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Abstract

The line graph of G, denoted L(G), is the graph with vertex set
E(G), where vertices x and y are adjacent in L(G) iff edges x and y

share a common vertex in G. In this paper, we determine all graphs
G for which L(G) is a circulant graph. We will prove that if L(G) is
a circulant, then G must be one of three graphs: the complete graph
K4, the cycle Cn, or the complete bipartite graph Ka,b, for some a

and b with gcd(a, b) = 1.
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1 Introduction

The line graph of a simple graph G, denoted L(G), is the graph with vertex
set E(G), where vertices x and y are adjacent in L(G) iff edges x and y
share a common vertex in G.

Line graphs make important connections between many important areas
of graph theory. For example, determining a maximum matching in a graph
is equivalent to finding a maximum independent set in the corresponding
line graph. Similarly, edge colouring is equivalent to vertex colouring in the
line graph.

Much research has been done on the study and application of line graphs;
a comprehensive survey of results is found in [6].

Whitney [7] solved the determination problem for line graphs, by show-
ing that with the exception of the graphs K1,3 and K3, a graph is uniquely
characterized by its line graph.

Theorem 1.1 ([7]) Let G and H be two connected graphs for which L(G) '
L(H). If {G, H} 6= {K1,3, K3}, then G ' H.
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By Whitney’s Theorem, we will refer to G as the corresponding graph
of L(G), whenever L(G) 6' K3.

Let Φ be any mapping from the set of finite graphs to itself. For example,
the line graph operator L is such a mapping. A natural question is to
determine all families of graphs Γ for which Γ is closed under Φ.

This question was investigated in [6] for Φ = L, where the author sur-
veyed known families of graphs Γ for which G ∈ Γ implies L(G) ∈ Γ. As
a simple example, the family of regular graphs is closed under L, since the
line graph of an r-regular graph G is a (2r − 2)-regular graph. Other L-
closed families include k-connected graphs, non-chordal graphs, non-perfect
graphs, non-comparability graphs [1], and Eulerian graphs [3].

Given the context of the Prisner survey, we sought to investigate whether
the class of circulant graphs is also closed under the line graph operator.
This question provided the motivation for the results of this paper.

Circulants are highly symmetric graphs, and are a subset of the more
general family of Cayley graphs. Each circulant graph is characterized by
its order n, and its generating set S ⊆ {1, 2, . . . , bn

2 c}. We define G = Cn,S

to be the graph with vertex set V (G) = Zn and edge set E(G) = {uv :
|u−v|n ∈ S}, where |x|n = min{|x|, n−|x|} is the circular distance modulo
n. By definition, |x|n ≡ ±x (mod n). Furthermore, note that if n = ab,
then |at|ab = a|t|b for all t.

The following two lemmas are well-known and easy to prove.

Lemma 1.2 ([2]) Let Cn,S have generating set S = {s1, s2, . . . , sm}. Then
Cn,S is connected iff d = gcd(n, s1, s2, . . . , sm) = 1.

Lemma 1.3 ([5]) Consider the circulant graphs Cn,S and Cn,T . If T =
rS = {|rs|n : s ∈ S} for some integer r, then Cn,S ' Cn,T .

As an example, we can readily verify that if G is the complete graph
K4, then L(K4) ' C6,{1,2}.

Due to the regularity and symmetry of a circulant graph, a natural
conjecture is that L(G) is a circulant whenever G is a circulant. As we see
above, such is the case for G = K4 = C4,{1,2}. It is also true for the n-cycle
Cn = Cn,{1}. However, a counterexample to the conjecture is found for
G = K5.

Theorem 1.4 L(K5) is not a circulant graph.

