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ABSTRACT We present a new method for the statistical downscaling of coarse-resolution General Circulation
Model (GCM) fields to predict local climate change. Most atmospheric variables have strong seasonal cycles.
We show that the prediction of the non-seasonal variability of maximum and minimum daily surface temperature
is improved if the seasonal cycle is removed prior to the statistical analysis. The new method consists of three major
steps. First, the average seasonal cycles of both predictands and predictors are removed. Second, a principal com-
ponent-based multiple linear regression model between the deseasonalized predictands and predictors is devel-
oped and validated. Finally, the regression is used to make projections of future changes in maximum and
minimum daily surface temperature at Shearwater, Nova Scotia. This projection is made using the local grid-
scale variables of the Canadian General Circulation Model Version 3 (CGCM3) climate model as predictors.
Our statistical downscaling method indicates significant skill in predicting the observed distribution of temperature
using GCM predictors. Projections suggest minimum and maximum temperatures at Shearwater will be up to about
five degrees warmer by 2100 under the current “business-as-usual” scenario.

RÉSUMÉ [Traduit par la rédaction] Nous présentons une nouvelle méthode pour la réduction d’échelle
statistique des champs des modèles de circulation générale (MCG) à faible résolution pour prévoir les
changements du climat local. La plupart des variables atmosphériques ont des cycles saisonniers bien marqués.
Nous démontrons que la prédiction de la variabilité non saisonnière de la température de surface quotidienne
minimum et maximum est meilleure si on retranche le cycle saisonnier avant de procéder à l’analyse statistique.
Voici les trois grandes étapes de cette nouvelle méthode. D’abord, nous retirons les cycles saisonniers moyens des
prédictants et des prédicteurs. Ensuite, nous concevons et validons un modèle de régression linéaire multiple sur
composantes principales entre les prédictants et les prédicteurs désaisonnalisés. Enfin, nous nous servons de la
régression afin d’établir des projections pour les changements à venir dans la température de surface quotidienne
minimum et maximum à Shearwater en Nouvelle-Écosse. Cette projection est établie au moyen des variables
locales à l’échelle du maillage de la troisième version du modèle canadien de circulation générale (MCCG3).
Notre méthode de réduction d’échelle statistique se révèle très efficace pour prédire la répartition observée de
la température au moyen des prédicteurs du MCG. D’après les projections, les températures minimum et
maximum à Shearwater connaîtront une augmentation d’environ cinq degrés d’ici 2100 dans le scénario actuel
de type « statu quo ».

KEYWORDS statistical downscaling; multiple linear regression; principal components; seasonal cycle; local
climate change

1 Introduction

General Circulation Models (GCMs) have been used exten-
sively to predict future climate change. The determination of
the impact of climate change on a particular species, ecosys-
tem, or natural resource requires climate change scenarios
on a regional or even site-specific spatial scale. Most climate
models use very coarse spatial resolution (see Fig. 1) and

are usually unable to resolve the effects of local topography
or other subgrid-scale processes, which may have a strong
influence on the climate of a specific location. In order to
obtain climate change scenarios with sufficient spatial resol-
ution, model variables must, therefore, be downscaled from
the large-scale, coarse-resolution GCM fields using either
dynamical or statistical methods (Houghton et al., 2001;
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Maraun et al., 2010; Wilby et al., 2002). Dynamical downscal-
ing involves the use of a high-resolution regional circulation
model embedded in a large-scale GCM to represent the atmos-
pheric physics and circulation over a limited area of interest
more realistically. Statistical Downscaling (SD) involves the
development of a regression model between observations of
a local climate variable (predictand) and the grid-scale atmos-
pheric variables (predictors) at a specific site. The GCM-
derived predictors can then be used in a trained regression
model to make projections.
Various regression procedures have been used in SD

(Maraun et al., 2010). These include linear regression
(Cheng et al., 2008), canonical correlation analysis (von
Storch et al., 1993), and artificial neural networks (Schoof &
Pryor, 2001). An investigation using various SD methods to
predict temperatures in central Europe indicated that Multiple
Linear Regression (MLR) using one circulation- and one
temperature-related variable produced the best predictions
(Huth, 2002). Other studies have shown that SD is capable
of capturing past low frequency climate variability (Dibike
et al., 2008; Gachon & Dibike, 2007). The predictions of
SD are, however, sensitive to the choice of reanalysis
dataset used to train the regression. The NCEP and ERA-40
reanalysis products are developed by the National Centers
for Environmental Prediction/National Center for Atmos-
pheric Research (NCEP/NCAR) (Kistler & Kalnay, 2001)
and the European Centre for Medium-range Weather Fore-
casts (ECMWF) (Uppala et al., 2005), respectively. It has
been shown that the use of ERA-40 and NCEP variables to

downscale surface temperature can produce statistically differ-
ent predictions (Koukidis & Berg, 2009). Differences in the
biases associated with these reanalysis products can affect
the development of the downscaling scenarios.

The SD method presented in this paper attempts to develop
the best possible linear regression for the prediction of local
climate change, based on the 6-hourly fields produced by
the Canadian General Circulation Model Version 3
(CGCM3; Jeong et al., 2012). The present method belongs
to the SD type of perfect prognosis methods that develop stat-
istical relationships between the observed large-scale predic-
tors and observed local-scale predictands (Maraun et al.,
2010). The large-scale observations are often replaced by sur-
rogate observed data such as those obtained from reanalysis
products. In comparison with other perfect prognosis SD
methods, the present SD method has two important additional
steps carried out prior to the construction of the MLR model.
The first additional step is to remove the seasonal cycles from
both predictands and predictors. Most atmospheric variables
have significant variance in their seasonal cycles. Without
prior removal of the seasonal cycle, the MLR model will
attempt to reproduce the seasonal cycle at the expense of cap-
turing the non-seasonal (e.g., day-to-day and synoptic) varia-
bility. Reliable prediction of the non-seasonal variability is
of critical importance in predicting future extremes in daily
maximum and minimum temperatures. The second additional
step is to conduct an objective predictor selection process.
This includes comparing the distribution of each GCM predic-
tor with its “observed” counterpart. The introduction of GCM
predictors with unrealistic distributions into an observationally
trained regression will undermine the projections generated
from the regression. As there is no way to guarantee a priori
the accuracy of a GCM predictor distribution at a particular
location, this predictor selection procedure must be carried
out independently for each site.

