Depth-first Search

INPUT: A connected graph G = (V,E), V =
{vl,...,vn}.

OutpuT: A (depth-first) spanning tree T of G.

(Step 1) Initialize T = (Vp, Er): Vp = {v;} and Ep = 0.
Set current := v;.

(Step 2) Select the neighbour of current with the
lowest index which is not yet visited. If
no such neighbour exist, continue to Step
3. If it does exist, say v;, set current := v,
and return to Step 2.

(Step 3) If current # v;, then find the parent v; of

current, and set current = v; (backtracking).
Go to Step 2.

(Step 4) If current = vy, then stop.

Breadth-first Search

INPUT: A connected graph G = (V,E), V =
{2)1, “e ,Un}.

OutpuT: A (breadth-first) spanning tree T of
G.

(Step 1) Initialize T' = (V, Ep): Vp = {v1} and Ep = ().
Insert v; in a queue (.

(Step 2) Set current to be the vertex at the front of
the queue (), and delete this vertex from
). Add all neighbours of current that have
not been visited to the rear of the queue,
in order of increasing index. If no such
neigbours exist, repeat Step 2.

(Step 3) If @ is empty, then stop.

Vertex set: {a,b,c,d,e, f,g,h}.

Adjacency matrix:

01110000
10011000
10000010

11000001
01000101

00001000

00100000
00011000

Merge sort:

InpPUT: A list L of n unordered numbers
OutpruT: A list OL of the same numbers in in-
creasing order.

(Step 1:) Form a binary tree T of height ¢, where
t = [logy(n)]. Label its leaves with the el-
ements of L. Label all intermediate nodes
as unfinished, all leaves as finished.

(Step 2:) Find an unfinished intermediate node v with
two finished children with lists L; and Ls:

(Step2a:) Merge L, and L, into L: take the small-
est of the first elements of L; and Lo,
remove it from its list and put it at the
end of L. Repeate this until L; and Lo
are empty.

(Step 2b:) Assign L to v, and label v as finished.

Repeat this step until all nodes are fin-
ished.

(Step 3:) Let OL be the list assigned to the root.

A relation from set A to set B is a subset of
A x B.

Notation: Given a relation R C A x B,

rtRy < (x,y) € R

A relation R on a set A is a relation from A
to A. Such a relation can have the following
properties (universe of the quantifiers is A):

Reflexive:
V. (z,x) € R.
Symmetric:
V.V, (z,y) € R — (y,z) € R.
Antisymmetric:
V.Vy[(z,y) € RA(y,2) ER] =1y
Transitive:

V.V, V.[(x,y) € RA(y,2) € R| = (x,2) € R

A xRy if: refl. | sym. | antis. | tr
people x is taller than y X
reals <y X
reals x>y X X
integers x|y X X
integers xr + vy is even X X
people x has the same age as y X X
people x has a parent in common with y| X X
integers y = x?
sets xCuy X X
integers r and y are
relatively prime X
integers x and y, divided by 5 X X
have the same remainder
bit strings r and y have the same X X

of length 7

number of 1’s

web pages

x has a hyperlink to y

Partial order: a relation that is reflexive, anti-
symmetric and transitive.

Examples:

e The relation R on Z where xRy if x > y,

e The relation R on the collection of alls sets
where xRy if x C v,

e The relation R on Z where xRy if z|y.

Equivalence relation: a relation that is reflex-
ive, symmetric and transitive.

Examples:

e The relation R on Z where xRy if x — y is
divisible by 5.

e The relation R on the set of all people where
xRy if x and y have the same age.

A relation R on a set A can be represented as
a directed graph Gp = (A, F) as follows:

The vertices of G are the elements of A
The edge set E = {(a,b) € A x A|laRb}.

A relation R on a set A = {ay,ay,...,a,} can be
represented by an n x n relation matrix A as fol-
lows:

L f1if R
“7 71 0 otherwise

Note that the relation matrix of R is the adja-
cency matrix of the directed graph represent-
ing R.