Proof Since K5 has 10 edges, L(K5) has 10 vertices. Suppose on the
contrary that L(K5) is a circulant. Then, L(K5) = C10,S for some gener-
ating set S ⊆ {1, 2, 3, 4, 5}. Since K5 is 4-regular, this implies that L(K5)
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is 6-regular, and hence |S| = 3. Furthermore, 5 /∈ S, as otherwise L(K5)
would have odd degree. Thus, S must be one of {1, 2, 3}, {1, 3, 4}, {1, 2, 4},
or {2, 3, 4}. We may reject the latter two cases since C10,S has a 5-clique
(namely the set {0, 2, 4, 6, 8}), while L(K5) clearly has no 5-clique.

Therefore, S = {1, 2, 3} or S = {1, 3, 4}. By Lemma 1.3, C10,{1,2,3} '
C10,{1,3,4} with the multiplier r = 3, which implies that L(K5) must be iso-
morphic to C10,{1,2,3}. This circulant contains ten distinct 4-cliques, namely
the cliques {i, i+1, i+2, i+3} for 0 ≤ i ≤ 9, where each element is reduced
mod 10. This implies that L(K5) must also have ten 4-cliques. However,
L(K5) has only 5 cliques of cardinality 4, since a 4-clique must arise from
four pairwise adjacent edges in K5, and this occurs iff all four edges share
a common vertex in K5. Therefore, no such generating set S exists. 2

We have given examples of graphs G for which L(G) is a circulant,
but shown that G = K5 does not satisfy this property. Is it possible to
characterize all graphs G such that L(G) is a circulant? We answer this
question fully in Section 2.

Before we proceed with the main theorem, let us describe one more
family of graphs for which its line graph is a circulant. Recall that Ka,b

is the complete bipartite graph, which has bipartition (X, Y ) with |X | = a
and |Y | = b.

Theorem 1.5 Let G = Ka,b, where gcd(a, b) = 1. Then, L(G) ' Cab,S ,
where S = {1 ≤ k ≤ b ab

2 c : a|k or b|k}.

Proof Let (X, Y ) be the bipartition of G, with |X | = a and |Y | = b.
Represent each edge in G by an ordered pair (x, y), where 0 ≤ x ≤ a − 1
and 0 ≤ y ≤ b − 1. We will label each edge xy in G with the integer
ex,y := bx + ay (mod ab). Thus, edge (x, y) in G will correspond to the
vertex ex,y in L(G).

We claim that ex,y is one-to-one. On the contrary, suppose that ex,y =
ex′,y′ for some (x, y) 6= (x′, y′). Then b(x−x′) ≡ a(y′ − y) (mod ab). Since
gcd(a, b) = 1, we must have a|(x−x′) and b|(y′−y). But 0 ≤ x, x′ ≤ a−1 and
0 ≤ y, y′ ≤ b − 1, and so this implies that (x, y) = (x′, y′), a contradiction.
Therefore, the vertices of L(G) are the integers from 0 to ab − 1, inclusive.

Vertices ex,y and ex′,y′ are adjacent in L(G) iff x = x′ or y = y′. In the
former case, we have |ex,y − ex′,y′ |ab = |ay − ay′|ab = a|y − y′|b, and in the
latter case, |ex,y − ex′,y′ |ab = |bx − bx′|ab = b|x − x′|a. Hence, ex,y ∼ ex′,y′

in L(G) iff |ex,y − ex′,y′ |ab ∈ S, where S is the union of all possible values of
a|y−y′|b and b|x−x′|a. Note that 1 ≤ |y−y′|b ≤ b b

2c and 1 ≤ |x−x′|a ≤ ba
2 c.

Then this implies that S takes on every multiple of a and b less than or equal
to

⌊

ab
2

⌋

. Hence,

S =

{

1 ≤ k ≤

⌊

ab

2

⌋

: a|k or b|k

}

.
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We conclude that L(G) is isomorphic to the circulant Cab,S . 2

As an example, if G = K7,12, then L(G) ' C84,{7,12,14,21,24,28,35,36,42}.
We note that Theorem 1.5 fails when gcd(a, b) 6= 1. As an example, consider
G = K3,3. Since G is 3-regular, L(G) must be a 4-regular graph on 9
vertices. Suppose that L(G) is a circulant. Then, we must have L(G) ' C9,S

for some generating set S ⊆ {1, 2, 3, 4} with |S| = 2. And a simple case
analysis shows that no such S satisfies C9,S ' L(K3,3).