Temperature-dependent predictors such as surface tempera-
ture, humidity, and geopotential height are required in order
for the SD method to capture the effect of global warming
(Jeong et al., 2012; Maraun et al., 2010; Wilby et al., 2002).
There is a difficulty, however, concerning the use of grid-
scale GCM surface temperature as a predictor in the regression
model. The SD of surface temperature would be very simple if
the GCM had a realistic distribution of surface temperature.
The GCM surface temperature could then be rescaled using
a linear regression trained by observations and projections
obtained by shifting the mean using the model trend. Unfortu-
nately, the mean and variability of surface variables in GCMs
are often unrealistic and cannot generally be used in linear
downscaling (Dibike et al., 2008).

The structure of the paper is as follows. Section 2 describes
the predictands and predictors. Section 3 outlines the predictor
selection process and the development of the regression.
Section 4 discusses the performance of the MLR model.
Section 5 presents the projections of the predictands. The
main results are discussed in Section 6 and summarized in
Section 7.

Fig. 1 Grid boxes from a general circulation model (CGCM3) with horizon-
tal resolution of about 300 km by 400 km are plotted over Atlantic
Canada. Observations used in this study were taken at Shearwater
Airport, Nova Scotia, Canada (44.63°N, 63.5°W). Shearwater
Airport (red dot) is about 4 km east of the downtown core of
Halifax, Nova Scotia, Canada.
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2 Predictands, predictors, and seasonal cycles
a Predictands Tmin and Tmax
The MLR model is trained with a 40-year record (1961–2000)
of homogenized daily maximum and minimum surface temp-
eratures (Vincent et al., 2002) at Shearwater, Nova Scotia (Fig.
1). Here, homogenized refers to observations that have been
corrected for instrument and location changes. The 29 Febru-
ary data from all leap years during the 40-year period have
been removed, so that all years have 365 days of data. The
total number of Tmin (or Tmax) data for the 1961–2000
period is therefore 14,600.
The observed time series of Tmin and Tmax, shown in Fig. 2,

have significant temporal variability. The largest source of the
variance in Tmin and Tmax is the seasonal cycle. In addition to
temporal variability at lower (interannual) frequencies, there
are higher frequency fluctuations in Tmin and Tmax about the
seasonal cycle, which represent the day-to-day weather
variability.
The following linear regression of sines and cosines and

their associated regression coefficients (αn and βn) is used to
remove the seasonal cycle from the observed time series in
Fig. 2 over the 40-year period 1961–2000:

S(t) = μ+
∑n=3

n=1

[αn sin(nωt)+ βn cos(nωt)], (1)

where, S(t) represents the seasonal cycle fit to the original data,
μ is a constant mean value; ω = 2π/365 d−1, and t is time in
units of days since 1 January 1961, which repeats from 1 to
365 days giving a value of the seasonal cycle each day of
the year. Linear trends in the daily data were removed prior

to the determination of regression coefficients. The values of
the regression coefficients are listed in Table 1. The choice
of the three harmonics used in Eq. (1) was motivated by the
fact that the use of less than three harmonics did not ade-
quately represent the seasonal cycle in the observed Tmin

and Tmax whereas a larger number of harmonics allows the
non-seasonal (such as month-to-month) variability to be
included in S(t) (overfitting).

b NCEP and CGCM3 predictors
This study uses two predictor datasets. Both were downloaded
from the Canadian Climate Change Scenarios Network
website (www.cccsn.ec.gc.ca). The first predictor dataset is a
6-hourly reanalysis product developed by NCEP (Kistler &
Kalnay, 2001). The NCEP fields are loosely referred to as
observations in this study and used to train the downscaling
regression model. The NCEP fields are produced by a
general circulation model with a horizontal resolution of
2.5° × 2.5° but with observations assimilated into the model.
The second predictor dataset is a 6-hourly climate model

Fig. 2 The black line in (a) represents observed Tmin (degrees Celsius) from Shearwater Airport, Nova Scotia, for a 5-year period, 1961–65. The red line in (a)
represents the fitted seasonal cycle (fitted over the historical period 1961–2000). Time series in (b) represents the daily anomaly constructed by subtracting
the red line from the black line in (a). Time series in (c) and (d) are analogous to (a) and (b) except they are for Tmax.

Table 1. Regression coefficients for the seasonal cycles of observed Tmin and
Tmax at Shearwater, Nova Scotia, in units of degrees Celsius.

Variable Tmin Tmax

μ 3.07 10.82
α1 −9.47 −10.12
β1 −5.79 −5.65
α2 −0.49 −0.09
β2 0.06 0.18
α3 −0.21 −0.02
β3 −0.72 −0.23
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dataset generated from a purely prognostic coupled ocean–
atmosphere–sea-ice model run using CGCM3. This CGCM3
run had a spatial resolution of 3.75° × 3.75° in the horizontal,
and 31 vertical levels. It uses the same ocean component as
CGCM2 (Flato & Boer, 2001). However, CGCM3 uses an
updated atmospheric component known as the third gener-
ation Atmospheric General Circulation Model (AGCM3;
McFarlane et al., 2006), which incorporates major improve-
ments in the treatment of land processes, water vapour trans-
port, and cumulus parameterization.
This study considered the use of twenty-five NCEP rea-

nalysis variables as predictors for the 1961–2000 period
(Table 2). Some of these variables, including geopotential
height, specific humidity, and surface mean temperature,
are directly related to temperature and, therefore, expected
to respond to changes in radiative forcings from green-
house gases. Most of the other predictors in Table 2 are
dynamical variables. Unfortunately, the CGCM3 model
generates wind distributions which are inconsistent with
those generated by NCEP. The CGCM3 model does,
however, generate realistic distributions of geostrophic
wind (Gachon et al., 2008). Because our intent is to
develop a regression that can be used to make projections
using the CGCM3 grid-scale variables as predictors, all
wind variable predictors listed in Table 2 refer to geos-
trophic winds.
The NCEP predictors were first interpolated to the lower

resolution (3.75° × 3.75°) CGCM3 Gaussian grid. This
ensures that the two different predictor datasets refer to the
same geographic space. The 6-hourly interpolated NCEP pre-
dictors were then used to generate daily mean values, so that

each NCEP predictor had the same temporal resolution as
the daily Tmin and Tmax. The NCEP predictors were converted
to Z-scores by taking the difference with respect to the time
means (�X) then normalizing by the standard deviation (σ)
over the 30-year period 1961 to 1990:

