac{F(0)}{F(L)} \\ \text{photolysis rate: } k = \int_{\lambda} q_x(\lambda)\sigma_x(\lambda)I_{\lambda}d\lambda, \text{ where } I_{\lambda} \text{ is the actinic flux as a function of wavelength.} \end{split}$$

Chemical Kinetics:

Standard bimolecular reaction: $X + Y \rightarrow - > P + Q$, d[X]/dt = -k[X][Y] where $[X] = n_x$ and k is the rate constant. Standard Arrhenius form of reaction constant: $k = k_0 e^{-E_a/RT}$. E_a is the activation energy; R the gas constant; T the temperature in Kelvin.

Pressure dependent reaction: $A + B + M \rightarrow AB + M$ Low Pressure Limit: $\frac{d[AB]}{dt} = \frac{k_3k_5}{k_4}[A][B][M] = k_o[A][B][M]$ High Pressure Limit: $\frac{d[AB]}{dt} = k_3[A][B] = k_{\infty}[A][B]$ Both Limits: $\frac{d[AB]}{dt} = \frac{k_o[A][B][M]}{1 + \frac{k_o}{k_{\infty}}[M]}$