We have now shown that L(G) is a (connected) circulant if G = K4,
G = Cn, or G = Ka,b for some gcd(a, b) = 1. What is surprising is that
these are the only such possibilities. The rest of the paper is devoted to
proving this result.

Theorem 1.6 Let G be a connected graph such that L(G) is a circulant.
Then G must either be Cn, K4, or Ka,b for some a and b with gcd(a, b) = 1.

2 Proof of The Main Theorem

If G is connected, then so is L(G). So let us assume that L(G) = Cn,S is a
connected circulant graph.

If i is a vertex of L(G), then the corresponding edge in G will be denoted
ei. Thus, x ∼ y in L(G) iff ex and ey share a common vertex in G.

First consider the case when 1 is an element of the generating set S.

Theorem 2.1 If L(G) = Cn,S and 1 ∈ S, then G must be K1,n, Cn, or
K4.

Proof If S = {1, 2, . . . , bn
2 c}, then L(G) = Kn. This implies that G = K1,n

for all n (and in the special case n = 3, we could also have G = K3 = C3).
So assume L(G) 6= Kn. Then, there must exist a smallest index k such

that 1, 2, . . . , k ∈ S and k + 1 /∈ S. Note that k ≤ bn
2 c − 1. We split our

analysis into three subcases.

Case 1: 3 ≤ k ≤ bn
2 c − 1.

The vertices {0, 1, 2, . . . , k} induce a copy of Kk+1 in the line graph
L(G), since 1, 2, . . . , k ∈ S. Therefore, the edges in {e0, e1, e2, . . . , ek} must
be pairwise adjacent in G. Since k ≥ 3, these k + 1 edges must share a
common vertex u in G. Now consider edge ek+1. This edge is adjacent to ei

for each 1 ≤ i ≤ k, and thus, shares a common vertex with each of these k
edges. Since k ≥ 3, u must also be an endpoint of ek+1. But then e0 ∼ ek+1,
which contradicts the assumption that k + 1 /∈ S. Thus, no graph G exists
in this case.
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Case 2: k = 2.

First note that if n ≤ 5, then L(G) = Kn, so suppose that n ≥ 6.
If n = 6, then L(G) = C6,{1,2}, from which we immediately derive G =
K4 (this result was also quoted in the introduction to this section). So
assume that n ≥ 7. Consider the subgraph of G induced by the edges
{e0, e1, e2, e3, en−3, en−2, en−1}.

If 1, 2 ∈ S and 3 /∈ S, we claim that this subgraph of G must be iso-
morphic to one of the graphs in Figure 1. For notational convenience, we
represent edge ek by just the index k.

n-3

n-1

n-2

1

0

2

3

n-1

n-2

n-3 0

1

23

n-3

n-1

n-2

1
0

2

3 n-3

n-1

n-2

10

2

3
n-3

n-1

n-2

10

2

3

Figure 1: Possible subgraphs of G induced by these 7 edges.

To explain why this subgraph of G must be isomorphic to one of these
five graphs, we perform a step-by-step case analysis. Start with the edges
e0, e1, and e2. Either these three edges induce a K3 or a K1,3. In each case,
add edge e3. Since 3 /∈ S, e3 is adjacent to e1 and e2, but not e0. Now add
en−1. This edge is adjacent to e0 and e1, but not e2. At this stage, we have
three possible cases, as illustrated in Figure 2.

Now add edge en−2, which is adjacent to e0 and en−1, but not e1. Finally,
add edge en−3, which is adjacent to en−2 and en−1, but not e0. Adding these
two edges in all possible ways to our three graphs in Figure 2, we find that
there are five possible subgraphs. These five subgraphs correspond to the
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Figure 2: Possible subgraphs of G induced by {e0, e1, e2, e3, en−1}.

graphs in Figure 1.