Zi = Xi − �X

σ
. (2)

Finally, the NCEP predictors were detrended and deseaso-
nalized using Eq. (1), to obtain daily anomalies similar to
the predictands Tmin and Tmax. More details on the construc-
tion of the NCEP predictors can be found in Gachon et al.
(2008).

The CGCM3 predictor dataset was chosen from the twenty-
five 6-hourly grid-scale variables listed in Table 2. The
CGCM3 dataset is a 140-year model run extending from
1961 to 2100. During the 1961–90 model historical period,
CGCM3 was integrated with forcings from observed green-
house gases. During the 1991–2100 model future period, the
model was integrated using the “business-as-usual” A2 scen-
ario (Nakicenovic et al., 2000). The 6-hourly CGCM3 predic-
tors were converted to daily means, and then Z-scores, using a
procedure identical to that described above for the NCEP pre-
dictors. For each CGCM3 predictor, the mean and standard
deviation used in Eq. (2) were calculated from the 1961–90
standardization period. The independent conversion of the
NCEP and CGCM3 predictors to Z-scores removes biases in
the mean and variance from the two historical datasets. It
should be noted that, because of the limited duration (40
years) of the surface observations, the present SD method is
not able to resolve the climate variability on time scales
longer than 40 years.

For the 1961–2000 historical period, the CGCM3 Z-scores
(now considered predictors) were detrended and deseasona-
lized in the same manner as the NCEP predictors. For the
2001–2100 future period, the removal of the trend and seaso-
nal cycle deserves some discussion. The intent of this work is
to use the CGCM3 predictors in a regression model to make
projections. It is important, therefore, that the CGCM3 predic-
tors be detrended and deseasonalized during the periods in
which the regression model is applied. Accordingly, the
2001–2100 future period is subdivided into four intervals:
2001–10, 2011–40, 2041–70, and 2071–2100. Within each
of these four future intervals, the CGCM3 predictors were
detrended and then deseasonalized using Eq. (1). After
doing so, each CGCM3 predictor, in each future period, will
have a zero mean value μ. (An alternative approach to remov-
ing the mean and trend will be discussed in Section 6a.) The
mean of each CGCM3 predictor during the 1961–90 standard-
ization period is almost identical to the mean during the
defined historical period (1961–2000). In the future periods,
however, each CGCM3 predictor will, in general, have a
different mean from the 1961–90 mean. This produces Z-
scores with a non-zero mean value. The predictors are being
used to predict the climate of each of the future periods. It is

Table 2. Original names (set of 25) of NCEP and CGCM3 predictors. The
subsets for each season chosen through the predictor selection process are also
shown by the checkmark. Winds in the table are geostrophic winds.

Number Original Winter Summer

1 Mean sea level pressure ✓ ✓
2 1000 hPa wind speed ✓ ✓
3 1000 hPa zonal wind ✓ ✓
4 1000 hPa meridional wind ✓
5 1000 hPa vorticity ✓
6 1000 hPa wind direction
7 1000 hPa divergence
8 500 hPa wind speed ✓ ✓
9 500 hPa zonal wind ✓ ✓
10 500 hPa meridional wind ✓ ✓
11 500 hPa vorticity ✓ ✓
12 500 hPa wind direction
13 500 hPa divergence
14 500 hPa geopotential height ✓
15 850 hPa wind speed ✓ ✓
16 850 hPa zonal wind ✓ ✓
17 850 hPa meridional wind ✓ ✓
18 850 hPa vorticity ✓ ✓
19 850 hPa wind direction
20 850 hPa divergence
21 850 hPa geopotential height ✓ ✓
22 500 hPa specific humidity ✓
23 850 hPa specific humidity ✓ ✓
24 1000 hPa specific humidity ✓
25 Surface mean temperature ✓
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therefore essential that the non-zero mean values be retained.
Accordingly, within each of the four future intervals, the non-
zero mean value of each CGCM3 predictor (Z-score) is
retained by adding back the mean determined by Eq. (1)
after the seasonal cycle is removed.
The above procedure is illustrated in Fig. 3. The top panel

shows the time series of the Z-score corresponding to the
daily mean CGCM3 500 hPa geopotential height above Shear-
water in three of the four future intervals (the 2071–2100 inter-
val has been removed for clarity). Within each interval, we
show the linear trend in black, and the seasonal cycles of the
future periods 2001–10 (red), 2011–40 (green), and 2041–70
(magenta). The lower panel shows the time series of the Z-
scores with the linear trend and seasonal cycle within each
interval removed. This procedure retains the average deviation
in the predictor within each time interval from the 1961–90
standardization period. The changes in the mean value of a
predictor during a particular time interval reflect a climate
change signal from the model which would be expected to
affect the evolution of the predictands Tmin and Tmax.

3 Predictor selection and regression model

The SD method used here consists of three major steps. The
first step is to select the appropriate NCEP and CGCM3 pre-
dictors. The second step is to develop an MLR model using
historical observations and validate its performance using
independent observations. Once a skilful historical regression
has been determined, the CGCM3 predictors can be used in
the regression to determine whether they are able to capture

the statistical properties of the historical predictand distri-
bution. Finally, the CGCM3 predictors are used in the
trained MLR model to make predictions of the future evol-
ution of the predictand distribution.

a Predictor Selection Process
The NCEP and CGCM3 predictors used in the regression
model are chosen from a subset of the 25 potential predictors
listed in Table 2. As discussed in Section 2, daily anomalies of
each potential predictor are generated by the conversion of
each predictor to a Z-score and the removal of the linear
trend and seasonal cycle. Some of the 25 predictors are elimi-
nated as follows.

