MATH/CSCI 2113

Assigment 8 — Solutions

- 1. Do problems 7.1.5 and 7.1.6 on page 318 of the text book.
 - (a) Reflexive, antisymmetric, transitive. Partial order.
 - (a) Reflexive, transitive. Not antisymmetric, because 2|-2 and -2|2, for example.
 - (c) Reflexive, symmetric, transitive. Equivalence relation.
 - (d) Symmetric.
 - (e) Symmetric.
 - (f) Reflexive, symmetric, transitive. Equivalence relation.
 - (g) Reflexive, symmetric.
 - (h) Reflexive, antisymmetric, transitive. Equivalence relation.
- 2. Do problem 7.1.10 on page 318 of the text book.

Note first: $|A \times A| = 4 \cdot 4 = 16$, so $A \times A$ has 2^{16} subsets. So there are 2^{16} different relations on A.

- (a) A reflexive relation must contain (w, w), (x, x), (y, y), (z, z). There are 16 4 = 12 remaining elements in $A \times A$. So there are 2^{12} ways to complete the relation.
- (b) There are $\binom{4}{2} = \frac{4\cdot 2}{2} = 6$ pairs (a,b) in $A \times A$ with a < b. If any of these is in a relation, and the relation is symmetric, then (b,a) is also in the relation. In addition, there are 4 element of the type (a,a). Each of these can be either in or not in the relation. So there are 2^{10} different relations.
- (c) 2^6 .
- (d) 2^{11} .
- (e) 2^9 .
- (f) For each pair $(a, b) \in A \times A$ with a < b, we can choose either (a, b) or (b, a) or neither, but not both. There are 6 such pairs (see (b)), so there are 3^6 choices.

The pairs of type (a, a) can be either in or not in the relation, this gives 2^4 choices. Total: 3^62^4 relations.

- (g) 3^52^4 .
- (h) A relation that is symmetric and antisymmetric can only contain pairs of type (a, a). There are 4 such pairs, so 2^4 relations.
- (i) Exactly one.
- 3. Do problem 7.2.18 on page 330 of the text book.
 - (a) The relation is:

$$R = \{(v, w), (v, x), (w, v), (w, x), (w, y), (w, z), (x, z), (y, z)\}.$$

Drawing the graph is straightforward.

- (b) Similar.
- 4. Do problem 7.2.26 on page 330 of the text book.

The graph of R^n can be obtained as follows: there is an edge between to nodes if and only if there is a walk of length n between the nodes in the original graph. If the graph was only a 4-cycle, then $R^5 = R$, because between any two adjacent nodes on the cycle there is also a walk of length 5: first go once around the cycle. In fact $R^{4k+1} = R$ for every integer k. Similarly, if the graph was only a 3-cycle, then $R^{3\ell+1} = R$ for every integer ℓ . For this graph, which contains of a 4-cycle and a 3-cycle, we are looking for the smalles n so that n = 4k + 1 and $n = 3\ell + 1$ for some integers k, ℓ . Since the least common multiple of 3 and 4 is 12, we get that the smallest such n is n = 13.

- 5. Do problem 7.3.18 on page 340 of the text book.
 - (a) Note: Any subset of U with the elements 1, 2, 3 in it is an upper bound of B.
 - (i) 1 (ii) 4 (iii) $\binom{4}{2} = 6$

- (b) To elements 1, 2, 3, add any of the elements 4, 5, 6, 7. Total: 2^4 upper bounds.
- (c) $\{1, 2, 3\}$.
- (d) One, \emptyset .
- (e) ∅.
- 6. Do problem 7.3.20 on page 340 of the text book.
 - (a) Note: below a general proof is given. However, this particular relation only has four elements, so you can also prove that it is a partial order by inspection, i.e. by drawing the graph, the Hasse diagram, or examining the matrix.

Proof.:

Reflexive: Take $(a, b) \in A$. Then a = a and $b \le b$, so (a, b)R(a, b).