If n = 7, then e1 ∼ e4 in the second graph of Figure 1 (top centre) and
e2 ∼ e5 in other four. But this contradicts the assumption that 3 /∈ S. So
assume n ≥ 8. In the second graph, en−3 ∼ e1 and en−2 6∼ e2, which shows
that 4 ∈ S and 4 /∈ S, a contradiction. We get a similar contradiction for
the other four graphs: en−2 ∼ e2 and either en−3 6∼ e1 or en−1 6∼ e3.

So in the case k = 2, we must have n = 6. Thus, L(G) = C6,{1,2},
implying that G = K4.

Case 3: k = 1.

If S = {1}, then L(G) = Cn, and so G = Cn (in the special case that
n = 3, we could also have G = K1,n). So we may assume that |S| > 1 and
that n ≥ 4. We know that 2 /∈ S since k = 1. Let l be the smallest index
for which 1 ∈ S, 2, 3, . . . , l /∈ S, and l + 1 ∈ S. Note that 2 ≤ l ≤ bn

2 c − 1.
The vertices {0, 1, . . . , l + 1} induce a copy of Cl+2 in the line graph

L(G), since 2, 3, . . . , l /∈ S. Since l ≥ 2, the edges {e0, e1, . . . , el+1} must
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induce an (l + 2)-cycle in G. Let x be the vertex shared by e0 and e1, and
let y be the vertex shared by el+1 and e0.

Now consider el+2. Since el+2 ∼ el+1 and el+2 6∼ el, one of the endpoints
of el+2 must be y. Since el+2 ∼ e1 and el+2 6∼ e2, one of the endpoints of el+2

must be x. But then this forces el+2 = xy = e0, which is a contradiction,
since l + 2 ≤ bn

2 c + 1 < n. Thus, no graph G exists in this case. 2

By Theorem 2.1, we have proven that if 1 ∈ S and L(G) is a circulant,
then G must be K1,n, K4 or Cn. Now consider all generating sets S with
1 /∈ S.

Suppose L(G) = Cn,S with some element x ∈ S such that gcd(x, n) = 1.
There must exist an integer y with xy ≡ 1 (mod n). Then the set yS =
{|yi|n : i ∈ S} is a generating set with |S| elements, and by Lemma 1.3,
Cn,S ' Cn,yS . Since 1 ∈ yS, we have reduced the problem to the previously-
solved case of 1 ∈ S.

Therefore, we may assume that every i ∈ S satisfies gcd(i, n) > 1. We
prove the following.

Theorem 2.2 Let L(G) = Cn,S be a circulant graph. If every i ∈ S satis-
fies gcd(i, n) > 1, then G must be the complete bipartite graph Ka,b, where
a and b are integers for which gcd(a, b) = 1 and n = ab.

Then Theorem 1.6 follows an immediate corollary of Theorems 2.1 and
2.2.

The proof of Theorem 2.2 is quite technical as we require multiple lem-
mas, and a very careful treatment of the Extreme Principle. The rest of the
paper is devoted to proving Theorem 2.2.

Let S = {s1, s2, . . . , sm}. By Lemma 1.2, gcd(n, s1, s2, . . . , sm) = 1, or
else G = Cn,S is disconnected. For every integer t with gcd(t, n) = 1, define

tS = {|tx|n : x ∈ S} = {t1, t2, . . . , tm}.

We claim that there exists an integer t ≥ 1 so that gcd(t1, t2, . . . , tm) = 1.

If gcd(s1, s2, . . . , sm) = 1, then this claim is trivial, since we can set t =
1. So suppose gcd(s1, s2, . . . , sm) = d > 1. Note that gcd(n, s1, s2, . . . , sm) =
gcd(n, d) = 1. Therefore, there must exist an integer t ≥ 1 such that td ≡ 1
(mod n). Then, tsi = td · si

d
≡ si

d
(mod n) for each 1 ≤ i ≤ m, implying

that ti = |tsi|n = si

d
. Hence, gcd(t1, t2, . . . , tm) = 1

d
gcd(s1, s2, . . . , sm) = 1.