First, under the β-plane approximation, the geostrophic
divergence is linearly related to the geostrophic meridional
wind (Holton, 2004):

∇∇∇∇∇ · Ug = −β

fo

( )
Vg. (3)

Here β = (∂f /∂y), and fo refers to a mid-latitude Coriolis
parameter. The geostrophic divergence and geostrophic meri-
dional wind are, therefore, identical from a statistical point of
view. The introduction of both into a regression model would
lead to inflation of the regression coefficients. In general, sig-
nificant covariance among the predictors can lead to a problem
known as “overfitting.” In this case, for example, the geos-
trophic divergence and meridional geostrophic wind speed
have a correlation of one. If both of these predictors are

Fig. 3 (a) Time series of the geopotential height (blue) at 500 hPa produced by the CGCM3 at the model grid box containing Shearwater, Nova Scotia, during the
period 2001–70. The vertical red dotted lines divide the future period into three separate future periods: 2001–10, 2011–40 and 2041–70. The black line in
(a) represents the linear trend (with the mean) in each future period. The seasonal cycle fitted to each future period (red, green, magenta) detrended data
(geopotential height (blue) minus trend (black)) is also shown in (a). Time series in (b) are daily anomalies constructed by taking the geopotential
height minus the trend in each period and finally subtracting the seasonal cycle in each future period. Panel (b) also shows the seasonal cycle mean
which was added for each period as the final step.
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included in the regression, the regression will become overfit
because the regression coefficients will be large and compen-
sating for both predictors (known as “inflation” of the
regression coefficients). Because the least squares estimate
of the regression coefficients requires taking the inverse of a
matrix (predictor matrix multiplied by its transpose), identical
predictors make the matrix to be inverted ill conditioned, and
the regression coefficients larger than they would be other-
wise. The regression will attempt to predict the predictand var-
iance by having a large regression coefficient associated with
the first predictor and an opposing large regression coefficient
associated with the other predictor to compensate. To avoid
this situation, we removed the geostrophic divergence from
consideration as a predictor at all three levels (500 hPa,
850 hPa, and the surface) in favour of meridional wind speed.
In general, the relationship between surface temperature and

the local meteorological variables can be expected to depend
on season. The predictor selection process was therefore con-
ducted independently for the winter (DJF), spring (MAM),
summer (JJA), and fall (SON).
As mentioned earlier, one of the most important criteria

used in the predictor selection process is that the predictor
have a realistic distribution. Here, for example, the CGCM3
predictors should be similar to those of NCEP. Climate vari-
ables that do not have the same distributions as the reanalysis
(or observed) variables can undermine the accuracy of projec-
tions obtained from regression models (Wilby & Dawson,
2004). However, it is necessary that some balance be made
between retaining enough predictors to ensure a good
regression model and retaining only those predictors whose
distributions are properly represented by the GCM. The pre-
dictor selection process cannot be based solely on regression
accuracy but must also take into account the suitability of

the GCM predictors in the trained regression to obtain
projections.

The following objective selection process was conducted for
the 22 remaining NCEP/GCM predictors in each season (the
original 25 minus 3 divergence predictors, see Table 2). First,
the distribution of each predictor (NCEP or CGCM3) was cal-
culated by separating the time series data of each predictor into
bins, with the width of each bin being 0.5 of a Z-score. The
number of data points in each bin, normalized by the total
number of time series data, yields the sample probability in
each bin. This defines the predictor distribution. For the
winter, spring, and fall, we eliminate predictors having an
absolute probability difference between the NCEP and
CGCM3 distributions, in any bin, larger larger than 0.04. In
summer, a maximum allowable difference of 0.04 yields only
four predictors, which are too few for a skilful regression.
The summer criterion was therefore relaxed to 0.08. Figure 4
shows the distributions of the 1961–2000 NCEP and
CGCM3 surface daily mean temperature in winter and
summer at the grid cell containing Shearwater. In summer,
the CGCM3 model is unable to simulate the surface daily
mean NCEP temperature accurately and does not pass the
0.08 criterion. In winter, however, the surface mean CGCM3
temperature distribution is similar to NCEP and passes the
0.04 criterion. As a result, the surface mean temperature is
used as a predictor in winter but not summer. The 17 final pre-
dictors to be used for the winter regression, and 15 predictors
for the summer regression, are listed in Table 2.

b Multiple Linear Regression Development
The NCEP predictor subsets in each season, listed in Table 2,
were transformed into principal components prior to their

Fig. 4 Distributions of Tmean in (a) winter and (b) summer generated from NCEP (black) and CGCM3 (red) datasets between 1961 and 2000 at Shearwater, Nova
Scotia. Both the NCEP and CGCM3 predictors are Z-scores. The distribution is created by binning the data in bins 0.5 of a Z-score wide. The probability is
calculated by taking the number of measurements occurring in each bin and dividing by the total number of measurements.
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introduction into the regression model. This generates a new
set of predictors which are independent of each other (i.e.,
no correlation). It also enables a ranking of the principal com-
ponents in terms of the fraction of the variance in the original
predictor dataset that each principal component is able to
explain. Table 3 shows the ranking of the 17 principal com-
ponents calculated from the 17 members of the NCEP
winter predictor subset. During winter, the first four principal
components explain more than 80% of the variance in the orig-
inal 17 NCEP predictors. Although this is of interest, it is of
secondary importance for our purposes. The main reason for
the introduction of the principal components is to have inde-
pendent predictors and avoid inflation of the regression

coefficients. The principal components with the largest
explained variance of the original predictor set are not necess-
arily the most useful for predicting Tmin or Tmax. Table 4 shows
the ranking of the principal components determined from the
summer predictor subset.