Antisymmetric. Take two elements (a, b) and (c, d) in A, and suppose that (a, b)R(c, d) and (c, d)R(a, b). Then a < c or a = c and $b \le d$, and c < a or c = a and $d \le b$. Since a < c and c < a leads to a contradiction, we must have that a = c, and $b \le d$ and $d \le b$. So b = d, and thus (a, b) = (c, d).

Transitive: Take three elements (a,b), (c,d) and (e,d) in A, and suppose (a,b)R(c,d) and (c,d)R(e,f). Then a < c or a = c and $b \le d$, and c < e or c = d and $d \le f$. In particular, $a \le c$ and $c \le e$. If a < c or c < e, then a < e, so (a,b)R(e,f). If a = c and c = e, then $b \le d$ and $d \le f$. So a = e and $b \le f$, so (a,b)R(e,f).

The next three are easy if you draw the Hasse diagram.

- (b) Minimal: (0,0). Maximal: (1,1).
- (c) Least: (0,0). Maximal: (1,1).
- (d) This is a total order.

- 7. Do problem 7.4.8 on page 345 of the text book.
 - (a) Reflexive: Pick any $x \in A$. Then x x = 0, and 0 is divisible by 3, so $(x, x) \in R$.

Symmetric: Pick any $x, y \in A$, and assume that $(x, y) \in R$. Then x - y is divisible by 3. So also -(x - y) is divisible by 3. But -(x - y) = y - x, so y - x is divisible by 3, so $(y, x) \in R$.

Transitive: Pick three elements $x, y, z \in A$, and assume that $(x, y) \in R$ and $(y, z) \in R$. Then x - y and y - z are both divisible by 3. So x - y = 3k for some integer k, and $y - z = 3\ell$ for some integer ℓ . So $x - z = (x - y) + (y - z) = 3k + 3\ell = 3(k + \ell)$ is divisible by 3, so $(x, z) \in R$.

- (b) $[1] = \{1, 4, 7\}, [2] = \{2, 5\}, [3] = \{3, 6\}.$
- 8. Do problem 7.4.14 on page 346 of the text book.
 - (a) Does not exist, because an equivalence relation is reflexive, so must contain all pairs (i, i) for i = 1, 2, ..., 7.
 - (b) $\{(1,1),(2,2),(3,3),\ldots,(7,7)\}.$
 - (c) Does not exist. An equivalence relation must contain all seven pairs (i, i), and as soon as one pair (i, j) is added with $i \neq j$, then (j, i) must also be included, which would lead to 9 elements.
 - (d) $\{(1,1),\ldots,(7,7),(1,1),(2,1)\}$ (different solutions possible).
 - (e) $\{(1,1),\ldots,(7,7),(1,1),(2,1),(3,4),(4,3)\}$ (different solutions possible). 5 equivalence classes, of 3 of size 1, 2 of size 2.
 - (f) Does not exist. An equivalence relation must contain all seven pairs (i, i), and as soon as one pair (i, j) is added with $i \neq j$, then (j, i) must also be included. So there must be an even number of additional elements. Hence the total number must be odd.

- For (g) and (i) consider the following: each equivalence relation partitions A into sets of size n_1, \ldots, n_k , where $n_1 + \ldots + n_k = 7$. Since every ordered pair consisting of elements taken from the same part of the partition must be in the relation, the size of such a relation is: $n_1^2 + n_2^2 + \ldots + n_k^2$.
- (g) Does not exist. By inspection, there do not exist any numbers $n_1, \ldots n_k$ so that $n_1 + \ldots n_k = 7$, $n_1^2 + \ldots + n_k^2 = 23$. (Note that the largest part of the partition would have to have size at most 4)
- (h) Does not exist. See (f)
- (i) Does not exist. By inspection, there do not exist any numbers $n_1, \ldots n_k$ so that $n_1 + \ldots n_k = 7$, $n_1^2 + \ldots + n_k^2 = 31$.