Hence, we have proven the existence of such an index t. Therefore, by
Lemma 1.3, L(G) = Cn,S ' Cn,tS , with gcd(t1, t2, . . . , tm) = 1.
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For each 2 ≤ k ≤ m, consider all k-tuples (a1, a2, . . . , ak) comprised of
the elements of tS so that gcd(a1, a2, . . . , ak) = 1. Clearly such a k-tuple
exists for k = m by setting ai = ti for each 1 ≤ i ≤ k = m.

Lemma 2.3 Consider all k-tuples (a1, a2, . . . , ak) for which each ai ∈ tS
and gcd(a1, a2, . . . , ak) = 1. Of all k-tuples that satisfy these conditions
(over all k ≥ 2), consider the k-tuple for which the sum a1 + a2 + . . . + ak

is minimized. This minimum k-tuple must satisfy k = 2.

Proof Suppose on the contrary that the minimum k-tuple satisfies k ≥ 3.
Then L(G) = Cn,tS is a connected circulant graph with vertex 0 adjacent to
each of a1, a2, and a3. Consider e0 in the corresponding graph G. We know
that ea1

, ea2
, and ea3

share a common vertex with e0. By the Pigeonhole
Principle, two of these three edges must share the same common vertex,
and hence |aj − ai|n ∈ tS for some 1 ≤ i < j ≤ 3.

Without loss, say a2−a1 ∈ tS. We have gcd(a1, a2) = gcd(a1, a2−a1). If
a2−a1 = aj for some 1 ≤ j ≤ k, then gcd(a1, a3, a4, . . . , ak) = 1, contradict-
ing the minimality of our chosen k-tuple. If a2−a1 does not already appear
as some aj in our minimum k-tuple, then gcd(a1, a2−a1, a3, a4, . . . , ak) = 1,
and once again we have contradicted our minimality assumption. 2

Lemma 2.3 shows that in a minimum k-tuple satisfying the given con-
ditions, we must have k = 2. This minimum k-tuple must be a pair (a, b),
where a+ b is minimized over all pairs such that a, b ∈ tS and gcd(a, b) = 1.
Without loss, assume a < b. Specifically, this choice of (a, b) implies that
b − a /∈ tS, as otherwise the pair (a, b − a) satisfies gcd(a, b − a) = 1 and
contradicts the minimality of (a, b). Since 1 /∈ tS, we have 2 ≤ a < b ≤ bn

2 c.

Lemma 2.4 Let L(G) = Cn,tS be a circulant. For this minimum pair (a, b)
for which a, b ∈ tS and gcd(a, b) = 1, we have |a + b|n /∈ tS.

On the contrary, suppose that |a + b|n ∈ tS. Consider the subgraph of
G induced by the edges in the set {e0, ea, eb, eb−a, ea+b, e2a}. Since 2a <
a + b < n and gcd(a, b) = 1, these six edges are distinct.

From a, b, |a + b|n ∈ tS and b − a /∈ tS, a simple case analysis shows
that this subgraph must be isomorphic to K4, with one of two possible edge
labellings, as shown in Figure 3. We arrive at this conclusion by considering
the edges in the following order: e0, ea, eb, ea+b, eb−a, and e2a. After we
have included five edges, there are four possible subgraphs. But after we
include e2a, we must eliminate the two cases with eb−a 6∼ ea, and this leaves
us with the two labellings in Figure 3. As before, we represent edge ek by
just the index k for notational convenience.

In both valid labellings, e0 ∼ e2a. Therefore, if |a+b|n ∈ tS, this implies
that |2a|n ∈ tS as well.
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Figure 3: Two possible edge labellings of K4.