Once the NCEP principal components were determined,
their correlation coefficients (R) with Tmin and Tmax (the predic-
tands) could be calculated. These coefficients are shown in
Tables 3 and 4, respectively, for winter and summer. It can be
shown that the inclusion of principal components whose absol-
ute value R is less than 0.1 does not significantly improve the
root mean square error in the prediction of Tmin and Tmax

during the 1961–90 historical period. Principal components
having a correlation (R) less than this minimum correlation
value, known as the correlation cutoff, were therefore excluded
from the regression model. Tables 3 and 4 list the regression
coefficients for the winter and summer seasons for the principal
components included in the regression model.

4 Validation of regression and regression results
a Prediction of Tmin and Tmax using NCEP Predictors
The principal components which explain the largest variance
in the predictands should have a physical relationship with
the predictands. During winter, the principal component
with the largest correlation with both Tmin and Tmax explains
roughly 27% of the total variance in Tmin (R = 0.52), and
26% of the total variance in Tmax (R = 0.51), and is labelled
PC-3 in Table 3. This principal component is mainly com-
posed of the NCEP meridional wind at the 1000, 850, and
500 hPa pressure levels, consistent with the expectation that
the day-to-day surface temperature variability at Shearwater
during winter be dominated by meridional temperature
advection.

In summer, principal component PC-2 (Table 4) accounts for
the largest variance in Tmin, with a correlation coefficient of
−0.39, corresponding to approximately 15% of the total var-
iance in Tmin. This principal component is dominated by the
NCEP specific humidity at 500 hPa. The leading principal com-
ponent for Tmax during summer is PC-6, which explains
approximately 20% of the total variance in Tmax (R = 0.45).
PC-6 in summer is dominated by 850 hPa specific humidity.
The strongest predictors for Tmin and Tmax in summer are prin-
cipal components constructed primarily from the lower and
mid-tropospheric specific humidity. PC-2 in summer, which
is constructed of negatively weighted 500 hPa specific humid-
ity, has a negative correlation with Tmin. This indicates that as
the 500 hPa specific humidity increases, PC-2 decreases and
Tmin increases. Similarly, the correlation coefficient between
PC-6 and Tmax in summer is positive, and PC-6 is constructed
of positively weighted 850 hPa specific humidity. This indi-
cates that, as the 850 hPa specific humidity increases, Tmax

also increases. The relationship between surface temperature
and higher level specific humidity requires more consideration.
A large feature governing weather and temperature in Nova
Scotia in summer is the subtropical ridge. This is a warm core

Table 3. The numbers in the percent (%) column refer to the fraction of total
variance explained in the original dataset by each of the seventeen principal
components (PCs) for winter. Here R refers to the correlation coefficient of
each PC with Tmin and Tmax, and γ refers to the regression coefficient, in units
of degrees Celsius, of those PCs used in the winter regression.

PC % Tmin Tmax

R γ R γ

1 29.43 −0.30 −0.76 −0.41 −0.93
2 24.03 0.03 — −0.22 −0.56
3 19.94 0.52 1.64 0.51 1.43
4 9.08 0.34 1.63 0.32 1.33
5 5.89 0.17 1.07 0.16 0.82
6 3.53 −0.27 −2.00 −0.30 −2.08
7 2.70 −0.28 −2.44 −0.26 −1.99
8 2.05 −0.09 — −0.03 —

9 1.11 0.11 1.42 0.09 —

10 0.90 −0.29 −4.42 −0.15 −2.04
11 0.51 −0.06 — −0.06 —

12 0.32 0.09 — 0.08 —

13 0.20 0.02 — 0.03 —

14 0.14 −0.01 — −0.01 —

15 0.13 −0.02 — −0.05 —

16 0.02 −0.02 — −0.05 —

17 0.02 −0.05 — −0.07 —

Table 4. The numbers in the percent (%) column refer to the fraction of total
variance explained in the original dataset by each of the fifteen Principal
Components (PCs) for summer. Here R refers to the correlation coefficient
of each PC with Tmin and Tmax, and γ refers to the regression coefficient, in
units of degrees Celsius, of those PCs used in the summer regression.

PC % Tmin Tmax

R γ R γ

1 30.97 −0.26 −0.34 −0.16 −0.32
2 20.93 −0.39 −0.64 0.14 0.38
3 17.10 0.06 — 0.28 0.83
4 7.96 0.00 — 0.14 0.72
5 6.96 −0.08 — −0.16 −0.80
6 5.17 0.35 1.16 0.45 2.32
7 3.42 −0.03 — 0.05 —

8 2.72 −0.14 −0.69 −0.11 −0.84
9 1.56 −0.15 −0.93 0.01 —

10 0.99 0.09 — 0.24 2.98
11 0.87 −0.02 — −0.09 —

12 0.71 0.03 — 0.06 —

13 0.46 0.11 0.99 0.08 —

14 0.14 0.01 — −0.05 —

15 0.05 0.34 11.83 0.34 18.67
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feature that is vertically stacked. From aweather perspective, as
the ridge sets up to the south of Nova Scotia, specific humidity
tends to increase at all levels (because of moisture advection)
assuming that the relative humidity remains constant.
The predictive skill of the MLR model can be assessed

using cross validation. The regression model is first trained
using observed values of Tmin and Tmax between 1961 and
1990 as the predictands and the NCEP principal component
values as predictors. The trained MLR model is then used to
predict Tmin and Tmax between 1991 and 2000, and the
results are compared with observations. For each season, the
predictive skill of the regression model during the 10-year
validation period can be quantified using the correlation
between predicted and observed Tmin and Tmax. Table 5
shows the percentage of the variance in observed Tmin and
Tmax explained by the regression model, for both the training
(1961–90) and validation (1991–2000) periods. For each
season, the percentages of explained variance for the training
and validation periods are almost identical. This demonstrates
the ability of the MLR model to predict observed Tmin and
Tmax using predictor data that is independent of the training
period. Table 5 also shows that the MLRmodel is significantly
more skilful during winter than summer.

Figure 5 shows two years (1990–91) of predicted and
observed daily anomalies in Tmin and Tmax. The first year
(1990) is within the training period; the second year (1991)
is within the validation period. The predictability of the
MLR model, using the NCEP principal components, does
not significantly change during the transition from the training
to validation periods. The daily anomalies in Tmin and Tmax,
predicted by the regression model, can be used to generate
values of Tmin and Tmax by addition of the seasonal cycle.

