Given an undirected graph G = (V, E).

Two vertices u and v are adjacent if there is an edge in E of which they are the endpoints.

The degree of a node v is the number of nodes adjacent to v, or alternatively, the number of edges in E that have v as an endpoint. Notation: d(v).

For all graphs G = (V, E), where $V = \{v_1, \dots, v_n\}$:

$$\sum_{i=1}^{n} d(v_i) = 2|E|.$$

Sketch of proof: every edge contributes to the degree of two nodes.

The distance between two nodes in an undirected graph is the length of the shortest path between them.

Given a directed graph G = (V, E).

The in-degree of a node v is the number of edges in E that have v as their origin. Notation: $d^-(v)$.

The out-degree of a node v is the number of edges in E that have v as their terminus. Notation: $d^+(v)$.

For all directed graphs G = (V, E), where $V = \{v_1, \ldots, v_n\}$:

$$\sum_{i=1}^{n} d^{+}(v_i) = \sum_{i=1}^{n} d^{-}(v_i) = |E|.$$

Adjacency matrix

$$\left[\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]$$

$$\left[
\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}
\right]$$

If A is the adjacency matrix of a graph G, then entry (i, j) of A^k gives the number of walks from node i to node j in G.

Sketch of proof (induction):

Basic step: obviously, entry (i, j) of A gives the number of walks (zero or one) of length 1 from node i to node j.

Induction step:

Let k be a positive integer. Assume that the statement is true for A^k . Since $A^{k+1} = A^k \cdot A$, it follows from the rules of matrix multiplication that:

$$A_{i,j}^{k+1} = \sum_{t=1}^{n} A_{it}^{k} A_{tj} = \sum_{t, tj \in E} A_{it}^{k}.$$

The result follows from the observation that the number of paths of length k+1 from i to j equals the sum, over all neighbours t of j, of the number of paths of length k from i to t.