Now consider the edge en−a. We claim that edge en−a is distinct from
the other six edges. Note that gcd(a, n) > 1, gcd(b, n) > 1, and gcd(a, b) =
1, with 2 ≤ a < b ≤ n

2 . If n − a equals 0, a, b or b − a, then we have
an immediate contradiction. If n − a = a + b, then n = 2a + b, so that
gcd(a, n) = gcd(a, 2a+ b) = gcd(a, b) = 1, by the Euclidean algorithm. But
then gcd(a, n) = 1, which is a contradiction. Finally, if n − a = 2a (i.e.,
n = 3a), we argue that (a, b) is not the minimum pair satisfying the given
conditions. Let b′ = |a+b|n ∈ tS. Since a < b, we have a+b > 2a > n

2 , and
so b′ = |a + b|n = n − (a + b) = 2a − b. Then, gcd(a, b′) = gcd(a, 2a − b) =
gcd(a, b) = 1. Note that b′ = 2a − b < b. So (a, b′) is a pair satisfying
gcd(a, b′) = 1 and a, b′ ∈ tS, thus contradicting the minimality of (a, b).

Thus, edge en−a is distinct from the six other edges in this K4 subgraph,
and is adjacent to each of e0, ea, and eb. But the three edges {eb, e0, ea}
induce the path P4, and so en−a must coincide with one of the edges ea+b,
eb−a, or e2a. This establishes our desired contradiction, and so we have
shown that |a + b|n /∈ tS. 2

We have now shown that a, b ∈ tS, gcd(a, b) = 1, b − a /∈ tS, and
|a + b|n /∈ tS. We will now prove that in our circulant L(G) = Cn,tS , n
must equal ab, and that the generating set tS must equal

tS =

{

1 ≤ k ≤

⌊

ab

2

⌋

: a|k or b|k

}

.

By Lemma 1.5 and Theorem 1.1, this will immediately establish Theo-
rem 2.2. Hence, it suffices to prove that n = ab, and that 1 ≤ k ≤ b ab

2 c is
an element of tS iff k is a multiple of a or b.

Now consider the subgraph of L(G) induced by the vertices {0, a, b, n−
a, n−b}. It is well-known (and straightforward to show) that any line graph
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L(G) is claw-free, i.e., L(G) has no induced K1,3 subgraph. This implies
that |2a|n ∈ tS, as otherwise {0, a, b, n−a} induces a K1,3 subgraph in L(G),
since b − a /∈ tS and |a + b|n /∈ tS. Similarly, if n > 2b, then |2b|n ∈ tS
as well. In the exceptional case that n = 2b (i.e., b = n

2 = bn
2 c), we have

b = n − b, and we will deal with this case separately.
We have shown that in our generating set tS, if a ∈ tS, then |2a|n ∈ tS.

We now prove that n must be a multiple of a.

Lemma 2.5 Let a ∈ tS be the element as described above. Then a|n.

Proof Since a < bn
2 c, we know that n > 2a. Consider two cases.

Case 1: |3a|n ∈ tS.

We will show that n must be a multiple of a, and that ka ∈ tS for each
1 ≤ k ≤ b n

2a
c. The subgraph of G induced by the edges {e0, ea, e2a, e3a}

must be isomorphic to K1,4, since these edges are pairwise adjacent. Let u
be the vertex common to each edge. Since e4a is adjacent to ea, e2a, and
e3a, it follows that u must also be an endpoint of e4a, which implies that
|4a|n ∈ tS since e0 ∼ e4a. Continuing in this manner, we see that each
|ka|n ∈ tS, for all k ≥ 4. Now, let d = gcd(a, n). Then, there exists an
integer m for which |ma|n = d, which implies that d ∈ tS. If d < a, then
(d, b) is a pair with gcd(d, b) = 1 since d = gcd(a, n)|a. And this contradicts
the minimality of (a, b). Therefore, we must have d = a, which implies that
a|n. Hence, |ka|n ∈ tS for each k ≥ 1. In other words, ka ∈ tS for each
1 ≤ k ≤ b n

2a
c.

Case 2: |3a|n /∈ tS.