The validity of linear regression models is based on assum-
ing that the regression errors exhibit normality, homoscedasti-
city, and independence. We found that the regression errors
do, indeed, obey a normal distribution, that the errors do not
generate patterns when plotted against each predictor, and
that the errors do not exhibit trends or patterns in time. The
comparisons shown in Fig. 5 confirm that the NCEP principal
components of the regression model do not overfit and do not
violate the main assumptions of linear regression. Note, the
normality and homoscedasticity assumptions could be
relaxed by using a generalized vector linear model (Maraun
et al., 2010).

b Prediction of Tmin and Tmax using CGCM3 Predictors
For each season, the CGCM3 predictors were defined in the
same way as the NCEP predictors. The CGCM3 principal
components were also defined in terms of the CGCM3 predic-
tors, using the same expressions used to define the NCEP prin-
cipal components (Table 2). In other words, the CGCM3
principal components were calculated by projecting the
CGCM3 variables onto the NCEP-derived eigenvectors,

Table 5. The percentage of total variance explained by the regression for
Tmin and Tmax during the training period (1961–90) and the validation period
(1991–2000) for winter and summer.

Season
Training
Tmin

Validation
Tmin

Training
Tmax

Validation
Tmax

Winter 74 76 77 77
Summer 52 53 55 56

Fig. 5 (a) Time series of observed daily anomalies of Tmin (degrees Celsius) in winter (black) for two years (1990–91). The NCEP prediction of the daily Tmin

anomaly in winter for the last year of the training period (1990) is shown in red. The blue line represents the winter Tmin NCEP prediction of the daily
anomaly for the first year of the validation period (1991). (b) As in (a) except for Tmax in winter. Time series in (c) and (d) are the same as in (a) and
(b), except for summer.
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based on the assumption that the NCEP eigenvectors represent
the true directions of variance. If the distributions of the
CGCM3 predictors are similar to the NCEP predictors, the dis-
tributions of the CGCM3 and NCEP principal components
should also be similar to each other. The CGCM3 principal
components, when used in the NCEP-derived regresssion
model, should therefore be able to make reasonable estimates
of the predictand distributions (Tmin and Tmax) during the his-
torical period.
The CGCM3 model fields used in this study were generated

by free-running model simulations (i.e., without data assimila-
tion). It is therefore not meaningful to compare the Tmin and
Tmax values generated by the regression model directly,
using the CGCM3 principal components, with measurements
of Tmin and Tmax on individual days. In Fig. 6, we compare the
distributions of observed Tmin and Tmax with the Tmin and Tmax

distributions generated by adding the observed seasonal cycle
to the Tmin and Tmax anomalies produced by the regression
model with the CGCM3 principal components. We also
show the Tmin and Tmax distributions generated from the raw
grid cell CGCM3 temperatures. The summer and winter distri-
butions are both calculated from the 40-year 1961–2000 his-
torical period. The regression model, with the CGCM3
principal components, predicts the distribution of surface
temperature much more accurately than the raw CGCM3
climate model data. The most significant improvement
occurs for Tmin in winter. However, improvement is noted in
all seasons for both predictand variables.

5 Projections

When implemented in a regression model, the CGCM3 pre-
dictors are able to simulate the distribution of Tmin and Tmax

during the historical period (1961–2000) reasonably well.
The CGCM3 predictors should, therefore, be able to predict
the distribution of daily surface Tmin and Tmax in the future
period (2001–2100), provided the historical statistical relation-
ships between the predictands and predictors continue to be
valid during the future period and that the changes in the pre-
dictor variables are well characterized by the CGCM3 climate
model (Wilby & Wigley, 2000).

The twenty-five CGCM3 predictors were detrended and
deseasonalized and their mean values retained, within the
three 30-year future periods 2011–40, 2041–70, and
2071–2100, as discussed previously. These predictors were
then divided into seasons, with the predictors that passed
the historical predictor selection tests (see Table 2) used
to define the future CGCM3 principal components. This
was again done by projecting the CGCM3 predictors onto
the NCEP derived eigenvectors. The CGCM3 principal
components were then used in the historically trained
regression model to predict the future daily anomalies in
Tmin or Tmax. This approach assumes that the response of
surface temperature to slowly varying changes in the
mean value of a principal component, on long time
scales, is similar to the daily time-scale response that has
been determined through the fitting of the regression
during the historical period.

Fig. 6 Distributions of the observed (black), CGCM3 predicted (red dashed) and raw CGCM3 (blue dashed) total Tmin and Tmax in winter and summer for the period
1961–2000. To create the distribution the data were separated into bins that were two degrees Celsius wide over the range of the data. The sample probability
on the vertical axis refers to the number of measurements occurring within a particular bin divided by the total number of measurements.
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The daily anomalies in future Tmin and Tmax, calculated by
the regression model using the CGCM3 principal components,
were then converted to Tmin or Tmax values by adding the sea-
sonal cycle from the 1961–2000 historical period. Figure 7
shows the CGCM3 predicted distributions of winter and
summer Tmin and Tmax during the three future periods. The
future distributions shift toward progressively warmer temp-
eratures. The largest shift occurs for Tmin during winter.
Table 6 lists the mean and standard deviation for Tmin during

winter and summer for each of the three future 30-year inter-
vals. For reference, we also show the mean and standard devi-
ation for Tmin during the 1961–2000 historical period. The
mean winter Tmin increases by 5.58°C from the historical to
final future period, and the mean summer Tmin increases by

2.75°C. These changes give rise to a significant effective
reduction in the amplitude of the seasonal cycle in Tmin relative
to the historical period. Because the seasonal cycle from the his-
torical period was added to the future daily anomalies of Tmin

predicted by the regression model, this reduction in the Tmin

seasonal cycle originated from the regression. During the
future periods, the CGCM3 principal components have non-
zero means, arising from the trends in the climate variables.
Because we use regressions which are seasonally dependent,
the non-zeromeans in the principal components give rise to sea-
sonally dependent non-zero means in the Tmin daily anomalies.

