Preorder traversal:

Visit the root first, then all subtrees (from left
to right) in preorder.

Postorder traversal:

Visit first all subtrees (from left to right) in
postorder, then visit roots.

Inorder traversal (binary trees only):

Visit the left subtree, then the root, then the
right subtree.

Polish notation corresponds a preorder traver-
sal of the binary tree representing an algebraic
expression. Standard notation (with brackets)
corresponds to inorder traversal.



Depth-first Search

INPUT: A connected graph G = (V,E), V =
{vl,...,vn}.

OutpuT: A (depth-first) spanning tree T of G.

(Step 1) Initialize T'= (Vp, Er): Vp = {v;} and Ep = (.
Set current := v;.

(Step 2) Select the neighbour of current with the
lowest index which is not yet visited. If
no such neighbour exist, continue to Step
3. If it does exist, say v;, set current := v,
and return to Step 2.

(Step 3) If current # v;, then find the parent v; of

current, and set current = v; (backtracking).
Go to Step 2.

(Step 4) If current = v, then stop.



Breadth-first Search

INPUT: A connected graph G = (V,E), V =
{2)1, “e ,Un}.

OutpuT: A (breadth-first) spanning tree T of
G.

(Step 1) Initialize T' = (Vp, Ep): Vp = {v1} and Ep = ().
Insert v; in a queue (.

(Step 2) Set current to be the vertex at the front of
the queue (), and delete this vertex from
(). Add all neighbours of current that have
not been visited to the rear of the queue,
in order of increasing index. If no such
neigbours exist, repeat Step 2.

(Step 3) If @ is empty, then stop.



Vertex set: {a,b,c,d,e, f,g,h}.

Adjacency matrix:

01110000
10011000
10000010

11000001
01000101

00001000

00100000
00011000