We prove that if |3a|n /∈ tS, then n = ka for some 3 ≤ k ≤ 6. Consider
the subgraph of G induced by the edges {e0, ea, e2a, e3a, e4a, e5a, e6a}, where
the indices are reduced mod n (if necessary). We now split our analysis into
two subcases: when n does not divide ma for any m ≤ 6, and when n|ma
for some m ≤ 6.

If n does not divide ma for any m ≤ 6, then these seven edges must be
distinct. We claim that if |3a|n /∈ tS, then the edges {e0, ea, e2a, e3a, e4a, e5a}
must induce a copy of K4, with one of two possible edge-labellings as shown
in Figure 4. In both possible edge labellings, e0 ∼ e4a, i.e., |4a|n ∈ tS.

This is justified by doing a case analysis, considering the edges in the
following order: e0, ea, e2a, e3a, e4a, and e5a. After the first five edges have
been included, there are three possible subgraphs. But after we include e5a,
we see that we must eliminate the subgraph with e0 6∼ e4a. This leaves us
with the two subgraphs in Figure 4.
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Figure 4: Two possible K4 subgraphs induced by {e0, ea, e2a, e3a, e4a, e5a}.

Now consider e6a. We know that e6a 6∼ e3a, while e6a is adjacent to each
of e2a, e4a, and e5a. And this implies that e6a and e0 coincide, which is a
contradiction.

Therefore, n must divide ma for some m ≤ 6. If n < 6a, then this
reduces to the previously solved Case 1, where we showed that ka ∈ tS for
1 ≤ k ≤ b n

2a
c. Thus, Case 2 only adds one possible scenario not previously

considered, namely the case n = 6a and 3a /∈ tS.

In both cases, we have shown that n must be a multiple of a. 2

By Lemma 2.5, we have shown that n ≡ 0 (mod a) and that ka ∈ tS
for each 1 ≤ k ≤ b n

2a
c, with the only possible exception being the case when

3a /∈ tS and n = 6a. We have an analogous result when we replace a by b,
except in the special case n = 2b. Thus, we have shown that L(G) = Cn,tS

must satisfy one of the following four cases.

1. n = 6a, with a, 2a ∈ tS, 3a /∈ tS, and lb ∈ tS for 1 ≤ l ≤ b n
2b
c.

2. n = 6b, with b, 2b ∈ tS, 3b /∈ tS, and ka ∈ tS for 1 ≤ k ≤ b n
2a
c.

3. n = 2b, with b ∈ tS, and ka ∈ tS for 1 ≤ k ≤ b n
2a
c.

4. n = mab for some integer m, with ka ∈ tS for 1 ≤ k ≤ b n
2a
c and

lb ∈ tS for 1 ≤ l ≤ b n
2b
c.

Note that the third case is a special instance of the fourth case (when
m = 1 and a = 2), so we may disregard this case as we will include it in our
analysis of the fourth case. We first prove that the first two cases cannot
occur, leaving us with only Case 4 to consider. In this remaining final case,
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we will prove that n must equal ab and that

tS =

{

1 ≤ k ≤

⌊

ab

2

⌋

: a|k or b|k

}

.

As mentioned previously, this implies the conclusion of Theorem 2.2.

We show that the first two cases are impossible. By symmetry, we
will just disprove the first case. As mentioned before, the subgraph of G
induced by the edges {e0, ea, e2a, e3a, e4a, e5a} must be isomorphic to K4,
since a, 2a ∈ tS and 3a /∈ tS. There are two possible labellings of the edges
on K4, as shown in Figure 4. Now consider the edges eb and ea+b, which are
distinct from the six edges of the subgraph since gcd(a, b) = 1 and a, b > 1.
Since b − a /∈ tS, we must have eb 6∼ ea and ea+b 6∼ e2a. Also, we must
have eb ∼ ea+b, eb ∼ e0, and ea+b ∼ ea. Therefore, the only possible edge
labellings are given in Figure 5.

Figure 5: Two possible subgraphs induced by this set of eight edges.