The predictions of winter and summer Tmax during the three
future periods are listed in Table 7. There is a modest decrease
in the Tmax seasonal cycle, resulting from a 3.97°C increase in

Table 6. The mean and standard deviation for the predicted future distributions
of CGCM3-predicted total Tmin in the winter and summer seasons for the three
future periods (2011–40, 2041–70, 2071–2100). The change in mean (δμ) from
the historical to each future tri-decade is also shown. The historical observed
distribution mean and standard deviation are also shown. The units in this table
are degrees Celsius.

Period Season μ δμ σ Historical μ Historical σ

2011–40 Winter −5.33 1.67 5.92
2041–70 Winter −3.78 3.22 6.00 −7.00 6.10
2071–2100 Winter −1.42 5.58 5.94
2011–40 Summer 13.31 0.77 3.03
2041–70 Summer 14.12 1.58 3.06 12.54 3.08
2071–2100 Summer 15.29 2.75 3.10

Table 7. The mean and standard deviation for the predicted future distributions
of CGCM3-predicted total Tmax in the winter and summer seasons for the three
future periods (2011–40, 2041–2070, 2071–2100). The change in mean (δμ) from
the historical to each future tri-decade is also shown. The historical observed
distribution mean and standard deviation are also shown. The units in this table
are degrees Celsius.

Period Season μ δμ σ Historical μ Historical σ

2011–40 Winter 1.77 1.13 5.06
2041–70 Winter 2.92 2.28 5.15 0.64 5.48
2071–2100 Winter 4.61 3.97 5.17
2011–40 Summer 22.08 1.11 3.50
2041–70 Summer 23.25 2.28 3.48 20.97 3.99
2071–2100 Summer 24.72 3.75 3.56

Fig. 7 Distribution of CGCM3 predicted total Tmax and Tmin in winter and summer in the historical period (1961–90) and three future periods (2011–40, 2041–70,
2071–2100). The distributions are created by binning the data in two degree Celsius bins. The sample probability is found by dividing the number of
measurements in a particular bin by the total number of measurements.
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Tmax during winter and a 3.75°C increase in Tmax during
summer.

6 Discussion
a Alternative Approaches for Future Prediction
In the above discussion, the linear trend and seasonal cycles of
the CGCM3 grid variables were removed within each future
period. These grid variables did retain, however, non-zero
mean values with respect to the historical period. This
method permits the construction of stationary principal com-
ponents during the time periods in which the trained regression
is to be applied but still allows the climate forcings to influ-
ence the predicted daily Tmin and Tmax. However, there are
other ways in which stationary principal component time
series could be constructed and still incorporate the trends
from the climate model. For example, the CGCM3 climate
variables could be detrended and deseasonalized and have
their means removed over the entire future period (2001–
2100) prior to introduction into the regression model. In this
case, the regression would only predict changes in the shape
of the distribution. The trends in daily Tmin and Tmax could
then be taken directly from the raw CGCM3 trends in the
surface grid box at Shearwater, using the 1961–2000 period
as a baseline. This alternative calculation for future daily
Tmin predicts, by the 2080s, an additional 1.2°C warming in
winter and an additional 1.8°C warming in summer, relative
to the method used in Section 5.
The main advantage of this alternative method is that the

CGCM3 model includes non-linear dynamics. It should there-
fore, in principle, be superior to a linear regression model in
predicting changes in the mean values of surface variables
under climate change. On the other hand, because of the
known deficiency of coarse-resolution climate models in the
representation of surface variables, the regression model
should more realistically capture the relationship between
changes in surface temperature with changes in other climate
variables, provided these changes are within the range of the
variability observed during the historical period.

b Predictive Power of Surface Mean Temperature
During summer, the daily mean surface temperature was
excluded as a predictor by the objective predictor selection pro-
cedure discussed in Section 3. This was done because the
CGCM3 model did not accurately reproduce the observed dis-
tribution of surface temperature. To demonstrate that daily
mean surface temperature is not needed in projections of
Tmax, we conducted a sensitivity study in which we used the
same downscaling method as described above but with the
daily mean surface temperature also included as a predictor in
summer. During the 2071–2100 period, this results in an
additional 0.1°C warming relative to the results listed in
Table 7. The same sensitivity study was also conducted at
many other locations in eastern Canada. We again found that
the mean surface temperature from the CGCM3 model was
not essential to the projections. This demonstrates that other

temperature-related variables, such as geopotential height,
which are more accurately represented by the CGCM3
climate model, are more useful in predicting climate change
using our regression model. Caution should be exercised,
however, when eliminating CGCM3 temperature-related vari-
ables as predictors. If the GCM does simulate their distribution
properly, these variables should also be included in the predic-
tor set. As a best practice, each GCM variable should be com-
pared with observations at each location.

c The Advantage of Removing the Seasonal Cycle before
Training the Regression
We conducted an additional experiment to demonstrate the
advantages of removing the seasonal cycles prior to training
the regression. We used the same SD method and set of
NCEP predictors (see Table 2) described above, except that
the seasonal cycles of the predictand and predictor data were
not removed prior to the training of the regression. This SD
method predicts Tmin and Tmax, rather than the anomalies,
during the 1961–2000 historical period. However, the
anomalies in Tmin and Tmax can be calculated by removal of
the seasonal cycle using Eq. (1). The relative skill of each
method was then quantified using the following calculation
of γ2 (Thompson et al., 2003):

γ2 = var(O− P)
var(O)

. (4)

In this equation, var refers to the variance, while O and P
refer to the observed and predicted daily anomalies of Tmin

or Tmax. In general, smaller values of γ2 reflect higher skill.
The γ2 values associated with predicting the daily anomalies
of Tmin and Tmax during winter and summer, for each
method, are listed in Table 8. For Tmin, the removal of the sea-
sonal cycle decreases γ2 from 0.26 to 0.25 in winter and from
0.71 to 0.51 in summer. For Tmax, the removal of the seasonal
cycle decreases γ2 from 0.23 to 0.22 in winter and from 0.52 to
0.45 in summer. Although the improvements associated with
removal of the seasonal cycle are marginal in winter, they
are quite significant during summer. However, these improve-
ments are smaller than they would otherwise be because we
still separate regressions for each winter and summer.

