Review of functions:

A function $f: A \to B$ is one-to-one, if no two elements of A have the same image. So if $a \neq a'$, then $f(a) \neq f(a')$. In other words, every element of B has at most one pre-image.

A function $f:A\to B$ is onto, if every element of B has at least one pre-image. So for every element $b\in B$, there exists an element $a\in A$ so that f(a)=b.

A function $f: A \to B$ is a bijection if it is one-to-one and onto. Note that this implies that every element in B has exactly one pre-image.

For a bijection we can form the inverse function $f^{-1}: B \to A$, where $f^{-1}(b) = a$ precisely when f(a) = b.

If $f: A \to B$ is a bijection, then |A| = |B|

Isomorphism

An (undirected) graph $G_1 = (V_1, E_1)$ is isomorphic to another graph $G_2 = (V_2, E_2)$ if there exists a bijection $f: V_1 \to V_2$ so that, for all $a, b \in V_1$,

$${a,b} \in E_1 \Leftrightarrow {f(a),f(b)} \in E_2.$$

The bijection f is called a graph isomorphism.

Similarly:

A directed graph $G_1 = (V_1, E_1)$ is isomorphic to another digraph $G_2 = (V_2, E_2)$ if there exists a bijection $f: V_1 \to V_2$ so that, for all $a, b \in V_1$,

$$(a,b) \in E_1 \Leftrightarrow (f(a),f(b)) \in E_2.$$