The first graph has ea+b ∼ e3a and eb 6∼ e2a, and the second graph has
ea+b 6∼ e3a and eb ∼ e2a. Therefore, in both graphs, we have |2a− b|n ∼ tS
and |2a − b|n 6∼ tS, a contradiction. Thus, we have proven that the first
two possible cases for L(G) = Cn,tS are impossible, and so we only need to
consider the fourth and final case.

We have n = mab for some integer m, where ka ∈ tS for 1 ≤ k ≤ b n
2a
c

and lb ∈ tS for 1 ≤ l ≤ b n
2b
c. We now prove that n = ab, i.e., m = 1.

Suppose that m > 1. Since b > a > 1, we have a ≥ 2 and b ≥ 3.
Therefore, the edges {e0, ea, e2a, eb, eab, e(a+1)b} are distinct. The edges
{e0, ea, e2a, eab} are pairwise adjacent in G, and so they must induce a
copy of K1,4. Let u be the vertex common to all four edges. Since the edges
{e0, eb, eab, e(a+1)b} are pairwise adjacent in G, these four edges must also
induce a copy of K1,4. It follows that eb and e(a+1)b must also have vertex
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u as one of its endpoints. But then ea ∼ eb, which implies that b − a ∈ tS,
a contradiction. Thus, we must have m = 1.

If m = 1, then L(G) = Cab,tS , where the generating set tS includes
every element ka ∈ tS for 1 ≤ k ≤ b b

2c, and lb ∈ tS for 1 ≤ l ≤ ba
2 c.

First assume that tS contains no other elements. Then this implies that
tS = {1 ≤ k ≤ bab

2 c : a|k or b|k}. From Lemma 1.5, this is precisely the line
graph for G = Ka,b, where gcd(a, b) = 1. By Theorem 1.1, L(G) = Cab,tS

implies that G = Ka,b.

Therefore, suppose that tS contains other elements than the multiples
of a and b. Let c be the smallest element of tS that is not a multiple of
a or b. Note that c > a and c > b since (a, b) is the smallest pair with
gcd(a, b) = 1, and a, b ∈ tS.

Let e0 = xy in G. Since each multiple of a is an element of tS, the edges
e0, ea, e2a, e3a, . . . all share the same vertex in G. Without loss, assume this
vertex is x. Similarly, the edges e0, eb, e2b, e3b, . . . all share the same vertex
in G. This common vertex must be y, since b − a /∈ tS. Now consider ec,
which shares a common vertex with e0. Without loss, assume ec has an
endpoint x. Then, ec is adjacent to eka for all k ≥ 1, where the index is
reduced mod n. Thus, |c − ka|n = |c − ka|ab is an element of tS for all
k ≥ 1.

Let c = pa+q, where (p, q) is the unique integer pair with 0 ≤ q ≤ a−1.
Letting k = p and k = p+1, we have |c−pa|n = q ∈ tS and |c−(p+1)a|n =
a − q ∈ tS. By the minimality of c, both q and a − q must be multiples of
a or b. Clearly neither is a multiple of a. Thus, q and a − q must both be
multiples of b. But then its sum, q + (a − q) = a, must be a multiple of b.
This contradicts the fact that gcd(a, b) = 1.

We have shown that if tS contains some element c other than multiples
of a or b, we obtain a contradiction. Thus, tS cannot contain any other
elements than the multiples of a and b. We have proven that if L(G) = Cn,tS

is a circulant, then we must have n = ab and tS = {1 ≤ k ≤ b ab
2 c :

a|k or b|k}. From our earlier analysis, L(G) = Cab,tS implies that G = Ka,b.
This completes the proof of Theorem 2.2. 2

Combining Theorems 2.1 and 2.2, we have proven that if L(G) is a
circulant, then G must be one of K4, Cn, or Ka,b where gcd(a, b) = 1. We
have now given a complete characterization of all circulant line graphs. This
completes the proof of Theorem 1.6. 2
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