Table 8. Values of γ2 for predicting the daily anomalies of Tmin and Tmax in
winter and summer during the historical period (1961–2000) using the SD
method with and without removal of the seasonal cycles from predictors and
predictands prior to training the regression model. Values of γ2 in predicting
Tmax with SDSM are also shown.

Cases Tmin Tmax

Winter Summer Winter Summer

Seasonal cycles removed 0.25 0.51 0.22 0.45
Seasonal cycles included 0.26 0.71 0.23 0.52
Annual regression 0.30 1.01 0.31 0.82
SDSM –— –— 0.78 1.04
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d Annual Regression
The overall importance of removing seasonality can be deter-
mined from an annual regression in which, in addition to
retaining the seasonal cycle in both predictors and predictands,
a single regression is carried out for the entire year. In the pre-
dictor selection process, we adopted a maximum allowable
difference in the probability distribution of 0.04 (see Section
3a). This resulted in an eighteen member predictor dataset.
This dataset was then transformed into principal components
using the methods described earlier. Using the same criteria
as used previously, we used five principal components in
the final regressions for both Tmin and Tmax. Both regressions
had an explained variance larger than 90%. However, much of
this explained variance is simply replicating the seasonal
cycle. If Eq. (1) is used to remove the seasonal cycle from
the predicted Tmin and Tmax, we can obtain predictions for
the daily anomalies. These can then be compared with the
observed daily anomalies during the historical period. The
third row of Table 8 shows the γ2 values generated using
the annual regression. In all cases, these values are larger
than the the preferred original method, in which we both
removed the seasonal cycle and carried out separate
regressions for winter and summer. This third method is also
less accurate than the method just described, in which the sea-
sonal cycles were not removed, but separate regressions were
still carried out for winter and summer. The improvements
associated with applying separate regressions for different
seasons, and with the seasonal cycle removal, are particularly
large in summer.

e Statistical Downscaling Model (SDSM)
We also used a well-known downscaling software package
known as SDSM version 4.2.9 (Wilby et al., 2002) to down-
scale Tmax and help quantify the benefits of removing the sea-
sonal cycle. This package developed a linear regression, using
the NCEP predictor and predictand datasets from 1961 to 1990
as the training period. There is no option to remove the seaso-
nal cycles in the predictors and predictand. In its predictor
selection process, SDSM uses partial correlation but does
not determine whether the corresponding GCM predictors
properly represent the distributions of the observed predictors
and does not convert the predictors to principal components.
The predictors chosen by the SDSM software were meridional
and zonal geostrophic wind at the surface, 850 hPa meridional
geostrophic wind speed and geopotential height, and 500 hPa
meridonal geostrophic wind speed, vorticity, and geopotential
height. Using these NCEP predictors, the predictions of Tmax

by the SDSM regression model can be compared with obser-
vations during the 1991–2000 validation period. Although the
regression predicts Tmax, the anomalies can be obtained by
using Eq. (1) to remove the seasonal cycle. The accuracy of
the SDSM regression was quantified by calculating γ2 for
Tmax during the validation period. As shown in the fourth
row of Table 8, the winter and summer values of γ2 were
larger than with any of the other three methods discussed in

this paper and significantly larger than the default method
(compare rows 1 and 4). The main differences between the
annual and SDSM regression is that the annual regression
uses a different predictor selection process and uses principal
components in the regression. These two differences also
appear to improve the regression significantly. It should be
mentioned that SDSM is a useful tool for downscaling
climate variables using monthly regression which would cer-
tainly help with the seasonal cycle issue.

7 Summary

General Circulation Models (GCMs), which incorporate the
known equations of motion, equations of state, conservation
laws, and our best understanding of how subgrid-scale pro-
cesses should be parameterized, are useful tools for predicting
the climate response to particular forcings. However, because
of their coarse resolution, GCMs often perform poorly on the
local scale, especially for surface variables (Giorgi & Mearns,
1991). In SD, the mechanistic predictive power of GCMs on
larger scales is combined with a regression model that is
trained with observed relationships between a local surface
variable and the grid-scale variables of a reanalysis dataset.
This combination should, in principle, be able to make more
robust predictions of climate change at particular locations,
especially in regions with high surface heterogeneity. Care
must be taken with SD, however, to ensure that the GCM
grid-scale variables behave in a way that is consistent with
the reanalysis variables and that the historical regressions
not be extrapolated outside their observed range of validity.

In this study, NCEP reanalysis variables were used to train a
regression model to predict daily Tmin and Tmax at Shearwater,
located in a region with strong sea surface temperature gradi-
ents and complex coastlines. The seasonal cycles of both pre-
dictors (NCEP variables) and predictands (Tmin and Tmax)
were removed prior to their introduction into a seasonally
based principal component regression model. We demon-
strated that the removal of the seasonal cycle forces the
regression coefficients to simulate the synoptic variability
and increases the accuracy of the regression model. We have
also shown that the accuracy of the regression model can be
increased by using different regressions in different seasons
(here winter and summer). This can be expected to be the
case when the meteorological mechanisms which generate
daily temperature anomalies have a seasonal variation. In
addition, our regression model used principal components
defined in terms of the NCEP grid-scale variables rather
than the climate model variables themselves. Using this
model, the regression model was able to simulate the observed
distribution of Tmin and Tmax at Shearwater much more accu-
rately than the raw grid-scale CGCM3 surface temperature.
Finally, we used the CGCM3 principal components in the
regression model to predict the expected changes in Tmin

and Tmax at Shearwater during three future periods: 2011–
40, 2041–70, and 2071–2100. These projections indicate
that the daily minimum and maximum temperatures at
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Shearwater will be up to five degrees warmer by 2100 under
the A2 “business-as-usual” scenario and that there is a signifi-
cant reduction in the seasonal variation of the daily Tmin.
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