Next: About this document ...
MATH/CSCI 2113
Assigment 1
Due Wednesday, January 16, at the beginning of class.
For each of the following problems, show your work.
- Pamela has 15 different books. In how many ways can she place
her books on two shelves so that there is at least one book on each
shelf?
- (a) In how many ways can the letters in the word VISITING be arranged?
(b) For the arrangements of part (a), hwo many have all three I's
together?
- In a social dance class, there are 12 women and 8 men. In how
many ways can the 8 men be paired with 8 of the 12 women?
- How many 4 digit integers:
- (a)
- contain all different digits?
- (b)
- do not contain the digit 5?
- (c)
- do not end with 5 or start with 1?
- (d)
- do not contain more than one 5?
- (e)
- have their digits in strictly increasing order? (So the
first digit is smaller than the second digit, etc. For example, 1356
and 2478 have their digits in increasing order.)
- Determine how many ways 20 coins can be selected from four large
containers, one filled with pennies, one with nickels, one with dimes
and one with quarters.
- In the following program,
and
are integer
variables. Determine the value that the variable
will have
after the segment is executed.
for
to
do
for
to
do
for
to
do
Next: About this document ...
Jeannette Janssen
2002-01-09